Охлаждение сверхпроводящих машин

Изобретение касается устройства для охлаждения сверхпроводящих машин, включающего в себя закрытую термосифонную систему, которая может наполняться жидким охлаждающим средством и которая снабжена испарителем для испарения жидкого охлаждающего средства. Технический результат заключается в улучшении охлаждающих способностей устройства. Устройство для охлаждения сверхпроводящих машин включает в себя закрытую термосифонную систему, которая может наполняться жидким охлаждающим средством и которая снабжена испарителем для испарения жидкого охлаждающего средства. При этом предусмотрены средства, предназначенные для увеличения орошаемой жидким охлаждающим средством поверхности испарителя, которые выполнены в виде по меньшей мере одного вытесняющего элемента для вытеснения жидкого охлаждающего средства. 6 з.п. ф-лы, 5 ил.

 

Описание

Изобретение касается устройства для охлаждения сверхпроводящих машин, включающего в себя закрытую термосифонную систему, которая может наполняться жидким охлаждающим средством, и которая снабжена испарителем для испарения жидкого охлаждающего средства.

В документе DE 102 44 428 A1 описывается машина, включающая в себя ротор и статор, расположенные в одном корпусе машины, которая содержит устройство, служащее для охлаждения частей внутри этого корпуса. Это устройство охлаждения по меньшей мере на одной торцевой стороне машины снабжено замкнутой системой трубопроводов, включающей в себя находящийся вне корпуса конденсатор, находящийся внутри корпуса испаритель и проходящие между конденсатором и испарителем соединительные трубы, причем в этой системе циркуляция охлаждающего средства осуществляется за счет термосифонного эффекта.

В документе WO 2006/082194 A1 описывается машина, включающая в себя вращающийся вокруг оси ротор, сверхпроводящая обмотка которого соединена теплопроводящим соединением с центральной камерой охлаждающего средства неподвижно вдающегося в полость ротора теплопроводного элемента через каркас обмотки и обеспечивающий тепловой контакт газ. Камера охлаждающего средства с присоединенными к ней сбоку частями трубопроводов и находящейся вне машины конденсорной камерой холодильного узла образует систему трубопроводов, в которой охлаждающее средство циркулирует за счет термосифонного эффекта. Для поддержания подачи охлаждающего средства в центральную камеру охлаждающего средства даже при перекосах ротора камера охлаждающего средства снабжена облицовкой из пористого материала, предпочтительно металлокерамики, с высокой термической проводимостью.

В основу изобретения положена задача улучшить охлаждающую способность устройства, служащего для охлаждения сверхпроводящих машин.

Эта задача решается с помощью устройства с признаками по п.1 формулы изобретения.

Изобретение основано на теории о том, что для достижения необходимой охлаждающей способности в устройстве, служащем для охлаждения сверхпроводящих машин, решающим является не абсолютное количество имеющегося в распоряжении жидкого охлаждающего средства, а размер орошаемой жидким охлаждающим средством поверхности испарителя. Чем больше орошаемая жидким охлаждающим средством поверхность испарителя, тем больше охлаждающего средства может испаряться, т.е. тем больше тепловой энергии может передаваться через эту имеющуюся орошаемую поверхность испаряемому охлаждающему средству. Путем увеличения орошаемой поверхности испарителя может, таким образом, эффективно повышаться имеющаяся охлаждающая способность устройства охлаждения сверхпроводящих машин.

Испаритель обычно выполнен в виде полости, ограничением которой служит поверхность испарителя. В зависимости от степени наполнения жидким охлаждающим средством для испарения жидкого охлаждающего средства служит при этом поверхность испарителя большего или меньшего размера. Чтобы увеличить эту орошаемую жидким охлаждающим средством поверхность без необходимости увеличения количества жидкого охлаждающего средства, предлагается, чтобы средства, предназначенные для увеличения орошаемой жидким охлаждающим средством поверхности испарителя, включали в себя по меньшей мере один вытесняющий элемент, служащий для вытеснения жидкого охлаждающего средства. Таким образом экономится охлаждающее средство при одновременном увеличении орошаемой жидким охлаждающим средством поверхности испарителя.

Предпочтительные варианты осуществления предлагаемого изобретением устройства содержатся в зависимых пунктах.

По одному из предпочтительных вариантов осуществления изобретения испаритель расположен внутри ротора сверхпроводящей машины. При этом избыточная тепловая энергия отводится непосредственно из ротора. Достигаемое с помощью изобретения увеличение орошаемой жидким охлаждающим средством поверхности испарителя предпочтительно, в частности, при этом варианте осуществления изобретения, так как обычно объем и вместе с тем также поверхность испарителя, находящегося внутри ротора, ограничены относительно малыми размерами ротора.

Конструктивные преимущества достигаются за счет того, что по другому предпочтительному варианту осуществления изобретения испаритель и по меньшей мере один вытесняющий элемент имеют цилиндрическую, в частности круглую цилиндрическую, форму. Такая форма является простой в изготовлении и тем не менее эффективной для вытеснения жидкого охлаждающего средства.

По другому предпочтительному варианту осуществления изобретения предлагается, чтобы орошаемая жидким охлаждающим средством поверхность испарителя обладала поверхностной структурой, которая выполнена таким образом, чтобы увеличивалась поверхность, эффективно используемая для передачи тепла. Благодаря этому удается достичь особенно сильного увеличения орошаемой жидким охлаждающим средством поверхности испарителя при одновременных малых затратах на конструирование.

С технологической точки зрения особенно просто реализуемой является при этом поверхностная структура по другому предпочтительному варианту осуществления изобретения, которая включает в себя трехмерные, в частности, выполненные в виде пазов или ребер элементы.

Для еще большего повышения охлаждающей способности поверхностная структура по другому предпочтительному варианту осуществления изобретения включает в себя двухмерные, в частности, имеющие форму отверстий или шипов элементы.

По другому варианту осуществления изобретения жидкое охлаждающее средство представляет собой неон. Неон позволяет получить особенно предпочтительную рабочую точку, например, при охлаждении высокотемпературных сверхпроводников, однако является относительно дорогим, так что уменьшение количества охлаждающего средства, которое достигается с помощью изобретения, является особенно актуальным.

Ниже изобретение описывается и поясняется более подробно на примерах осуществления, схематично изображенных на фигурах.

Показано:

фиг.1: сечение сверхпроводящей машины, а также устройства, служащего для охлаждения сверхпроводящей машины, в схематичном изображении;

фиг.2: испаритель по уровню техники в схематичном изображении;

фиг.3: один из примеров осуществления предлагаемого изобретением устройства, снабженного вытесняющим элементом, служащим для вытеснения жидкого охлаждающего средства;

фиг.4: другой пример осуществления предлагаемого изобретением устройства, при котором поверхность испарителя, эффективно используемая для передачи тепла, увеличена, и

фиг.5: один из примеров осуществления предлагаемого изобретением устройства, при котором применены различные средства для увеличения орошаемой жидким охлаждающим средством поверхности.

На фиг.1 показана сверхпроводящая машина 1, а также устройство, служащее для охлаждения сверхпроводящей машины 1, в схематичном изображении. Показано сечение по продольной оси сверхпроводящей машины 1. Показанная в примере осуществления, изображенном на фиг.1, сверхпроводящая машина 1 представляет собой вращающуюся электрическую машину, в частности синхронную машину, например двигатель или генератор. Эта машина включает в себя статор 10, а также ротор 6. Кроме того, она включает в себя корпус 11, служащий для помещения статора 10 и для установки на опору ротора 6. Сверхпроводящая машина 1 охлаждается посредством закрытой термосифонной системы, которая включает в себя испаритель 4, конденсатор 9, а также соединяющие испаритель 4 и конденсатор 9 элементы, например трубные соединения. Испаритель 4, соединяющие элементы и конденсатор 9 ограничивают замкнутый объем, который предусмотрен для помещения жидкого охлаждающего средства 3. У испарителя 4 имеется орошаемая жидким охлаждающим средством 3 поверхность 5, через которую отводимая тепловая энергия, которая выделяется в роторе, передается охлаждающему средству 3. При этом обычно охлаждающее средство 3 за счет передаваемой тепловой энергии переходит из жидкого состояния в газообразное состояние, т.е. охлаждающее средство 3 испаряется или, соответственно, кипит. Вследствие низкой плотности газообразного охлаждающего средства оно поднимается по соединяющим элементам к геодезически более высоко расположенному конденсатору 9 и там при отборе поглощенной тепловой энергии снова переходит из газообразного состояния в жидкое состояние. Снова сжиженное таким образом охлаждающее средство 3 снова течет под действием силы тяжести обратно к испарителю 4 и, в частности, к орошаемой охлаждающим средством 3 поверхности 3 испарителя 4. Такого рода система охлаждения использует, таким образом, так называемый термосифонный эффект. Циркуляционный контур охлаждения поддерживается только за счет указанных разностей плотности или, соответственно, силы тяжести.

На фиг.2 показано осевое сечение испарителя 4 сверхпроводящей машины при останове машины. Другие части машины на фиг.2 в точности не изображены. Испаритель 4, показанный на фиг.2, имеет круглое цилиндрическое поперечное сечение. Изображенный испаритель 4 известен из уровня техники. Испаритель 4 по меньшей мере частично наполнен жидким охлаждающим средством 3. При этом орошаемая или, соответственно, орошенная жидким охлаждающим средством 3 поверхность испарителя 4 обозначена номером 5 позиции.

При охлаждении сверхпроводящих машин 1 посредством термосифонной системы для достижения необходимой охлаждающей способности определенная минимальная поверхность испарителя 4 должна орошаться жидким охлаждающим средством 3. В зависимости от точной геометрии испарителя 4, наряду с часто ограниченной во время фазы охлаждения пленочным кипением теплопередачей, у рассчитанных по фактическим параметрам сверхпроводящих машин для этого необходимо сравнительно большое количество жидкого охлаждающего средства (например, неона, азота или т.п.).

В настоящее время эта проблема обычно решается за счет того, что просто заправляется соответствующее количество охлаждающего средства 3, которое в (обычно горизонтально расположенном) испарителе 4 цилиндрической формы может орошать достаточно большую поверхность. При одновременном сохранении концепции однократно заправляемой, закрытой термосифонной системы этот способ требует сравнительно большой буферной емкости при комнатной температуре (напорная емкость), в которой при отключении или выходе из строя охлаждения постепенно испаряющееся жидкое охлаждающее средство 3 может улавливаться при приемлемом повышении давления. Альтернативно можно, конечно, смириться с тем, что из-за малого наполнения охлаждающим средством процесс охлаждения длится дольше, чем это собственно необходимо.

На фиг.3 показан испаритель 4 по одному из примеров осуществления предлагаемого изобретением устройства. Испаритель 4 по меньшей мере частично наполнен жидким охлаждающим средством 3. За счет применения дополнительного (предпочтительно цилиндрического) вытесняющего элемента 7 может быть значительно уменьшено необходимое количество жидкости, служащей для орошения той же самой поверхности испарителя. Устройство включает в себя в качестве средств 7, 8, предназначенных для увеличения орошаемой жидким охлаждающим средством 3 поверхности 5 испарителя 4, вытесняющий элемент 7, служащий для вытеснения жидкого охлаждающего средства 3. С помощью вытесняющего элемента 7 объем, имеющийся в распоряжении внутри испарителя 4 для жидкого охлаждающего средства 3, ограничивается таким образом, что фактически орошаемая охлаждающим средством 3 поверхность 5 испарителя 4 увеличивается.

На фиг.4 показан испаритель 4 другого примера осуществления предлагаемого изобретением устройства. Альтернативно или дополнительно к варианту осуществления, показанному на фиг.3, сама поверхность испарителя также может быть значительно увеличена путем выполнения соответствующей поверхностной структуры 8 на ее эффективно действующей поверхности. Предпочтительными вариантами осуществления являются одномерные, выполненные в виде пазов или ребер структуры, с помощью которых простым способом может быть значительно увеличена поверхность (в 3-5 раз). В соответствии с изображенным примером осуществления средства 7, 8, служащие для увеличения орошаемой жидким охлаждающим средством поверхности 5 испарителя 4, выполнены в виде поверхностной структуры 8 поверхности испарителя, при этом поверхностная структура 8 выполнена таким образом, что поверхность 5, эффективно используемая для передачи тепла, увеличивается. Поверхностная структура 8 в показанном примере осуществления включает в себя одномерные в этом случае выполненные в виде пазов или ребер элементы. Предпочтительны также двухмерные, несколько более сложные в изготовлении варианты, служащие для увеличения поверхности (такие как, например, выполнение отверстий или структур, подобных шипам), которые позволяют еще больше увеличить эффективную поверхность.

На фиг.5 показан другой пример осуществления испарителя 4 предлагаемого изобретением устройства, которое включает в себя комбинацию средств 7, 8, служащих для увеличения орошаемой жидким охлаждающим средством поверхности 5 испарителя 4. В примере осуществления, показанном на фиг.5, скомбинированы как средства, показанные на фиг.3, т.е. вытесняющий элемент 7, так и средства, показанные на фиг.4, т.е. поверхностная структура 8, служащая для увеличения орошаемой жидким охлаждающим средством поверхности 5 испарителя 4.

Показанные варианты осуществления изобретения позволяют уменьшить необходимое количество жидкости, служащей для орошения определенной минимальной поверхности испарителя 4 как части термосифонного циркуляционного контура охлаждения. Преимущества заключаются в непосредственно связанном с этим уменьшении необходимого буферного объема (обычно с нескольких 100 литров приблизительно до одной десятой) и вместе с тем меньшей занимаемой площади и меньших расходах. При этом также снижаются расходы на непосредственное наполнение термосифонной системы (меньшее количество охлаждающего средства 3).

Резюмируя, можно сказать, что изобретение касается устройства, служащего для охлаждения сверхпроводящих машин 1, включающего в себя закрытую термосифонную систему 2, которая может наполняться жидким охлаждающим средством 3, и которая снабжена испарителем 4, служащим для испарения жидкого охлаждающего средства 3. Чтобы улучшить охлаждающую способность устройства, в соответствии с изобретением предусмотрены средства 7, 8, предназначенные для увеличения орошаемой жидким охлаждающим средством 3 поверхности 5 испарителя 4.

1. Устройство для охлаждения сверхпроводящих машин (1), включающее в себя закрытую термосифонную систему (2), которая может наполняться жидким охлаждающим средством (3) и которая снабжена испарителем (4) для испарения жидкого охлаждающего средства (3), при этом предусмотрены средства (7,8), предназначенные для увеличения орошаемой жидким охлаждающим средством (3) поверхности (5) испарителя (4), которые выполнены в виде по меньшей мере одного вытесняющего элемента (7) для вытеснения жидкого охлаждающего средства (3).

2. Устройство по п.1, отличающееся тем, что испаритель (4) расположен внутри ротора (6) сверхпроводящей машины (1).

3. Устройство по п.1 или 2, отличающееся тем, что испаритель (4) и по меньшей мере один вытесняющий элемент (7) имеют цилиндрическую, в частности, круглую цилиндрическую, форму.

4. Устройство по п.1, отличающееся тем, что средства (7,8), предназначенные для увеличения орошаемой жидким охлаждающим средством поверхности испарителя, выполнены в виде поверхностной структуры (8) орошаемой жидким охлаждающим средством (3) поверхности (5) испарителя (4), причем эта поверхностная структура (8) выполнена таким образом, что поверхность, эффективно используемая для передачи тепла, увеличивается.

5. Устройство по п.4, отличающееся тем, что поверхностная структура (8) включает в себя одномерные, в частности, выполненные в виде пазов или ребер элементы.

6. Устройство по п.4, отличающееся тем, что поверхностная структура (8) включает в себя двухмерные, в частности, выполненные в виде отверстий или шипов, элементы.

7. Устройство по п.1, отличающееся тем, что жидкое охлаждающее средство (3) представляет собой неон.



 

Похожие патенты:

Изобретение относится к области электротехники и электромашиностроения, в частности, к охлаждению электрических машин. Статор электрической машины содержит корпус, рубашку с каналами для проточного хладагента, магнитопровод с рабочей обмоткой, охлаждение лобовых частей которой осуществляется посредством расположенных между слоями либо над слоями лобовых частей обмотки теплоотводящих элементов в виде цилиндров с ребрами на наружной поверхности, отходящими в радиальном направлении и контактирующими с рубашкой.

Изобретение относится к короткозамкнутому ротору для асинхронной машины, а также к способу изготовления такого короткозамкнутого ротора. Технический результат заключается в улучшении отвода тепла от короткозамкнутого ротора асинхронной машины.

Изобретение относится к электротехнике. Технический результат состоит в уменьшении габаритов и упрощении обслуживания.

Изобретение относится к электротехнике, к динамоэлектрическим машинам с системой охлаждения. Технический результат состоит в улучшении отвода тепла без усложнения конструкции.

Изобретение относится к области электротехники, в частности к электрическим машинам. Предлагается электрическая машина с радиально-щелевым охлаждением в листовом пакете (12) статора и листовом пакете (7) ротора, причем основной поток охлаждающего воздуха с двух сторон по оси направляется в листовой пакет (7) ротора и радиально через щели листового пакета (7) ротора и листового пакета (12) статора.

Насос // 2479754
Изобретение относится к насосу, в частности к циркуляционному насосу, включающему в себя расположенное в корпусе 1а, 3 насоса лопастное колесо 2, с помощью которого жидкость может перемещаться от входного отверстия 1с к выходному отверстию 1d.

Изобретение относится к области электротехники и электромашиностроения, в частности к крупным электрическим машинам, например к турбогенераторам. .

Изобретение относится к области электротехники и касается выполнения электрических машин, заполненных жидкостью, преимущественно асинхронных двигателей, и может быть использована в электроприводе систем с большой продолжительностью пусковых нагрузок при работе на низких оборотах, например в тренажерной технике.

Изобретение относится к области тяжелого электромашиностроения. .

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения и эксплуатации сверхпроводящих электрических машин, в частности сборок передачи крутящего момента в сверхпроводящих вращающихся машинах.

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается выполнения электродвигателей со сверхпроводящей обмоткой и с аксиальным зазором, точнее высокомоментных электродвигателей, которые используются, например, в качестве привода автомобилей и судов.

Изобретение относится к электродвижущим машинам, а более конкретно к устройствам, выполненным с возможностью поддержки и термической изоляции сверхпроводящих обмоток ротора. Технический результат - создание конструкции, обеспечивающей надёжную поддержку и термоизоляции сверхпроводящей обмотки. Устройство поддержки обмотки сверхпроводника на разделяющем расстоянии от сердечника ротора машины содержит удлиненный контур, выполненный с возможностью обеспечения радиальной опоры для обмотки, аксиально проходящую основную сборку (84), выполненную с возможностью крепления упомянутого контура относительно сердечника ротора на ближнем конце удлиненного контура относительно оси ротора, и сборку кронштейна, выполненную с возможностью задания внутреннего углубления для приема участка обмотки сверхпроводника и поддержания удлиненного контура на его удаленном конце относительно оси ротора. Удлиненный контур содержит материал, стойкий к тепловому потоку. Аксиально проходящая основная сборка содержит модульную сборку, содержащую, основной модуль, расположенный в полости сердечника ротора. 9 з.п. ф-лы, 16 ил.

Изобретение относится к устройству для производства электромеханической работы, в частности к электромагнитным турбинам. Технический результат - осуществление турбины, выполненной с возможностью функционирования в условиях относительно сильных магнитных полей. Турбина содержит по меньшей мере одну пару разнесенных в продольном направлении магнитных компонентов; барабанный узел, размещенный между магнитными компонентами и содержащий по меньшей мере один проводящий компонент; токопередающее устройство, сопряженное с указанным по меньшей мере одним проводящим компонентом. Указанная по меньшей мере одна пара разнесенных в продольном направлении магнитных компонентов расположена с возможностью обеспечения области рабочего магнитного поля и определения области нулевого магнитного поля в пространстве между указанной по меньшей мере одной парой разнесенных магнитных компонентов. Области нулевого магнитного поля расположены вне области рабочего магнитного поля. Пропускание тока через указанный по меньшей мере один проводящий компонент посредством указанного токопередающего устройства вызывает вращение барабана. 14 з.п. ф-лы, 52 ил.

Изобретение относится к электротехнике, а именно к электрической трансмиссии со сверхпроводящими обмотками. Сверхпроводниковая трансмиссия включает: входной вал и входной электромеханический преобразователь, содержащий статор с многофазными обмотками и ротор, установленный на входном валу, по меньшей мере один выходной вал и по меньшей мере один выходной электромеханический преобразователь, содержащий статор с многофазными обмотками и ротор, установленный на выходном валу; термоизолированный контейнер, обеспечивающий температурный режим сверхпроводящего состояния размещенных в нем обмоток статоров входного и выходного электромеханических преобразователей и кабеля, выполненных из сверхпроводящего материала и соединенных в единый электрический контур. Техническим результатом изобретения является повышение КПД и снижение массогабаритных параметров трансмиссии за счет уменьшения электрических потерь в проводниках. 9 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике, а именно к электрической машине с ротором из сверхпроводящего материала и способу управления. Электрическая машина (101), содержит статор (103), установленный с возможностью вращения ротор (105) с охлаждаемым, намагничиваемым роторным участком (107) из сверхпроводящего материала (417) и блок управления (109) с возможностью намагничивать током статора роторный участок (107) из сверхпроводящего материала (417). Блок управления (109) обеспечивает управление электрической машиной (101) в зависимости от температуры сверхпроводящего материала и магнитного поля ротора. Технический результат состоит в улучшении эксплуатационных показателей сверхпроводящих электрических машин. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники и может быть использовано в электродвигателях со сверхпроводящей обмоткой и радиальным зазором между ротором и статором, точнее высокомоментных электродвигателей, которые используются, например, в качестве привода автомобилей, судов и другой техники. Технический результат заключается в обеспечении высокой выходной мощности и высокого коэффициента полезного действия электродвигателя с аксиальным зазором, обладающего при этом небольшим весом и габаритами, где плечо равно радиусу ротора и охлаждение высокотемпературных сверхпроводников не вызывает сложности. В высокотемпературном сверхпроводящем электромагнитном индукционном двигателе с радиальным зазором статор расположен с воздушным зазором в радиальном направлении статора так, чтобы противостоять друг другу, множество элементов возбуждения в виде обмоток возбуждения (3) расположены на трансформаторных болтах (4), где сверху с наружной стороны намотана первичная медная обмотка (обмотка возбуждения) (3) на материал с высокой магнитной проницаемостью (пермендюр); с внутренней нижней стороны, которые закручиваются в статор (2), - высокотемпературные сверхпроводящие катушки (5). Множество высокотемпературных сверхпроводящих пластин (6) расположены на роторе вокруг оси вращения и закреплены на конце ротора в радиальном направлении к статору. Все вторичные сверхпроводящие обмотки (5) и сверхпроводящие пластины (6) сформированы из высокотемпературного сверхпроводящего материала. 7 ил.

Изобретение относится к электротехнике, к электромашиностроению и может быть использовано для охлаждения электрогенераторов и электродвигателей. Технический результат состоит в повышении эффективности и равномерности охлаждения за счет использования эффекта газодинамической температурной стратификации. Система охлаждения электрической машины содержит источник сжатого воздуха, напорный трубопровод, полый вал, трубчатый канал, выполненный в виде сопла Лаваля. 1 ил.

Изобретение относится к электрической машине. Техническим результатом является улучшение охлаждения электрической машины. Предложена электрическая машина (100), содержащая: статор (107) и ротор (101), при этом ротор (101) имеет полый вал (102), при этом с помощью полого вала (102) образовано замкнутое полое пространство (103), при этом замкнутое полое пространство (103) предназначено для размещения охлаждающего средства, при этом в замкнутом полом пространстве (103) предусмотрена трехмерная транспортировочная (прокачивающая) структура (200) для транспортировки охлаждающего средства, которая выполнена так, что обеспечивается возможность транспортировки охлаждающего средства за счет вращения трехмерной транспортировочной структуры (200). При этом транспортировка охлаждающего средства в первом агрегатном состоянии и во втором агрегатном состоянии осуществляется в разных направлениях. Трехмерную структуру можно изготавливать, например, с помощью аддитивного нанесения материала. 4 н. и 16 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники и может быть использовано в синхронных генераторах ветровых установок. Техническим результатом является уменьшение излучения звука. Статор синхронного генератора содержит статорное кольцо (300), статорный листовой пакет (400), окружной зазор (310) между статорным кольцом (300) и статорным листовым пакетом (400), а также множество блоков (500) развязки в зазоре (310), при этом блок (500) развязки имеет первый лист (510), который согласован с контуром статорного листового пакета (400), и второй лист (530), который согласован с контуром статорного кольца (300), при этом между первым и вторым листом (510, 530) предусмотрен мат (520) с полым пространством и впускным клапаном (540). 3 н. и 2 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники и может быть использовано для охлаждения. Техническим результатом является уменьшение непреднамеренного выхода протекающей в охлаждающей рубашке текучей среды при различных рабочих состояниях. Охлаждающая рубашка (1, 31) с протекающей текучей средой (14) содержит кожух (2), который имеет внутреннюю оболочку (3, 103) и наружную оболочку (4, 44, 74, 94, 104, 114). Кожух (2) на одном осевом конце (5, 145) имеет отверстие (6, 46, 56, 86, 96, 106), уплотнительное средство (7, 37, 97, 107, 117, 127, 137), которое расположено в отверстии (6, 46, 56, 86, 96, 106, 146), и радиальную деформацию (8, 58, 68, 98, 108, 118), которая соединяет кожух (2) с уплотнительным средством (7, 37, 97, 107, 117, 127, 137). Радиальная деформация (8, 58, 68, 98, 108, 118) проходит в отверстие (6, 46, 56, 86, 96, 106). Изобретение относится к кожуху для охлаждающей рубашки, при этом предусмотрена возможность соединения кожуха (2) за счет радиальной деформации (8, 58, 68, 98, 108, 118) с уплотнительным средством (7, 37, 97, 107, 117, 127, 137) для охлаждающей рубашки (1, 31); к уплотнительному средству (7, 37, 97, 107, 117, 127, 137), которое выполнено с возможностью соединения с кожухом (2) за счет радиальной деформации (8, 58, 68, 98, 108, 118); к машине, в частности электрической машине, содержащей охлаждающую рубашку (1, 31); к способу изготовления охлаждающей рубашки (1, 31), в котором выполняют соединение между кожухом (2) и уплотнительным средством (7, 37, 97, 107, 117, 127, 137); к способу изготовления машины, в частности электрической машины, в котором проверяют герметичность охлаждающей рубашки (1, 31) перед креплением подшипникового щита (112, 122) на охлаждающей рубашке (1, 31). 6 н. и 4 з.п. ф-лы, 15 ил.
Наверх