Светоизлучающий диод



Светоизлучающий диод
Светоизлучающий диод
Светоизлучающий диод
Светоизлучающий диод
H01L33/36 - Полупроводниковые приборы по меньшей мере с одним потенциальным барьером или с поверхностным барьером, предназначенные для светового излучения, например инфракрасного; специальные способы или устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (соединение световодов с оптоэлектронными элементами G02B 6/42; полупроводниковые лазеры H01S 5/00; электролюминесцентные источники H05B 33/00)

Владельцы патента RU 2549335:

Общество с ограниченной ответственностью "Научно-технический центр НТС Инновации" (RU)

Изобретение относится к светоизлучающим диодам, содержащим эпитаксиальные структуры на основе нитридных соединений металлов III группы. Светоизлучающий диод содержит эпитаксиальную структуру на основе твердых растворов нитридов металлов третьей группы, включающую расположенные последовательно в направлении эпитаксиального роста слой n-типа проводимости, активный слой с p-n-переходом, слой p-типа проводимости, а также металлические контактные площадки к слою n-типа проводимости, размещенные в углублениях, сформированных в эпитаксиальной структуре на уровне слоя n-типа проводимости, при этом светоизлучающий диод содержит металлический p-контактный слой, предназначенный для использования его в качестве положительного электрода, нанесенный поверх слоя p-типа проводимости, изоляционный слой, покрывающий металлический p-контактный слой и внутреннюю боковую поверхность углублений, сформированных в эпитаксиальной структуре, и металлический p-контактный слой, предназначенный для использования его в качестве отрицательного электрода, покрывающий изоляционный слой и контактирующий с каждой металлической контактной площадкой к слою p-типа проводимости, согласно изобретению металлические контактные площадки к слою n-типа проводимости в горизонтальной плоскости сечения светоизлучающего диода имеют вид двух узких протяженных полос, каждая из которых расположена на периферии одной из половин указанного сечения и проходит вдоль большей части ее границы с отступом от нее, первый и второй концевые участки одной полосы расположены с зазором соответственно относительно первого и второго концевого участка второй полосы, при этом указанные полосы образуют фигуру, конфигурация которой соответствует конфигурации периметра светоизлучающего диода, имеющую разрыв в серединной ее части. Изобретение обеспечивает повышение однородности плотности тока в активной области светодиода и уменьшение последовательного электрического сопротивления. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области полупроводниковых светоизлучающих приборов, а именно к светоизлучающим диодам, содержащим эпитаксиальные структуры на основе нитридных соединений металлов III группы - алюминия, галлия, индия (AIIIN).

Оптические характеристики светоизлучающего диода и его выходная мощность в значительной степени определяются допустимой величиной питающего тока и условиями его протекания через светодиод, на которые оказывают влияние конфигурация и место расположения положительного и отрицательного электродов - металлических p- и n-контактных площадок к слоям соответственно p- и n-типа проводимости, с помощью которых осуществляется соединение светодиода с источником тока.

В светодиодных эпитаксиальных структурах (светоизлучающих кристаллов) на основе нитрида галлия слой p-типа проводимости характеризуется низкой электропроводностью, так что подводимый к светодиоду ток практически не растекается по указанному слою, а протекает в непосредственной близости от металлических p-контактных площадок (площадки) вертикально вниз через активную область с p-n-переходом, растекается по слою n-типа проводимости, имеющему относительно большую, электропроводность, и течет к n-контактным площадкам (площадке). При этом в проекции на горизонтальную плоскость сечения светодиода область, в которой осуществляется генерация света (площадь p-n-перехода), геометрически повторяет область, занимаемую p-контактными площадками (площадкой), и не включает область, занимаемую n-контактными площадками (площадкой).

Средняя плотность тока в активной области определяется соотношением тока питания и площади, занимаемой p-контактными площадками (площадкой). Помимо средней плотности тока важной характеристикой тока, влияющей на равномерность инжекции носителей и, соответственно, на равномерность интенсивности излучения, является однородность плотности тока в активной области, характеризующая равномерность его распределении. Следует отметить, что неравномерность распределения тока в активной области приводит к снижению общей эффективности светодиода и уменьшению срока его эксплуатации.

Плотность тока достигает максимума вблизи n-контактных площадок (площадки) и экспоненциально спадает по мере удаления от них (от нее). При этом однородность плотности тока зависит не только от площади и положения, но и от формы n-контактных площадок (площадки).

Таким образом, геометрия, размеры и расположение n-контактных площадок (площадки) должны, по возможности, обеспечивать однородность плотности тока в активной области (равномерность его распределения по площади p-n-перехода), а также малое значение контактного сопротивления к n-слою проводимости при относительно небольшой площади, чтобы занимать как можно меньше площади активной области светодиода.

Известен светодиод на основе нитридных соединений AlInGaN [US 6518598], в котором p- и n-контактным площадкам, расположенным, соответственно, на уровне слоев p- и n-типа проводимости, придана форма "расширяющейся спирали". Указанная конфигурация контактных площадок способствует обеспечению однородности плотности тока в активной области. Однако данная конструкция светодиода имеет сложную топологию, что снижает технологичность его изготовления и надежность работы. Кроме того, при указанной конфигурации контактных площадок не удается достигнуть относительно большой площади p-n-перехода.

Известен светоизлучающий диод на основе нитридных соединений AlInGaN [US 6521914], который содержит расположенные на уровне нижнего эпитаксиального слоя n-типа проводимости металлические n-контактные площадки и расположенные на уровне верхнего эпитаксиального слоя p-типа проводимости металлические p-контактные площадки, при этом в проекции на горизонтальную плоскость сечения светодиода области, занимаемые указанными площадками, расположены чередующимися полосами, образуя встречно-штыревую (гребенчатую) конфигурацию.

Рассматриваемый светодиод обеспечивает возможность пропускания значительного по величине тока питания и имеет относительно низкое электрическое сопротивление. Однако в данной конструкции светодиода также не удается достигнуть относительно большой площади p-n-перехода.

Известен светоизлучающий диод на основе нитридных соединений AlInGaN [RU 2247444], который содержит металлические n-контактные площадки к слою n-типа проводимости, размещенные в углублениях, сформированных в эпитаксиальной структуре на уровне слоя n-типа проводимости, а также металлический p-контактный слой, предназначенный для использования его в качестве положительного электрода, нанесенный поверх слоя p-типа проводимости. При этом n-контактные площадки электрически соединены с помощью металлических шин, проходящих поверх p-контактного слоя по изоляционным полосам, нанесенным на участки p-контактного слоя, над которыми проходят металлические шины.

Используемые в данном светодиоде n-контактные площадки могут быть выполнены в виде фрагментов, в горизонтальном сечении светодиода имеющих форму кругов, расположенных в указанном сечении рядами, или имеющих Г-образную форму, расположенных в центральной части указанного сечения и образующих углы квадрата.

В данном светодиоде p-контактный слой образует p-контактную площадку, площадь которой в проекции на горизонтальную площадь сечения светодиода занимает значительную часть его площади, что способствует увеличению площади p-n-перехода. При этом металлический p-контактный слой, выполняющий роль положительного электрода, дополнительно служит в качестве отражающего слоя, что способствует снижению световых потерь.

Однако, как показали исследования авторов, в данном светодиоде не обеспечивается однородность плотности тока в активной области. При круговой форме n-контактных площадок максимальная плотность тока достигается по их периметру, а в прочих зонах плотность тока меньше. При использовании Г-образных фрагментов, расположенных указанным выше образом, в проекции на горизонтальное сечение светодиода в центральной зоне активной области плотность тока значительно больше, чем в ее прочих зонах.

Кроме того, наличие комбинации из сформированных поверх p-контактного слоя изоляционных полос и проходящих поверх них металлических шин усложняет технологию изготовления светодиода и снижает его эксплуатационную надежность.

Известен светоизлучающий диод на основе нитридных соединений AlInGaN [US 8368100], выбранный в качестве ближайшего аналога.

Рассматриваемый светодиод содержит эпитаксиальную структуру на основе твердых растворов нитридов металлов третьей группы, включающую расположенные последовательно в направлении эпитаксиального роста слой n-типа проводимости, активный слой с p-n-переходом, слой p-типа проводимости, а также металлические n-контактные площадки, размещенные в углублениях, сформированных в эпитаксиальной структуре на уровне слоя n-типа проводимости, имеющие в проекции на горизонтальную плоскость сечения светодиода круглую форму и расположенные в указанной плоскости рядами.

Кроме того, светодиод содержит металлический p-контактный слой, предназначенный для использования его в качестве положительного электрода, нанесенный поверх слоя p-типа проводимости, изоляционный слой, покрывающий металлический p-контактный слой и внутреннюю боковую поверхность углублений, сформированных в эпитаксиальной структуре, и металлический n-контактный слой, предназначенный для использования его в качестве отрицательного электрода, покрывающий изоляционный слой и контактирующий с каждой металлической n-контактной площадкой.

Особенностью данного светодиода является наличие p- и n-контактных слоев, выполняющих роль положительного и отрицательного электродов, а также являющихся отражающими слоями, обеспечивающими снижение световых потерь. При этом p-контактный слой образует p-контактную площадку, площадь которой в проекции на горизонтальную плоскость сечения светодиода занимает большую часть его площади, что способствует достижению относительно большой площади p-n-перехода.

За счет наличия n-контактного слоя в рассматриваемом светодиоде нет необходимости организовывать специальные межсоединения между n-контактными площадками, что упрощает конструкцию светодиода.

Однако указанные форма и расположение n-контактных площадок не обеспечивают высокой однородности плотности тока в активной области и относительно малого последовательного электрического сопротивления току при протекании его по n-контактному слою к n-контактным площадкам.

Задачей заявляемого изобретения является повышение однородности плотности тока в активной области светодиода и уменьшение последовательного электрического сопротивления.

Сущность изобретения заключается в том, что в светоизлучающем диоде, содержащем эпитаксиальную структуру на основе твердых растворов нитридов металлов третьей группы, включающую расположенные последовательно в направлении эпитаксиального роста слой n-типа проводимости, активный слой с p-n-переходом, слой p-типа проводимости, а также металлические контактные площадки к слою n-типа проводимости, размещенные в углублениях, сформированных в эпитаксиальной структуре на уровне слоя n-типа проводимости, при этом светоизлучающий диод содержит металлический p-контактный слой, предназначенный для использования его в качестве положительного электрода, нанесенный поверх слоя p-типа проводимости, изоляционный слой, покрывающий металлический p-контактный слой и внутреннюю боковую поверхность углублений, сформированных в эпитаксиальной структуре, и металлический n-контактный слой, предназначенный для использования его в качестве отрицательного электрода, покрывающий изоляционный слой и контактирующий с каждой металлической контактной площадкой к слою n-типа проводимости, согласно изобретению металлические контактные площадки к слою n-типа проводимости в горизонтальной плоскости сечения светоизлучающего диода имеют вид двух узких протяженных полос, каждая из которых расположена на периферии одной из половин указанного сечения и проходит вдоль большей части ее границы с отступом от нее, первый и второй концевые участки одной полосы расположены с зазором соответственно относительно первого и второго концевого участка второй полосы, при этом указанные полосы образуют фигуру, конфигурация которой соответствует конфигурации периметра светоизлучающего диода, имеющую разрыв в серединной ее части.

В частном случае выполнения изобретения светоизлучающий диод содержит дополнительную металлическую контактную площадку к слою n- типа проводимости, имеющую в горизонтальной плоскости сечения светоизлучающего диода вид узкой протяженной полосы, расположенной в центральной части указанного сечения и ориентированной вдоль линии разрыва, имеющегося в фигуре, образованной двумя расположенными на периферии протяженными полосами.

В заявляемом светодиоде p-контактный слой образует p-контактную площадку, площадь которой в проекции на горизонтальную плоскость сечения светодиода занимает большую часть его площади. При этом суммарная площадь n-контактных площадок, выполненных в виде двух узких полос, занимает очень малую часть площади светодиода. Указанные факторы способствует увеличению площади p-n-перехода заявляемого светодиода и, соответственно, величины генерируемого светового потока.

Используемые в заявляемом светодиоде металлические p- и n-контактные слои выполняют роль положительного и отрицательного электродов, с помощью которых светодиод подключается к источнику тока. При этом отсутствует необходимость использования специальных межсоединений между n-контактными площадками, что упрощает конструкцию светодиода.

Указанные слои выполняют также функцию отражения генерируемого в активной области светодиода излучения, что способствует снижению световых потерь. Для изготовления данных слоев преимущественно используют металлы с высоким коэффициентом отражения света в диапазоне длин волн собственного излучения светодиода. При этом рассматриваемые p- и n-контактные слои могут представлять собой многослойные системы и содержать элементы, предназначенные для последующего монтажа кристаллов в светоизлучающем приборе.

Указанные конфигурация и место расположения n-контактных площадок, имеющих в горизонтальном сечении светодиода вид двух периферийных узких полос, проходящих вдоль границ периметра горизонтального сечения светодиода с отступом от них, были выбраны авторами расчетно-экспериментальным путем и, как показали исследования авторов, являются оптимальными с точки зрения обеспечения относительно высокой однородности плотности тока в активной области и достижения относительно малого последовательном сопротивлении току, протекающему по n-контактному слою к n-контактным площадкам.

Благодаря наличию зазоров между концевыми участками n-контактных площадок обеспечивается электрическая связанность p-контактной площадки.

Конкретные значения геометрических параметров, характеризующих конфигурацию и месторасположения n-контактных площадок, такие как ширина n-контактных площадок, величина удаления n-контактных площадок от границ (краев) горизонтального сечения светодиода, определяются в процессе компьютерного моделирования с учетом таких величин, как площадь светодиода, ток питания (рабочий ток), допустимое контактное сопротивление n-контактных площадок, характеристика однородности плотности тока в активной области, например, средняя плотность тока и/или допустимая величина среднего квадратичного отклонения плотности тока в активной области.

Таким образом, техническим результатом, достигаемым при реализации заявляемого изобретения, является повышение однородности плотности тока в активной области светодиода и уменьшение последовательного электрического сопротивления току при протекании его по n-контактному слою к n-контактным площадкам.

В случае, когда площадь светодиода в горизонтальном сечении имеет относительно большую величину, целесообразным с точки зрения достижения более высокой однородности плотности тока в активной области является формирование дополнительной описанной выше узкой n-контактной площадки в центральной части указанной площади сечения.

Как показывает практика, формирование такой дополнительной n-контактной площадки следует осуществлять, если размеры сечения светодиода превышает 650×650 мкм.

На фиг.1 представлен общий вид заявляемого светодиода (вид спереди в разрезе); на фиг.2 представлен вид горизонтального сечения светодиода на уровне расположения p-контактного слоя; на фиг.3 представлена характеристика распределения интенсивности излучения (I) светодиода, в относительных единицах, в зависимости от расстояния (d) до края активной области светодиода в мкм (в сечении активной области по плоскости А-А, показанной на фиг.2); на фиг.4 представлена характеристика распределения интенсивности излучения (I) светодиода, в относительных единицах, в зависимости от расстояния (d) до края активной области светодиода в мкм (в сечении активной области по плоскости В-В, показанной на фиг.2).

Светоизлучающий диод содержит расположенную на подложке 1 эпитаксиальную структуру на основе твердых растворов нитридов металлов третьей группы. Указанная структура включает расположенные последовательно в направлении эпитаксиального роста слой 2 n-типа проводимости, активный слой 3 с p-n-переходом, слой 4 p-типа проводимости, металлический p-контактный слой 5, изоляционный слой 6 и металлический n-контактный слой 7. В эпитаксиальной структуре сформированы углубления (позицией не обозначены) до уровня слоя 2 n-типа проводимости, в которых размещены металлические n-контактные площадки 8. Металлический n-контактный слой 7 контактирует с каждой n-контактной площадкой 8, в частности, роль n-контакных площадок выполняют участки указанного слоя 7, находящиеся в непосредственном контакте с открытыми участками слоя n-типа проводимости.

Для подвода тока к p-контактному слою 5 светодиод содержит расположенные на краевых участках поверхности светодиода металлические p-контакты 9, контактирующие с p-контактным слоем 5 и со средством подвода тока (на чертеже не показано). В частности, указанные p-контакты 9 охватывают боковую поверхность эпитаксиальной структуры, выполняя функцию отражения света и способствуя тем самым снижению потерь света.

Металлические n-контактные площадки 8 (фиг.2) в горизонтальной плоскости сечения (в проекции на активную область) имеют вид двух узких протяженных полос 10 и 11. Каждая полоса 10, 11 расположена на периферии одной из половин горизонтального сечения светодиода (горизонтального сечения активной области) и проходит вдоль большей части внешней границы указанной половины сечения с отступом от указанной границы. Первый и второй концевые участки полосы 10 расположены с зазором (на чертеже позицией не обозначен) соответственно относительно первого и второго концевого участка полосы 11. При этом указанные полосы 10 и 11 образуют фигуру, конфигурация которой соответствует конфигурации периметра светоизлучающего диода (его активной области) в горизонтальной плоскости, имеющую разрыв а-а в серединной части указанной фигуры.

В частности, для светодиода (фиг.2) общей площадью 1.3 мм2, имеющего площадь активной области 1 мм2, расчетно-экспериментальным путем были выбраны ширина и величина указанного выше отступа, в частности, в пересчете на отступ от границ активной области, которые составили соответственно 18 и 140 мкм.

Поскольку рассматриваемый светодиод имеет относительно большую площадь в горизонтальном сечении (относительно большую площадь активной области), он содержит дополнительную металлическую n-контактную площадку 8, имеющую в горизонтальной плоскости сечения светоизлучающего диода вид узкой протяженной полосы 12, расположенной в центральной части указанного сечения и ориентированной вдоль линии разрыва а-а. Расчетно-экспериментальным путем были выбраны ширина полосы и ее протяженность, которые составили соответственно 18 и 350 мкм.

Устройство работает следующим образом.

При подключении p-контактного слоя 5 с помощью средства токоподвода, в частности, с помощью p-контакта 9, к положительному полюсу источника тока, а n-контактного слоя 7 с помощью средства токоподвода (на чертеже не показано) к отрицательному полюсу источника тока, через светодиод течет ток. Подводимый к светодиоду ток растекается по p-контактному слою 5 и протекает вертикально вниз через слой 4 p-типа проводимости, активный слой 3 с p-n-переходом, растекается по слою 2 n-типа проводимости и течет к n-контактным площадкам 8. При этом в активной области светодиода генерируется световое излучение.

Как показывают эксперименты (см. фиг.3 и фиг.4), интенсивность излучения, генерируемого в активной области светодиода, как в сечении А-А, так и в сечении В-В является достаточно равномерной («провалы» характеристики интенсивности излучения на фиг.1 и фиг.2 соответствуют участкам, занятым n-контактными площадками 8).

Поскольку характеристики интенсивности излучения светодиода определяются характеристиками распределения тока в активной области, можно сделать вывод, что заявляемый светодиод обладает относительно высокой однородностью плотности тока в активной области.

1. Светоизлучающий диод, содержащий эпитаксиальную структуру на основе твердых растворов нитридов металлов третьей группы, включающую расположенные последовательно в направлении эпитаксиального роста слой p-типа проводимости, активный слой с p-n-переходом, слой p-типа проводимости, а также металлические контактные площадки к слою p-типа проводимости, размещенные в углублениях, сформированных в эпитаксиальной структуре на уровне слоя n-типа проводимости, при этом светоизлучающий диод содержит металлический p-контактный слой, предназначенный для использования его в качестве положительного электрода, нанесенный поверх слоя p-типа проводимости, изоляционный слой, покрывающий металлический p-контактный слой и внутреннюю боковую поверхность углублений, сформированных в эпитаксиальной структуре, и металлический n-контактный слой, предназначенный для использования его в качестве отрицательного электрода, покрывающий изоляционный слой и контактирующий с каждой металлической контактной площадкой к слою n-типа проводимости, отличающийся тем, что металлические контактные площадки к слою n-типа проводимости в горизонтальной плоскости сечения светоизлучающего диода имеют вид двух узких протяженных полос, каждая из которых расположена на периферии одной из половин указанного сечения и проходит вдоль большей части ее внешней границы с отступом от нее, первый и второй концевые участки одной полосы расположены с зазором соответственно относительно первого и второго концевого участка второй полосы, при этом указанные полосы образуют фигуру, конфигурация которой соответствует конфигурации периметра светоизлучающего диода, имеющую разрыв в серединной ее части.

2. Светоизлучающий диод по п.1, отличающийся тем, что он содержит дополнительную металлическую контактную площадку к слою n-типа проводимости, имеющую в горизонтальной плоскости сечения светоизлучающего диода вид узкой протяженной полосы, расположенной в центральной части указанного сечения и ориентированной вдоль линии разрыва, имеющегося в фигуре, образованной двумя расположенными на периферии протяженными полосами.



 

Похожие патенты:

Светодиод белого свечения согласно изобретению содержит слой полупроводника n-типа, сформированный из полупроводникового твердого раствора GaP1-x-yAsxNy (0.3>x>0, 0.030>у>0.004), гетероструктуру с собственным типом проводимости, сформированную из слоев полупроводниковых твердых растворов GaP1-x-yAsxNy (0.3>x>0, 0.030>y>0.004), сформированную поверх слоя полупроводника n-типа, слой полупроводника GaP1-x-yAsxNy (0.3>x>0, 0.030>y>0.004) p-типа, сформированный на гетероструктуре GaP1-x-yAsxNy (0.3>x>0, 0.030>y>0.004) с собственным типом проводимости, завершающий тонкий метаморфный слой полупроводника InGaAs p-типа, где значения мольных долей азота, y, и мышьяка, x, плавно либо резко изменяются, одновременно либо по отдельности, в диапазонах 0.3>x>0 и 0.030>y>0.004, формируя тем самым варизонный полупроводниковый материал.
Изобретение относится к способам получения эмиссионных слоев, в частности для органических светоизлучающих диодов. Способ нанесения эмиссионного слоя органического светоизлучающего диода на подложку из стекла или полимера, покрытую слоем анода, включает получение раствора, содержащего люминофорсодержащее соединение и проводящий материал, и нанесение тонкой пленки из полученного раствора на упомянутую подложку.

Изобретение относится к осветительным устройствам, включающим в себя белые светоизлучающие диоды (СИД) на основе люминофоров. Технический результат - создание осветительного устройства, характеризующегося белым внешним видом в выключенном состоянии.

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, устройствам полупроводниковых светодиодов. В устройстве полупроводникового светодиода, излучающего через рассеивающую поверхность прозрачной пластины и содержащего в ней светогенерирующую область, в соответствии с изобретением, на поверхности пластины в качестве рассеивателя закреплен слой прозрачных частиц с большим, чем у окружающей среды, показателем преломления и меньшим длины волны зазором между частицей и поверхностью.

Изобретение относится к области светотехники. Техническим результатом является увеличение эффективности освещения.

Изобретения относятся к светотехнике и могут быть использованы при изготовлении светодиодных устройств для общего освещения. Композиция для получения оптически прозрачного материала содержит компоненты в следующих пропорциях: 100 вес.

Настоящее изобретение относится к способу получения галогендиалкоксидов индия (III) общей формулы InX(OR)2 с Х=F, Cl, Br, I и R = алкильный остаток, алкилоксиалкильный остаток.

Изобретение может быть использовано в производстве белых светодиодов. Проблема, подлежащая решению в настоящем изобретении, состоит в том, чтобы экономически эффективно преодолеть ряд недостатков, таких как стробоскопический эффект светодиодов переменного тока и проблемы с диссипацией тепла, возникающие при интегрировании множества светодиодов.

Изобретение относится к полупроводниковым нитридным наногетероструктурам и может быть использовано для изготовления светодиодов видимого диапазона с длиной волны 460±5 нм.

Изобретение относится к области полупроводниковой светотехники, а именно к светодиодным лампам. Светодиодная лампа содержит колбу из прозрачного материала, сменный излучающий элемент и средство фиксации в виде электропатрона.

Изобретение относится к области оптики и касается способа визуализации двухмикронного лазерного излучения. Визуализация осуществляется путем облучения двухмикронным лазерным излучением образца, имеющего спектральную полосу поглощения, близкую к спектральной полосе лазерного излучения. В качестве образца используют порошок из размолотого монокристалла СаF2:Но. Порошок наносят с помощью связующего материала на плоскую поверхность, которая отражает двухмикронное излучение. Технический результат заключается в упрощении способа и обеспечении высокого контраста и разрешающей способности в широком диапазоне плотности мощности излучения. 1 ил.

Полупроводниковое светоизлучающее устройство содержит полупроводниковую структуру, содержащую светоизлучающий слой; люминесцентный материал, размещенный на пути света, излучаемого светоизлучающим слоем; и термоконтактный материал, размещенный в прозрачном материале; причем термоконтактный материал не производит конверсии длины волны света, излучаемого светоизлучающим слоем; термоконтактный материал имеет большую теплопроводность, чем теплопроводность прозрачного материала; термоконтактный материал размещен для рассеяния теплоты от люминесцентного материала; термоконтактный материал имеет медианный размер частиц больше чем 10 мкм; и коэффициент преломления термоконтактного материала отличается от коэффициента преломления прозрачного материала менее чем на 10% . Изобретение обеспечивает исключение возможности нежелательного смещения цветового тона и снижения светового выхода. 2 н. и 18 з.п.ф-лы, 6 ил.

Предложено светоизлучающее устройство, способное снизить затухание света в элементе и имеющее высокую световую отдачу, и способ изготовления светоизлучающего устройства. Светоизлучающее устройство содержит светоизлучающий элемент, имеющий светопроводящий элемент и многослойную полупроводниковую часть, электроды, расположенные на многослойной полупроводниковой части в этом порядке. Светоизлучающий элемент содержит первую область и вторую область со стороны светопроводящего элемента. Светопроводящий элемент содержит третью область и четвертую область со стороны светоизлучающего элемента. Первая область имеет неравномерное расположение атомов по сравнению со второй областью. Третья область имеет неравномерное расположение атомов по сравнению с четвертой областью. Первая область непосредственно соединена с третьей областью. 3 н. и 13 з.п. ф-лы, 3 ил.

В изобретении раскрыты светоизлучающее устройство и способ его изготовления. Светоизлучающее устройство содержит первый слой, имеющий верхнюю и нижнюю поверхности, при этом упомянутая верхняя поверхность содержит первый материал с первым типом проводимости и имеет множество углублений в по существу плоской поверхности, причем упомянутые верхняя и нижняя поверхности характеризуются расстоянием между ними, являющимся меньшим в упомянутых углублениях, чем в областях вне упомянутых углублений; активный слой, лежащий над упомянутой верхней поверхностью упомянутого первого слоя, при этом упомянутый активный слой способен генерировать свет, характеризуемый длиной волны, когда в нем рекомбинируют дырки и электроны; второй слой, содержащий второй материал с вторым типом проводимости, причем упомянутый второй слой содержит слой покрытия, имеющий верхнюю поверхность и нижнюю поверхность, при этом упомянутая нижняя поверхность лежит над упомянутым активным слоем и соответствует по форме упомянутому активному слою, а в упомянутой верхней поверхности имеются выемки, которые заходят в упомянутые углубления; и подложку, на которой сформирован упомянутый первый слой, при этом упомянутая подложка имеет период кристаллической решетки, достаточно отличающийся от периода кристаллической решетки упомянутого первого материала, чтобы вызвать образование дислокаций в упомянутом первом слое, причем упомянутые углубления характеризуются нижней точкой, которая наиболее близка к упомянутой подложке, при этом упомянутые углубления расположены так, что упомянутая нижняя точка каждого из упомянутых углублений лежит на разной из упомянутых дислокаций. Изобретение обеспечивает повышение эффективности излучения. 2 н. и 15 з.п. ф-лы, 5 ил.

Светодиод содержит подложку, светоизлучающую структуру, первый электрод, второй электрод. На подложке выполнен электропроводящий, прозрачный для излучаемого света U-образный подвес для светоизлучающей структуры. Подвес лежит на подложке одной ветвью и жестко связан с ней. Между ветвями в направлении от подложки выполнена жестко связанная с ветвями последовательность элементов. Элементы - изолирующий слой, первый электрод, слой, выполняющий функцию зеркала и теплоотвода, светоизлучающая структура. Изготавливают светодиод следующим образом. На подложке формируют многослойный пленочный элемент. При этом используют материалы, геометрию его слоев и встроенные механические напряжения, обеспечивающие получение светоизлучающей структуры и электропроводящего, прозрачного для излучаемого света U-образного подвеса. На стадии формирования пленочного элемента изготавливают последовательно слоевой ансамбль со встроенными механическими напряжениями, ансамбль слоев светоизлучающей структуры. В отношении последнего формируют два участка, расположенных друг относительно друга с зазором глубиной до слоевого ансамбля со встроенными механическими напряжениями. Получают участки пленочного элемента - соответствующий лежащей на подложке ветви, соответствующий ветви, связанной со светоизлучающей структурой, и соответствующий петле. На участке пленочного элемента, соответствующем лежащей на подложке ветви, формируют изолирующий слой, на котором изготавливают первый электрод. На участке пленочного элемента, соответствующем ветви, связанной со светоизлучающей структурой, изготавливают слой, выполняющий функцию зеркала и теплоотвода. Затем пленочный элемент частично отделяют от подложки, оставляя его связанным на участке пленочного элемента, соответствующем лежащей на подложке ветви. Производят трансформацию под действием встроенных механических напряжений слоевого ансамбля со встроенными механическими напряжениями в U-образный подвес с петлей и расположением получаемой светоизлучающей структуры между ветвями. При отделении осуществляют переворот ансамбля слоев светоизлучающей структуры со слоем, выполняющим функцию зеркала и теплоотвода, и размещение последнего в контакте с первым электродом с образованием жесткой связи. Изобретение обеспечивает повышение эффективности преобразования электрической энергии в световую и теплоотвода, возможность снижения размеров светодиодов и интеграции с другими оптоэлектронными приборами на одной подложке. 2 н. и 19 з.п. ф-лы, 6 ил.

Изобретение относится к осветительному устройству, содержащему материал (2) для преобразования первичного света (4) во вторичный свет (5), при этом материал (2) для преобразования содержит преобразующий фотолюминесцентный материал (15), который деградирует до непреобразующего фотолюминесцентного материала со временем, когда материал (2) для преобразования освещается первичным светом (4). Материал (2) для преобразования приспособлен так, что, когда материал (2) для преобразования освещается первичным светом (4), относительное снижение концентрации преобразующего фотолюминесцентного материала (15) в материале (2) для преобразования больше, чем относительное снижение интенсивности вторичного света (5). Это позволяет осветительному устройству обеспечивать лишь немного сниженную поглощательную способность для первичного света, даже если большая часть фотолюминесцентного материала обесцветилась, и, следовательно, более длительный срок эксплуатации, при одной и той же или немного сниженной интенсивности вторичного света. 3 н. и 12 з.п. ф-лы, 18 ил.

Изобретение относится к области светотехники и может быть использовано при изготовлении источников света, используемых в составе светотехнического оборудования для общего и местного наружного и внутреннего освещения. Техническим результатом является уменьшение осевых габаритов лампы и улучшение условий теплообмена между платой светодиодов и окружающей средой. Светодиодная лампа содержит выпуклый рассеиватель, плату со светодиодами, установленную с торцевой стороны полого радиатора, и средство соединения с цепью электропитания, размещенное в полости радиатора. Технический результат достигается за счет того, что в полости радиатора размещен тонкостенный цилиндр, выполненный из теплопроводного электроизоляционного материала. Между платой и упомянутым цилиндром с возможностью теплообмена установлена металлическая диафрагма, при этом на нижнем основании тонкостенного цилиндра выполнено средство соединения с цепью электропитания. 2 з.п.ф-лы, 2 ил.

Изобретение относится к оптоэлектронике и может быть использовано для разработок и производства высокоэффективных источников с управляемым спектром излучения. Источник излучения выполнен в виде двух тонких (менее 0,5 мм) пластин из термостойкого стекла, склеенных вакуумплотно по периметру, на которые нанесены пленочные электроды, на одной - прозрачный, на другой - отражающий. Между пластинами плотно к ним присоединена микроканальная пластина (МКП) с нанесенными не сплошным слоем на полупроводящую поверхность ее каналов нанопорошками люминофоров и эмиттера электронов. В МКП происходит эмиссия электронов, усиление их потока и катодолюминесценция (излучение). К пластине с прозрачным электродом с внешней от корпуса стороны присоединена съемная прозрачная пластина с нанесенным внутри нее или на ее поверхности нанопорошком материала со свойством спектрального преобразования излучения. Микроканалы МКП, имеющие длину L и диаметр w, наклонены под углом φ к линиям поля от приложенного между пленочных электродов постоянного или переменного напряжения V так, что действующее на участках канала напряжение, оцениваемое формулой V(w/L)tgφ, устанавливается в зависимости от свойств выбираемых люминофоров и эмиттера электронов. Изобретение обеспечивает расширение спектрального диапазона, управление спектральными характеристиками, повышение эффективности электронно-фотонных и электро-оптических преобразований. 4 ил.

Использование: для получения управляемой последовательности мощных лазерных импульсов. Сущность изобретения заключается в том, что лазер-тиристор содержит катодную область (1), включающую подложку n-типа проводимости (2), широкозонный слой n-типа проводимости (3), анодную область (4), включающую контактный слой p-типа проводимости (5), широкозонный слой p-типа проводимости (6), одновременно являющийся слоем оптического ограничения лазерной гетероструктуры и эмиттером, инжектирующим дырки в активную область (13), первую базовую область (7), слой p-типа проводимости (8), вторую базовую область (9), слой n-типа проводимости (10), волноводную область (12), оптический Фабри-Перо резонатор, образованный естественно сколотой гранью (14) с нанесенным просветляющим покрытием и естественно сколотой гранью (15), первый омический контакт (16), второй омический контакт (18), мезаканавку (19), третий омический контакт (20), при этом параметры материалов слоев первой и второй базовых областей удовлетворяют определенным выражениям. Технический результат: обеспечение возможности увеличения пиковой выходной оптической мощности и снижение амплитуды сигнала управления. 3 з.п. ф-лы, 4 ил.

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств состоит из полупроводниковой подложки (1) с лицевой поверхностью, разориентированной от плоскости (100) на (0,5-10) градусов и, по меньшей мере, одного р-n перехода (2), включающего, по меньшей мере, один активный полупроводниковый слой (3), заключенный между двумя барьерными слоями (4) с шириной запрещенной зоны Eg0. Активный полупроводниковый слой (3) состоит из граничащих с барьерными слоями (4) и чередующихся в плоскости активного полупроводникового слоя (3) пространственных областей (5), (6) первого и второго типов. Пространственные области (5) первого типа имеют ширину запрещенной зоны Eg1<Eg0, a пространственные области (6) второго типа имеют ширину запрещенной зоны Eg2<Eg1. Полупроводниковая структура согласно изобретению обеспечивает увеличение эффективности фотопреобразующего и светоизлучающих приборов, при этом в фотопреобразующих устройствах увеличение эффективности происходит за счет увеличения фототока при распространении спектральной чувствительности в длинноволновую область, и обеспечения высокого уровня фотогенерации и разделения носителей заряда, а в светоизлучающих устройствах увеличение эффективности происходит за счет увеличения вероятности генерации фотонов и уменьшения вероятности безизлучательной рекомбинации посредством обеспечения высокой плотности областей, локализующих носители заряда в трех направлениях.10 з.п. ф-лы, 11 ил., 5 пр.
Наверх