Способ получения тантала алюминотермическим восстановлением его оксида

Изобретение относится к внепечному алюминотермическому восстановлению тантала. Готовят шихту, содержащую оксид тантала Ta2O5, алюминий и гипс в качестве термитной добавки при соотношении Ta2O5:CaSO4=(1,6-1,7):1. Процесс восстановления проводят в вакуумной камере в атмосфере аргона при давлении 0,15-0,2 атм, разделяют продукты реакции шлак-металл. Исходные материалы используют с влажностью, характеризующейся потерей при прокаливании (п.п.п.), которая составляет для оксида тантала 0,1-0,2%, а для гипса 0,2-0,3%. Обеспечивается увеличение выхода тантала при восстановлении. 1 табл., 1 пр.

 

Изобретение относится к металлургии редких тугоплавких металлов, в частности к производству первичного тантала, и может быть использовано в металлургической промышленности при получении тантала прямым внепечным восстановлением его оксида алюминием.

Известен способ получения тантала алюминотермическим восстановлением оксида тантала с использованием в качестве термитной добавки бертолетовой соли и введением в состав шихтовых материалов оксида железа из расчета получения содержания железа в сплаве 7-7,5%. [А.И. Зеликман. Металлургия редких металлов. Москва, «Металлургия», 1991 г., стр.113].

Использование бертолетовой соли и оксида железа повышают удельную термичность процесса алюминотермического восстановления, а наличие железа в сплаве снижает его температуру плавления. При этом известно, что бертолетовая соль является крайне пожаро- и взрывоопасным веществом, а наличие железа в сплаве тантал-алюминий снижает его качество. Для удаления железа из сплава необходимо проведение дополнительных длительных рафинирующих процессов. Использование бертолетовой соли и оксида железа не обеспечивает необходимой термичности для полного проведения процесса алюминотермического восстановления оксида тантала, что приводит к необходимости применения дополнительного внешнего источника нагрева. Выход годного тантала из его оксида не превышает 80-85%.

Известен способ получения первичного тантала внепечным восстановлением его оксида алюминием, в котором в качестве термитных добавок используется калийная селитра и оксид меди.

Процесс алюминотермического восстановления в этом случае проводят без использования внешних источников тепла (патент Канады №620031, опубл. 09.05.1961 г.). Способ принят за прототип.

Способ имеет ряд недостатков.

В известном способе в качестве термитной добавки используется калийная селитра, являющаяся пожаро- и взрывоопасным веществом. Кроме того, для гарантированного удаления меди из сплава тантал-алюминий, являющейся крайне вредной примесью, помимо сложных и длительных рафинировочных процессов, сплав предварительно подвергают выщелачиванию с использованием азотной кислоты. Выход годного тантала из его оксида в этом случае не превышает 80%.

Техническим результатом изобретения является повышение термичности процесса восстановления оксида тантала алюминием и как следствие этого увеличение выхода годного тантала из его оксида и повышение качества конечной продукции.

Технический результат достигается тем, что в способе получения тантала алюминотермическим восстановлением его оксида, включающем подготовку исходных шихтовых материалов, содержащих оксид тантала (Ta2O5), алюминий и термитную добавку, согласно изобретению в качестве термитной добавки используют гипс (CaSO4) при соотношении Ta2O5:CaSO4=(1,6-1,7):1, процесс проводят в вакуумной камере в атмосфере аргона при давлении 0,15-0,2 атм, а влажность исходных компонентов составляет для Ta2O5 0,1-0,2% и CaSO4 0,2-0,3%.

Сущность способа заключается в следующем.

Для повышения термичности процесса прямого внепечного восстановления оксида тантала алюминием до оптимальной для данного процесса величины, составляющей 630-650 ккал/кг шихты, в качестве термитной добавки в состав шихты вводят в заданном соотношении к оксиду тантала гипс (CaSO4). Гипс является абсолютно взрыво- и пожаробезопасным веществом, при этом отличаясь дешевизной и высокой технологичностью при предварительной подготовке к процессу.

При соотношении Ta2O5:CaSO4 более 1,7 термичность процесса резко снижается, что приводит к ухудшению условий фазового разделения шлака и металла и как следствие этого снижению выхода тантала из оксида.

Увеличение количества гипса в шихте (соотношение Ta2O5:CaSO4 менее 1,6) приводит к значительному перегреву процесса, повышенному газовыделению и износу медных изложниц и загрязнению тантала медью, что снижает качество последнего.

Проведение процесса прямого внепечного восстановления оксида тантала алюминием в вакуумной камере, заполненной инертным газом аргоном, обусловлено необходимостью минимизации содержания газовых примесей в сплаве. В предлагаемом способе процесс восстановления осуществляют при давлении аргона в вакуумной камере 0,15-0,2 атм. При давлении аргона менее 0,15 атм и температуре проведения процесса 2000-2100°C в начальный момент происходит повышенное испарение гипса, что нарушает стабильность прохождения реакции восстановления в оптимальном режиме до конца и как следствие снижает выход тантала из его оксида. Превышение давления аргона в камере более 0,2 атм с учетом значительного газовыделения во время процесса приводит в ряде случаев к превышению давления в камере более 2,5 атм, что вызывает срабатывание предохранительного взрывного клапана и разгерметизацию вакуумной камеры. В этом случае качество полученного металла за счет повышения содержания газовых примесей (O, N) значительно снижается.

Влажность исходных шихтовых материалов, характеризующаяся величиной потерь при прокаливании (п.п.п.), определяет их поведение как в процессе подготовки внепечного восстановления, так и в ходе его проведения.

Разность значений п.п.п. для Ta2O5 и CaSO4 определяется как крупностью, так и гигроскопичностью этих материалов.

При п.п.п. Ta2O5 ниже 0,1% и CaSO4 ниже 0,2% установлены значительные трудности при уплотнении компонентов в собранной изложнице, что в конечном результате приводит к повышенному пылеуносу шихтовых материалов и нарушению стабильности процесса восстановления и, соответственно, к снижению выхода тантала из его оксида. Повышенная влажность компонентов, т.е. более 0,2 для Ta2O5 и 0,3 для CaSO4, приводит к замедлению и неполному протеканию процесса восстановления, что ухудшает условия фазового разделения металла и шлака и, соответственно, снижает выход тантала из его оксида.

Пример

Предлагаемым способом при заявленных параметрах проведены процессы прямого внепечного восстановления оксида тантала алюминием. Процессы проводили в вакуумной камере с использованием составной медной изложницы. Предварительно подготовленные шихтовые материалы тщательно перемешивали и засыпали в изложницу. После уплотнения компонентов собранную изложницу помещали в вакуумную камеру и вакуумировали до достижения разрежения 0,001 атм, после чего камеру заполняли аргоном до требуемого давления. Поджиг шихтовых материалов осуществляли с помощью запальной смеси, состоящей из алюминиевой пудры и перманганата калия (KMnO4) в соотношении 3:7 и дистанционного электрозапала. Расчетная масса слитков составляла 250 г, при содержании тантала в сплаве 88-92%.

Один из экспериментальных процессов был проведен следующим образом.

Оксид тантала и гипс прокаливали до получения показателей влажности: п.п.п. Ta2O5 - 0,17%; п.п.п. CaSO4 - 0,25%. Затем брали 327 г Ta2O5; 192 г CaSO4 и 185 г Al (ПА-4). Смешивали компоненты в смесителе в течение 15 минут. Подготовленную шихту засыпали в составную медную изложницу и уплотняли, в верхней части помещали запальную смесь. Изложницу помещали в вакуумную камеру и в запальную смесь устанавливали электрозапал. Камеру вакуумировали до разрежения 0,001 атм, заполняли аргоном до давления 0,17 атм и включали дистанционный электрозапал. Общее время протекания процесса восстановления, включая разделение продуктов реакции, составило около 3 минут. Продолжительность реакции восстановления составила 35-38 секунд. Давление в камере по окончанию процесса составило 0,9 атм. После остывания в течение 2-2,5 часов камеру разгерметизировали, извлекли изложницу, разобрали и разделили продукты реакции на металлический слиток и шлак. Определили массу продуктов процесса и отобрали пробы металла на проведение химического анализа.

Результаты экспериментальных плавок сопоставлены с результатами процесса алюминотермического восстановления оксида тантала, выполненного по прототипу. Результаты экспериментов представлены в таблице.

Примеры: №№1-3 - предлагаемые интервалы заявленных технологических параметров;

№№4-5 - соотношение Ta2O5/CaSO4 ниже и выше предложенных;

№№6-7 - п.п.п. Ta2O5 и CaSO4 ниже и выше предложенных;

№№8-9 - давление аргона в камере ниже и выше предложенного;

№10 - прототип.

Соблюдение заявленных параметров процесса прямого внепечного восстановления оксида тантала алюминием позволяет повысить термичность процесса и как следствие этого увеличить выход годного тантала из его оксида и повысить качество конечной продукции, т.е. достигается технический результат. Применение гипса в качестве термитной добавки значительно повышает пожаро- и взрывобезопасность процесса.

Способ получения тантала алюминотермическим восстановлением его оксида, включающий подготовку шихтовых материалов, содержащих оксид тантала Ta2O5, алюминий и термитную добавку, восстановление и разделение продуктов реакции шлак-металл, отличающийся тем, что в качестве термитной добавки используют гипс CaSO4, который вводят в шихту при соотношении Ta2O5:CaSO4=(1,6-1,7):1, процесс восстановления проводят в вакуумной камере в атмосфере аргона при давлении 0,15-0,2 атм, при этом используют исходные материалы с влажностью, характеризующейся потерей при прокаливании (п.п.п.), составляющей для оксида тантала 0,1-0,2%, а для гипса 0,2-0,3%.



 

Похожие патенты:
Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный.
Изобретение относится к области гидрометаллургии редких металлов. Способ обработки смеси оксидов ниобия и/или тантала и титана для отделения ниобия и/или тантала от титана включает растворение смеси при нагревании в растворе фтористоводородной кислоты с получением фторидного раствора.
Изобретение относится к металлургии и касается способа вскрытия перовскитового концентрата в вакууме. Способ включает карботермическую обработку в вакууме.

Изобретение относится к металлургии, в частности к рафинированию тантала. Способ рафинирования сплавов на основе тантала включает вакуумный электронно-лучевой переплав в горизонтальном кристаллизаторе помещенной в него шихты с выделением возгонов ее металлических примесей на конденсирующей их поверхности и возгонов газосодержащих примесей и получением слитка тантала путем перемещения электронного луча от начала к концу кристаллизатора по всей поверхности шихты с его последующим отключением.
Изобретение относится к области металлургии тугоплавких редких металлов, в частности к способу получения чистого ниобия. .

Изобретение относится к цветной металлургии и может быть использовано при металлотермическом получении нанокристаллических порошков ниобия преимущественно для электролитических конденсаторов.
Изобретение относится к области переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов. .
Изобретение относится к гидрометаллургии редкометального сырья, в частности к сольвометаллургической переработке лопаритового концентрата, и может быть использовано в химической промышленности для извлечения из него соединений ниобия и тантала.

Изобретение относится к металлургии, а именно к получению вентильных металлов, в частности порошков вентильных металлов. .

Изобретение относится к извлечению ниобия (V) из водного фторсодержащего раствора с использованием сорбентов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Изобретение относится к способу обработки сырья, содержащего минерал и/или оксид/силикат металла, полученный из минерала или ассоциируемый с минералом. В способе осуществляют обработку исходного сырья при взаимодействии минерала и/или оксида/силиката металла, полученного из минерала или ассоциируемого с минералом, с кислым фтористым аммонием, имеющим общую формулу NH4F·xHF, в которой 1<х≤5. В качестве продукта взаимодействия образуется аммониевое фторметаллатное соединение, которое подвергают термической обработке для его термического разложения и тем самым получения безводного фторида. Техническим результатом является разработка быстрого экономичного безводного процесса производства безводных фторидов из природных минералов. 22 з.п. ф-лы, 5 ил., 3 пр.

Изобретение относится к гидрометаллургии, в частности к технологии переработки рудных концентратов ниобия и тантала. Способ получения оксидов ниобия и тантала из колумбитового (танталитового) концентрата включает его вскрытие фторидами аммония и серной кислотой, последующее выделение, очистку и разделение солей ниобия и тантала экстракцией. При этом концентрат фторируют расплавом смеси фторидов аммония при температуре 110-240°C в течение 0,5-5 часов, выделяющиеся при этом газы абсорбируют водой с получением раствора аммиака. Изобретение обеспечивает экономически эффективный и малоотходный способ переработки ниобий- и танталсодержащих рудных концентратов, а также низкий удельный расход химикатов. 3 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к получению высокочистых порошков ниобия с большой удельной поверхностью, которые могут быть использованы для производства анодов объемно-пористых конденсаторов. В герметичный реактор загружают исходную шихту, содержащую кислородное или кислородное и бескислородное соединение ниобия и галогенид щелочного металла. В реакторе создают атмосферу инертного газа и нагревают шихту с образованием расплава. В расплав подают при перемешивании щелочной металл в количестве, равном стехиометрическому, с восстановлением ниобия. После подачи щелочного металла в расплав дополнительно вводят порошкообразное бескислородное соединение ниобия. Расплав выдерживают в течение 10-40 минут, после чего добавляют щелочной металл в количестве, обеспечивающем восстановление ниобия, содержащегося в дополнительно введенном бескислородном соединении. Щелочной металл добавляют в две стадии с промежуточной выдержкой расплава в течение не менее 30 минут. Образовавшуюся реакционную массу, содержащую ниобий и галогенид щелочного металла, охлаждают, измельчают и промывают полученный порошок ниобия. Обеспечивается повышение качества порошка, полученный порошок имеет сглаженную поверхность частиц и содержание примесей щелочных металлов менее 2,1×10-3 мас.%. 4 з.п. ф-лы, 3 пр.

Изобретение относится к. способу переработки колумбитового концентрата. Способ включает вскрытие концентрата смесью серной и плавиковой кислот, фильтрацию пульпы с отделением кека, который промывают и отправляют на дальнейшую переработку. Затем ведут коллективную противоточную экстракцию тантала и ниобия из раствора, содержащего ниобий и тантал, октанолом и промывку экстракта. Далее проводят селективную реэкстракцию ниобия и тантала, причем реэкстракт ниобия подвергают дополнительному обестанталиванию. Полученные реэкстракты направляют для раздельной их переработки на соответствующие индивидуальные соединения. При этом перед фильтрацией пульпу охлаждают, а перед экстракцией фильтрат смешивают с промывными водами. Промывку экстракта осуществляют смесью серной и плавиковой кислот. Реэкстракцию ниобия ведут раствором серной кислоты, а реэкстракцию тантала - умягченной водой. Техническим результатом является повышение эффективности процесса за счет извлечения из концентрата не менее 96% оксида ниобия и оксида тантала и получения высококачественных соединений ниобия и тантала. 5 з.п. ф-лы, 2 ил., 5 табл.

Изобретение относится к получению высокочистого порошка тантала гидридным методом. Способ включает активацию слитка тантала нагреванием до 700-900°С, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка тантала с использованием ненасыщенного гидрида титана. Активацию слитка тантала нагреванием ведут в атмосфере водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции водорода из насыщенного гидрида многокомпонентного интерметаллического соединения La1-yRyNi4Co, где R - редкоземельные металлы цериевой группы и/или мишметалл, 0<y≤1, с обеспечением начала гидрирования слитка тантала водородом. Одновременно с активацией слитка тантала нагревают насыщенный гидрид титана до температуры его разложения с выделением водорода и при достижении избыточного давления водорода 0,2-0,3 МПа продолжают начатое гидрирование слитка тантала выделяющимся при разложении гидрида титана водородом. Обеспечивается сокращение длительности гидрирования и дегидрирования, повышение безопасности процесса и снижение потерь водорода. 3 ил., 1 табл., 2 пр.

Изобретение относится к металлургии тугоплавких редких металлов. Способ получения чистого ниобия включает восстановительную плавку шихты с получением черновых слитков, удаление шлака с их поверхности и многократный электронно-лучевой переплав с последующей обточкой слитков. Используют шихту, содержащую пентаоксид ниобия, кальций, алюминий и возгоны второго и последующих электронно-лучевых переплавов. Восстановительную плавку шихты ведут с добавлением просушенной стружки металлического ниобия длиной до 20 мм в количестве 1,1-1,8 мас.% от массы пентаоксида ниобия. Обеспечивается повышение извлечения ниобия в слитки и снижение расхода пентаоксида ниобия. 2 з.п. ф-лы, 1 табл.

Изобретение относится к способу переработки редкометального сырья. Способ включает подготовку шихты в две стадии, на первой усредняют состав фосфатно-силикатного минерального сырья по содержанию основных компонентов. Затем добавляют в сырье фторид натрия и гранулируют в атмосфере воздуха при 800-850°С. На второй стадии гранулированный материал направляют в отражательную плавильную печь при температуре 1000-1200°С для ликвационной плавки материала. Гравитационно разделенные фосфатно-солевой и железосодержащий алюмосиликатный расплавы гранулируют и перерабатывают в целевые продукты путем кислотного разложения фосфатно-солевого расплава для получения редких земель и фосфатных удобрений и путем восстановительной углетермической плавки железосодержащего алюмосиликатного расплава для получения феррониобия и целевых продуктов в виде тяжелых металлов, после чего отходы переработки направляют в голову процесса. Техническим результатом является повышение эффективности преработки редкометального сырья путем разделения его фосфатных составляющих и железо-алюмосиликатных соединений с последующим извлечением редких земель, ниобия, тантала, циркония и других тяжелых металлов. 6 табл., 5 пр.

Изобретение относится к экстракционной технологии извлечения и разделения ниобия и сурьмы и может найти применение при получении высокочистых соединений ниобия. В ниобийсодержащий фторидный раствор с примесью сурьмы вводят фторид аммония до обеспечения суммарной концентрации HF и NH4F, равной 6-16 моль/л, при соотношении HF:NH4F=1:0,1-0,7. Затем осуществляют экстракционную обработку полученного раствора трибутилфосфатом при объемном отношении органической и водной фаз О:В=0,6-2,1:1 с переводом сурьмы в органическую фазу, а ниобия - в водную. Предпочтительно проводить экстракционную обработку при числе ступеней 5-8. Из полученного экстракта сурьму реэкстрагируют раствором 200 г/л NH4F. Ниобий осаждают из рафината в виде гидроксида ниобия путем обработки рафината 25% аммиачной водой. Гидроксид ниобия сушат при 150°C и прокаливают при 950°C с получением пентаоксида ниобия. Способ позволяет повысить до 99,93% степень извлечения ниобия в водную фазу и уменьшить степень его соэкстракции с сурьмой до 0,07%. 1 з.п. ф-лы, 1 табл., 6 пр.

Изобретение может быть использовано при комплексной переработке редкометалльных руд, преимущественно тантал-ниобиевых. Способ включает классификацию и гравитационное разделение подрешетного продукта, винтовую сепарацию с последующей концентрацией, выделение скрапа и немагнитных фракций. Немагнитные фракции, полученные в результате низкоинтенсивных магнитных сепараций, подвергают дообогащению. Дообогащение проводят методом мокрой высокоинтенсивной магнитной сепарации 1 с получением магнитной, немагнитной и промежуточной фракций с их последующим гравитационным обогащением. При этом хвосты перечисток направляют в отвал. Гравитационные концентраты перечисток немагнитной и промежуточной фракций после концентрации на столе объединяют с полученным ранее немагнитным продуктом низкоинтенсивной магнитной сепарации концентрата стола. Техническим результатом является повышение эффективности обогащения руд, увеличение степени извлечения полезных минералов за счет улучшения условий их раскрытия при измельчении, а также повышение экологической безопасности при использовании разработанного процесса обогащения этих видов рудного минерального сырья. 3 з.п. ф-лы, 1 ил., 4 табл.

Изобретение относится к получению высокочистого порошка ниобия гидридным методом. Способ включает активацию слитка ниобия нагреванием до 700-900°С, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида ниобия до заданной степени дисперсности и дегидрирование полученного порошка ниобия с использованием ненасыщенного гидрида титана. Активацию слитка ниобия нагреванием ведут в атмосфере водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции водорода из насыщенного гидрида многокомпонентного интерметаллического соединения La1-yRyNi4Co, где R - редкоземельные металлы цериевой группы и/или мишметалл, 0<y≤1, с обеспечением начала гидрирования слитка ниобия водородом. Одновременно с активацией слитка ниобия нагревают насыщенный гидрид титана до температуры его разложения с выделением водорода и при достижении избыточного давления водорода 0,2-0,3 МПа продолжают начатое гидрирование слитка ниобия выделяющимся при разложении гидрида титана водородом. Обеспечивается сокращение длительности гидрирования и дегидрирования, повышение безопасности процесса и снижение потерь водорода. 3 ил., 1 табл., 2 пр.
Наверх