Способ поджига топливной смеси в тепловом двигателе

Изобретение относится к способу поджига смеси окислителя и горючего в камере сгорания теплового двигателя при помощи свечи зажигания, расположенной таким образом, чтобы она заходила в указанную камеру сгорания двигателя. Технический результат заключается в увеличении объема поджигаемой свечи. Способ содержит первый этап питания указанной свечи при помощи первого переменного электрического сигнала частотой, превышающей 1 МГц. Способ содержит второй этап питания указанной свечи при помощи второго переменного электрического сигнала частотой, превышающей 1 МГц, причем этот второй этап осуществляют после первого этапа через определенный промежуток времени относительно первого этапа. 3 н. и 4 з.п. ф-лы, 7 ил.

 

Изобретение в целом относится к способу запуска теплового двигателя.

В данной области известны способы запуска теплового двигателя, в которых используют обычные свечи зажигания, как указано, например, в документах US 6,085,733 или US 2002/0144672. Такие известные свечи позволяют получать линейную искру, проходящую между электродами свечи.

Чтобы решить проблему дефектов поджига при использовании обычных свечей, которые могут производить только линейные искры, было предложено применять радиочастотные свечи зажигания, выполненные с возможностью производить искру, разветвляющуюся от конца электрода. В отличие от традиционных свечей, которые позволяют получать только линейные искры, такие радиочастотные свечи зажигания могут, в частности, за счет формы и расположения их электродов производить разветвленную искру, когда на этот электрод поступает переменный электрический сигнал частотой, превышающей 1 МГц.

Разветвленная искра, получаемая при помощи радиочастотной свечи, имеет больше шансов воспламенить смесь окислителя и горючего, чем линейная искра обычной свечи, так как разветвленная искра распространяется в зоне, имеющей больший объем, чем зона, в которой проходит линейная искра, производимая обычной свечой.

Таким образом, изобретение относится к способу поджига смеси окислителя и горючего в камере сгорания теплового двигателя при помощи радиочастотной свечи зажигания, генерирующей искру, разветвляющуюся от конца электрода, при этом свеча расположена так, чтобы она заходила в указанную камеру сгорания двигателя, при этом способ содержит первый этап питания указанной свечи при помощи первого переменного электрического сигнала частотой, превышающей 1 МГц.

В документе FR 2913297 предложен способ поджига при помощи радиочастотной свечи зажигания, в котором во время зажигания управляют резонатором посредством командного сигнала в виде множества серий импульсов, при этом каждая серия имеет короткую продолжительность, например, от 5 до 10 мкс. Это управление предназначено для реализации мультиподжига.

В дальнейшем тексте описания изобретения под термином «питание свечи» следует понимать питание электрода свечи, содержащего заостренный конец, при помощи переменного электрического сигнала частотой, превышающей 1 МГц, и в данном случае речь идет о подаче питания на заостренный конец электрода от переменных сигналов, в дальнейшем называемых первым и вторым переменными электрическими сигналами.

Этот тип способа поджига посредством питания, по меньшей мере, одной свечи при помощи переменного электрического сигнала частотой, превышающей 1 МГц, известен под названием способа радиочастотного поджига.

Техническим результатом, достигаемым настоящим изобретением, является увеличение объема воспламеняемой смеси и сокращение перебоев воспламенения смеси, возникающих несмотря на подачу электрического питания на свечу.

В этой связи способ поджига в соответствии с настоящим изобретением, охарактеризованный во вступительной части, содержит согласно изобретению второй этап питания указанной свечи при помощи второго переменного электрического сигнала частотой, превышающей 1 МГц, причем этот второй этап осуществляют после первого этапа через определенный промежуток времени относительно первого этапа.

Искра, производимая свечой, когда на нее поступает электрический сигнал частотой, превышающей 1 МГц, имеет форму, которая разветвляется в смеси и, как правило, содержит несколько ветвей. Искра содержит несколько участков, диаметр которых уменьшается от места зарождения искры (то есть от места, где начинается искра) к ее концам (место, где перестает проходить искра). Было установлено, что температура искры меняется по длине искры и уменьшается вместе с диаметром участков искр.

Пламя в смеси возникает в тепловом узле смеси, то есть на уровне участков искры, имеющих наибольший диаметр. Было также установлено, что, когда две искры возникают последовательно и до воспламенения смеси, вторая искра возникает практически в том же месте, что и первая искра, но имеет при этом меньше разветвлений. Таким образом, смесь предварительно нагревается вблизи получаемых искр сначала на первом этапе, затем на втором этапе, на котором получают менее разветвленные искры, при этом повышение температуры происходит с превышением температуры, полученной на первом этапе, пока не произойдет воспламенение. Объем смеси, в котором происходит воспламенение в результате второго этапа, превышает, таким образом, объем смеси, который был бы воспламенен при осуществлении только первого этапа.

Таким образом, воспламенение смеси, присутствующей в камере сгорания, инициируют, по меньшей мере, два разных сигнала соответственно с частотой превышающей 1 МГц, которые производят соответственно, по меньшей мере, две радиочастотные искры.

Благодаря изобретению воспламеняемый объем смеси больше, чем в случае, когда смесь воспламеняется только от одного электрического сигнала. Таким образом, изобретение позволяет сократить число перебоев воспламенения и уменьшить объем несгоревшего топлива и одновременно повысить скорость распространения пламени в камере.

Можно также предусмотреть, чтобы указанный промежуток времени между первым и вторым этапами был меньше в 10 раз продолжительности первого этапа и предпочтительно меньше в 5 раз продолжительности первого этапа.

Этот признак позволяет ограничить время между двумя сигналами питания свечи и свести к минимуму риск охлаждения смеси, предварительно нагретой первой искрой, что и предопределяет увеличение воспламеняемого объема смеси.

Можно также предусмотреть, чтобы промежуток времени между первым и вторым этапами превышал продолжительность первого этапа.

Было установлено, что это условие минимального промежутка между двумя этапами/искрами позволяет уменьшить число ответвлений второй искры по сравнению с первой искрой. Это позволяет удлинить ответвления и увеличить средний диаметр ответвлений второй искры по сравнению с первой искрой. Этот средний диаметр вычисляют по длине данной ветви искры.

Можно также предусмотреть, чтобы промежуток времени между первым и вторым этапами находился в пределах от 1-кратной до 5-кратной продолжительности первого этапа.

При таком промежутке времени между первым и вторым этапами было отмечено, что объем воспламеняемой смеси является максимальным, причем для самых разных более или менее богатых смесей окислитель/горючее.

Можно также предусмотреть, чтобы указанные первый и второй сигналы имели соответствующие частоты, предпочтительно превышающие 1 МГц.

При таком уровне частот легче поддерживать искру в течение всего периода питания свечи, обеспечивая, таким образом, оптимальный нагрев смеси на первом этапе питания и затем воспламенение большего объема смеси на втором этапе питания свечи. При этом фронт пламени распространяется от нитей искры, генерируемой на втором этапе питания свечи, в направлении стенок камеры сгорания, в которую выходит свеча.

Можно также предусмотреть, чтобы каждый из указанных первого и второго электрических сигналов имел собственные параметры, такие как амплитуда напряжения сигнала U, частота переменного электрического сигнала F, общая продолжительность сигнала D, и чтобы, по меньшей мере, один из параметров, по меньшей мере, одного из указанных первого и второго сигналов определять во время этапа, предшествующего указанным первому и второму этапам, в зависимости от параметров, определяющих горение, причем эти параметры, определяющие горение, измеряют и/или оценивают, и они включают в себя, по меньшей мере, давление Р в камере сгорания, температуру Т, характеризующую температуру внутри камеры, соотношение горючего и окислителя в смеси и количество сгоревших газов, присутствующее в смеси.

Определение, по меньшей мере, одного из параметров, по меньшей мере, одного из первого и второго сигналов в зависимости от рабочих характеристик теплового двигателя (давление, температура, соотношение окислителя и горючего) позволяет адаптировать характер искры, производимой во время первого и/или второго этапа, в зависимости от условий в камере, что позволяет оптимизировать условия зажигания.

Можно также предусмотреть, чтобы продолжительность первого этапа составляла от 150 до 250 мкс, чтобы продолжительность второго этапа составляла от 150 до 250 мкс и чтобы указанный промежуток времени между первым и вторым этапами составлял от 250 до 750 мкс.

Было установлено, что комбинирование сигналов питания свечи, имеющих частоту, превышающую 1 МГц, с продолжительностью первого и второго этапов питания от 150 до 250 мкс и с промежутком времени между этими этапами от 250 до 750 мкс позволяет увеличить среднюю длину разветвленных искр, получаемых на втором этапе питания, что позволяет существенно сократить число перебоев зажигания.

Следует отметить, что первый сигнал подают во время всего первого этапа и только во время этого первого этапа. Точно так же второй сигнал подают во время всего второго этапа и только во время этого второго этапа.

При такой продолжительности первого и второго этапов и при таком промежутке времени между первым и вторым этапами было установлено, что время образования ядра фронта пламени в камере сгорания составляет примерно 2000 мкс, что является очень коротким временем, при этом одновременно повышается надежность зажигания.

Объектом настоящего изобретения является также система зажигания смеси окислителя и горючего, содержащая генератор тока и, по меньшей мере, одну свечу зажигания, соединенную с указанным генератором, при этом указанный генератор выполнен с возможностью генерирования первого переменного электрического сигнала частотой, превышающей 1 МГц, и второго переменного электрического сигнала частотой превышающей 1 МГц. Согласно изобретению указанный генератор выполнен с возможностью разделения во времени указанных первого и второго переменных электрических сигналов через промежуток времени и выполнен с возможностью применения способа в соответствии с настоящим изобретением.

Первый и второй сигналы, генерируемые генератором, обеспечивают создание через питаемую таким образом свечу искр, разделенных между собой заранее определенным промежутком времени. Таким образом, система в соответствии с настоящим изобретением имеет те же преимущества, что были указаны в связи с описанием способа в соответствии с настоящим изобретением.

Объектом изобретения является также тепловой двигатель, содержащий камеру сгорания и вышеупомянутую систему зажигания.

Другие отличительные признаки и преимущества настоящего изобретения будут более очевидны из нижеследующего описания, представленного в качестве неограничивающего примера, со ссылками на прилагаемые чертежи.

На фиг.1 показан конец свечи системы в соответствии с настоящим изобретением, позволяющей реализовать способ в соответствии с настоящим изобретением, и соответствующие зоны «а» и «b», представляющие собой зоны воспламенения без применения способа в соответствии с настоящим изобретением (зона «а») и с применением способа в соответствии с настоящим изобретением (зона «b»), при этом зона «b» больше, чем зона «а»;

на фиг.2 показана временная кривая питания свечи, где на оси абсцисс показано время, а на оси ординат показана интенсивность сигнала питания свечи, при этом на фиг.2 показаны указанные первый и второй сигналы электрического питания свечи, промежуток времени между этими сигналами, а также фазировка сигналов, необходимая для применения способа в соответствии с настоящим изобретением;

на фиг.3 более детально показан один из сигналов, изображенных на фиг.2, причем этот сигнал может быть первым или вторым сигналом, так как в частном варианте осуществления эти сигналы являются идентичными;

на фиг.4а показана получаемая искра, когда на свечу подают первый сигнал питания высокой частоты более 1 МГц, в данном случае этот первый сигнал имеет частоту 5 МГц;

на фиг.4b показана получаемая искра, когда на свечу подают второй сигнал питания высокой частоты более 1 МГц, в данном случае этот второй сигнал имеет частоту 5 МГц, причем искра на фиг.4b является менее разветвленной, чем на фиг.4а, и имеет амплитуду и ширину ветви искры больше, чем на фиг.4а;

на фиг.5а показана зона пламени, инициированная только одной радиочастотной искрой RF, как в известном техническом решении (фиг.4а);

на фиг.5b показана зона пламени, получаемая при помощи способа согласно изобретению с генерированием двух последовательных радиочастотных искр RF (фиг.4b), разделенных промежутком времени, причем эта зона пламени, показанная на фиг.5b, намного больше, чем зона пламени на фиг.5а.

Как было указано выше, изобретение относится к способу поджига смеси окислителя и горючего в камере сгорания при помощи свечи, а также системы 10 зажигания, позволяющей применять способ в соответствии с настоящим изобретением, и двигателя с такой системой.

На фиг.1 показана свеча 3 зажигания, соединенная с генератором G, выполненным с возможностью производить первый и второй переменные электрические сигналы 4, 5, имеющие частоту, превышающую или равную 1 МГц, в течение времени, по меньшей мере, 150 мкс, причем эти сигналы разделены промежутком 6 времени, составляющим от 200 до 600 мкс. Эта фазировка сигналов показана на кривой 2, где представлен первый сигнал 4 питания свечи 3, выдаваемый во время первого этапа 4, после которого следует промежуток 6 времени без сигнала, за которым сразу следует второй сигнал 5, выдаваемый во время второго этапа 5.

Таким образом, на фиг.1:

- кривая А характеризует температуру искры, когда свеча 3 получает питание только от первого сигнала 4; и

- кривая В характеризует температуру искры, когда свеча 3 получает питание от второго сигнала 5 после первого сигнала 6 и после данного промежутка 6 времени между сигналами. Промежуток времени между сигналами необходимо регулировать во время доводки системы в зависимости от рабочих характеристик теплового двигателя, чтобы адаптировать характер производимой искры к условиям в камере, что позволяет оптимизировать условия зажигания.

Промежуток 6 времени между первым и вторым сигналами выбирают таким образом, чтобы он превышал, по меньшей мере, продолжительность первого сигнала (то есть продолжительность первого этапа 4), в данном случае этот промежуток 6 составляет 1500 мкс, то есть в 3,3 раза превышает продолжительность первого сигнала 4 (то есть 150 мкс).

Горизонтальная пунктирная линия на фиг.1 отображает минимальный температурный порог, необходимый для воспламенения. Для воспламенения этой смеси она должна нагреться от искры до температуры, превышающей температурный порог воспламенения.

Таким образом, в случае питания свечи от первого сигнала возможная зона воспламенения имеет максимальную длину «а», намного меньшую длины «b», определяющей возможную зону воспламенения, когда свеча получает питание от второго сигнала, поступающего после первого сигнала.

Таким образом, зона воспламенения во время второго сигнала намного больше зоны воспламенения во время первого сигнала, что позволяет повысить скорость распространения пламени в камере и сократить количество несгоревших газов и число перебоев зажигания.

Это увеличение потенциальной зоны воспламенения связано со следующими факторами:

- искра 9 на втором этапе 5 (показанная на фиг.4b и появляющаяся через 500 мкс после искры, показанной на фиг.4а и генерируемой на первом этапе) является более длинной и менее разветвленной, чем искра 7 на первом этапе 4; и

- искра 9 на втором этапе 5 (фиг.4b) имеет средний диаметр ветви, превышающий средний диаметр ветви искры 7, производимой на первом этапе 4 (фиг.4а); и

- температура Т в зоне искры на втором этапе 5 превышает температуру Т в зоне искры на первом этапе 4.

Следовательно, как подтверждают фиг.5а и 5b, зона 8 воспламенения смеси («8» обозначает объем воспламененной смеси) в камере 2 сгорания оказывается более обширной при применении способа в соответствии с настоящим изобретением с двумя последовательными высокочастотными сигналами питания свечи, разделенными данным минимальным промежутком времени (фиг.5b), чем зона воспламенения, получаемая при применении только одного сигнала (фиг.5а).

Наконец, как показано на фиг.3, данный сигнал (первый или второй сигнал, производимый во время первого или второго этапа 4, 5) имеет переменное напряжение U на конце свечи (частотой F), амплитуда которого увеличивается с начала этапа питания свечи до достижения его максимального напряжения. Эта первая часть Х увеличения амплитуды напряжения U соответствует части образования нитей искры. Затем после достижения этого максимума напряжение U понижается и стабилизируется в заданном пороговом значении, причем эта вторая часть Y сигнала соответствует периоду повышения температуры нитей искры. Сигнал излучается в течение продолжительности D, которая соответствует продолжительности этапа питания свечи 3.

Чтобы усовершенствовать способ в соответствии с настоящим изобретением, эти параметры U, F и D каждого из первого и/или второго сигналов можно определить заранее в зависимости от рабочих параметров двигателя, которыми являются давление Р, и/или температура Т в камере, и/или соотношение между окислителем и горючим в смеси 8.

1. Способ поджига смеси (1) окислителя и горючего в камере (2) сгорания теплового двигателя при помощи радиочастотной свечи (3) зажигания, создающей искру, разветвляющуюся от конца электрода, при этом свечу располагают так, чтобы она заходила в указанную камеру (2) сгорания двигателя, при этом способ содержит первый этап питания указанной свечи при помощи первого переменного электрического сигнала (4) частотой, превышающей 1 МГц, отличающийся тем, что содержит второй этап питания указанной свечи при помощи второго переменного электрического сигнала (5) частотой, превышающей 1 МГц, причем этот второй этап осуществляют после первого этапа через определенный промежуток (6) времени относительно первого этапа, при этом промежуток (6) времени между первым и вторым этапами превышает продолжительность первого этапа, причем указанный промежуток (6) времени превышает продолжительность первого этапа в 1-5 раз.

2. Способ по п.1, отличающийся тем, что указанный первый сигнал (4) имеет свою соответствующую частоту, превышающую 1 МГц, и указанный второй сигнал (5) имеет свою соответствующую частоту, превышающую 1 МГц.

3. Способ по п.1 или 2, отличающийся тем, что каждый из указанных первого и второго электрических сигналов (4, 5) имеет собственные параметры, такие как амплитуда напряжения сигнала (U), частота переменного электрического сигнала (F), общая продолжительность сигнала (D), при этом, по меньшей мере, один из параметров, по меньшей мере, одного из указанных первого и второго сигналов (4, 5) определяют во время этапа, предшествующего указанным первому и второму этапам, в зависимости от параметров, определяющих сгорание, причем эти параметры, определяющие сгорание, измеряют и/или оценивают, и они включают в себя, по меньшей мере, давление (Р) в камере сгорания, температуру (Т), характеризующую температуру внутри камеры (2), соотношение горючего и окислителя и количество сгоревших газов, присутствующее в смеси.

4. Способ по п.1 или 2, отличающийся тем, что продолжительность первого этапа составляет от 150 до 250 мкс, при этом продолжительность второго этапа составляет от 150 до 250 мкс, причем указанный промежуток времени между первым и вторым этапами составляет от 250 до 750 мкс.

5. Способ по п.3, отличающийся тем, что продолжительность первого этапа составляет от 150 до 250 мкс, при этом продолжительность второго этапа составляет от 150 до 250 мкс, причем указанный промежуток времени между первым и вторым этапами составляет от 250 до 750 мкс.

6. Система (10) зажигания смеси окислителя и горючего, содержащая генератор (G) тока и, по меньшей мере, одну свечу (3) зажигания, соединенную с указанным генератором (G), при этом указанный генератор (G) выполнен с возможностью генерирования первого переменного электрического сигнала (4) частотой, превышающей 1 МГц, и второго переменного электрического сигнала (5) частотой, превышающей 1 МГц, отличающаяся тем, что указанный генератор (G) выполнен с возможностью разделения во времени указанных первого и второго переменных электрических сигналов (4, 5) и с промежутком (6) между ними и выполнен с возможностью применения способа по одному из пп.1-5.

7. Тепловой двигатель, содержащий камеру сгорания и систему (10) зажигания по п.6.



 

Похожие патенты:

Изобретение относится к проточным устройствам для импульсного зажигания высокоскоростных потоков гомогенных и гетерогенных горючих смесей в различных энергетических установках, прежде всего в импульсно-детонационных технологических устройствах и в импульсно-детонационных двигателях летательных аппаратов.

Изобретение относится к устройству для регулирования многоискрового зажигания в двигателе внутреннего сгорания, при котором предусмотрен электронный регулирующий трансформатор зажигания для выдачи или прерывания тока искрового зажигания, который отключается или повторно включается на основании по меньшей мере одного токового порога.

Изобретение относится к двигателестроению, в частности к способу формирования последовательности воспламеняющих искр высокого напряжения и соответствующему устройству для зажигания током высокого напряжения.

Изобретение относится к области транспорта и может использоваться для воспламенения обедненных топливных смесей. Техническим результатом является повышение надежности искрообразования при повышенных утечках заряда по поверхности изолятора (юбочки) свечи из-за образовавшегося нагара, а также в увеличении энергии электроразряда. Система зажигания для двигателя внутреннего сгорания содержит электронный блок управления, соединенный с датчиком положения коленчатого вала и аккумуляторной батареей, штатный модуль зажигания с высоковольтными катушками, элементы цепей питания от аккумулятора. Система дополнительно содержит по крайней мере один дополнительный модуль зажигания с высоковольтными катушками. Его входные цепи соединены параллельно с соответствующими входными цепями штатного модуля зажигания, а выходные цепи соединены параллельно с соответствующими выходными цепями штатного модуля зажигания. 1 ил.

Изобретение относится к области транспорта и может быть использовано в системах зажигания. Техническим результатом является снижение потребления энергии с одновременным поддержанием параметров зажигания. В системе управления зажиганием для двигателя внутреннего сгорания блок ЭБУ подает сигнал Si зажигания на устройство зажигания через линию передачи данных для зажигания. Устройство зажигания выполняет операцию замыкания элемента переключения зажигания в интервал времени, в течение которого подается сигнал Si зажигания. Блок ЭБУ подает сигнал Sc управления формой импульса разряда в линию передачи данных для управления формой импульса разряда в момент времени, который задерживается на заранее заданное время задержки относительно момента подачи сигнала Si зажигания. В интервал времени ввода сигнала Sc управления формой импульса разряда после прекращения входного сигнала Si зажигания устройство зажигания устанавливает электрический ток, текущий через первичную обмотку, равным предписанной величине разрядного тока, задаваемой в зависимости от вышеупомянутого времени задержки, с помощью операции размыкания-замыкания элемента переключения управления. 4 з.п. ф-лы, 11 ил.
Наверх