Способ извлечения йода из подземных напорных вод



Способ извлечения йода из подземных напорных вод
Способ извлечения йода из подземных напорных вод
Способ извлечения йода из подземных напорных вод
C25B1/24 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2550405:

Общество с ограниченной ответственностью "Тюменская сырьевая компания" (ООО "ТСК") (RU)

Изобретение может быть использовано в газо- и нефтедобывающей промышленности для попутного извлечения йод-сырца из бедных по его содержанию подземных напорных вод. Для осуществления способа проводят последовательные стадии электрохимического окисления йодид-ионов, сорбции молекулярного йода на угле, электрохимического восстановления йода до йодидов и десорбции. Все стадии осуществляют в одном химическом реакторе, в качестве которого используют сорбционную колонну. В качестве сорбента используют активированный уголь с адсорбционной емкостью по йоду не менее 1000 мг/г. В качестве анода используют графитовый электрод, расположенный в нижней части колонны, в качестве катода - медный катод в форме пластины, расположенный в верхней части колонны. После насыщения угля йодом меняют полярность электродов для десорбции йода с угля в виде йодид-ионов. В качестве сырьевого источника извлечения йода используют подземные напорные воды, в том числе с низким содержанием йода. Способ обеспечивает повышение эффективности добычи йода. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

 

Изобретение относится к способам извлечения йода из подземных напорных вод и может быть использовано в газо- и нефтедобывающей промышленности для попутного извлечения йод-сырца.

Известен способ электролитического выделения йода и поглощения его углем (авт. св. СССР №40333, кл. 12i, 714, 1934. А.П. Шмук), согласно которому при электролизе происходит анодное окисление иодид-ионов и одновременная сорбция йода на аноде из активного угля.

Недостатком такого способа является то, что йод с угля выделяется химическими восстановителями, что делает уголь непригодным для дальнейшего использования, и, кроме того, расходуются химические реактивы.

Наиболее близким к изобретению является способ обратного выделения йода с угля (авт. св. СССР №43879, кл.l2i, 714, 1935. Е.Н. Виноградова). По этому способу десорбция йода с угля идет в виде иодид-ионов электрохимическим восстановлением за счет смены полюсности при электролизе с положительного на отрицательный.

Недостатками способа являются использование в качестве сорбента мелкозернистого древесного угля с низкой адсорбционной емкостью (80 мг/г) и железного катода, который при электролизе в минерализованной воде образует хлопья гидроокиси железа, препятствующие протеканию процесса.

Задачей, на решение которой направлено заявляемое техническое решение, является исключение затрат на химические реагенты в процессе электрохимического и сорбционного извлечения йода, снижение экологической нагрузки на окружающую среду.

При осуществлении технического решения поставленная задача решается за счет достижения технического результата, который заключается в повышении эффективности добычи йода, в том числе из низкоконцентрированных йодсодержащих подземных напорных вод (от 10 мг/л).

Указанный технический результат достигается тем, что в способе извлечения йода из подземных напорных вод, включающем стадии электрохимического окисления иодид-ионов, сорбции молекулярного йода на угле, электрохимического восстановления йода до йодидов и десорбции, особенностью является то, что в качестве сорбента используют активированный дробленый уголь с высокой прочностью и высокой адсорбционной емкостью и медный катод, при этом все указанные стадии осуществляют в одном химическом реакторе. Кроме того, возможно использование в качестве сорбента угля марки КАУСОРБ-221 с адсорбционной емкостью по йоду 1000 мг/г, а в качестве сырьевого источника извлечения йода низкоконцентрированных подземных напорных вод.

Способ включает в себя электрохимическое окисление иодид-ионов без применения реагентов-окислителей. Все указанные ниже стадии извлечения йода осуществляют в одном химическом реакторе, в качестве которого используют сорбционную колонну (см. рис. 1).

Сущность изобретения состоит в следующем. При извлечении йода путем проведения электролиза при постоянном напряжении (1-2,5 В) пластовая вода (2) из напорной емкости (1) через нижнее отверстие поступает в сорбционную колонну (3), заполненную активным дробленым углем с высокой прочностью и высокой адсорбционной емкостью (не менее 1000 мг/г) (6), например марки КАУСОРБ-221 (ТУ 2162-210-05795731-2006) с адсорбционной емкостью по йоду 1000 мг/г. Колонна выступает в качестве проточного электролизера. В нижней части колонны расположен графитовый электрод (4), который вместе с плотно насыпанным и сверху прижатым пластиковой решеткой (7) углем образуют один большой активный анод. На анод и катод через выпрямитель (8) подается постоянный ток с напряжением 1,5 В и силой тока 0,2 А. С целью предотвращения выпадения в осадок гидроксида железа и забивкой им межзернового пространства угля в верхней части колонны расположен вместо железного медный катод в форме пластины (5). В анодном пространстве происходит одновременное подкисление раствора до pH 2,4-2,7 и окисление йода в растворе с последующей его сорбцией на угле до достижения окислительно-восстановительного потенциала (ОВП), равного 550-590 мВ. Так как именно в этом диапазоне значений ОВП раствора происходит полное селективное окисление йода, а бром и хлор в этих условиях не окисляются. После насыщения угля йодом меняется полярность электродов для того, чтобы йод восстановился и продесорбировался с угля этим же раствором.

Схема электролиза йодсодержащих водных растворов с графитовым анодом представлена ниже:

Из схемы видно, что выделившиеся на аноде ионы водорода служат причиной повышения кислотности раствора, что является благоприятным условием для электрохимического окисления йода. Далее за счет взаимодействия ионов водорода и гидроксильных групп на выходе из колонны раствор становится нейтральным с pH 6,8 - 7,5.

Изобретение позволяет исключить затраты на реагенты, извлекать йод из вод с низким его содержанием и снизить экологическую нагрузку на окружающую среду.

Пример. Природную подземную воду, имеющую состав, г/л: хлорид натрия -13,4; иодид-ион - 0,01; бромид-ион - 0,05; кальций - 0,5; магний - 0,13; железо общ. - 0,002; pH - 7,3, М (минерализация) - 14,7 подают в колонну проточного электролизера для окисления, сорбции и десорбции йода. Загрузка колонны углем - 1 г. Было пропущено 60 л раствора при напряжении 1,5 В и силе тока 0,2 А. На 1 г угля адсорбировано 600 мг йода. После того, как уголь насытился, меняют полярность, в результате чего, анод становится катодом, а катод - анодом и йод десорбируется с угля в виде йодид-ионов. Степень извлечения 97%. Общий расход электроэнергии 5,7 кВт-ч на 1 кг йода (считая расход энергии на окисление и на восстановление).

В таблице приведены результаты получения йода по предлагаемому и известному ионообменному способу с использованием угля КАД (Ксензеко В.И., Стасиненвич Д.С.Химия и технология брома, йода и их соединений, Москва, Изд-во «Химия», 1979, стр. 232).

1. Способ извлечения йода из подземных напорных вод, включающий последовательные стадии электрохимического окисления йодид-ионов, сорбции молекулярного йода на угле, электрохимического восстановления йода до йодидов и десорбции, отличающийся тем, что все стадии осуществляют в одном в одном химическом реакторе, в качестве которого используют сорбционную колонну, в качестве сорбента используют активированный уголь с адсорбционной емкостью по йоду не менее 1000 мг/г, в качестве анода используют графитовый электрод, расположенный в нижней части колонны, в качестве катода - медный катод в форме пластины, расположенный в верхней части колонны, и после насыщения угля йодом меняют полярность электродов для десорбции йода с угля в виде йодид-ионов.

2. Способ извлечения йода по п. 1, отличающийся тем, что в качестве сырьевого источника извлечения йода используют подземные минерализованные напорные воды, в том числе с его низким содержанием.



 

Похожие патенты:

Изобретение относится к электрохимическому способу получения циклогексантиола в органических растворителях. Способ включает взаимодействие циклогексена с сероводородом при атмосферном давлении, причем одностадийную реакцию циклогексена с сероводородом проводят в условиях электролиза при потенциале окисления сероводорода в органическом растворителе, в который помещают фоновый электролит, без использования катализатора или специфического реагента при температуре процесса 20-25°С.
Изобретение относится к получению ультрамикродисперсного порошка оксида никеля. Способ включает получение порошка оксида никеля из металлических никелевых электродов электролизом в щелочном растворе гидроксида натрия.

Изобретение относится к области энергетики и может быть использовано для частичного или полного замещения углеводородного топлива на различных видах транспорта, в отопительных системах жилых и производственных помещений, в генераторах производства пара и для раздельного получения чистого кислорода и водорода для производственных, медицинских и других нужд.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для подготовки нефтяного газа к потреблению. Содержащийся в нефтяном газе сероводород удаляют с использованием трех массообменных колонн, работающих по принципу противоточной циркуляции.

Изобретение относится к усовершенствованному способу получения фторированных карбоновых кислот и их солей, состоящему из реакции фторсодержащих спиртов с общей формулой (А):A-CH2-OH, с как минимум одним первым и как минимум одним вторым окислителями для получения фторированной карбоновой кислоты или ее солей с общей формулой (В):A-COO-M+, где M+является катионом и где «A» в формулах (А) и (В) является одинаковым фрагментом, представляющим остаток: Rf-[0]p-CX″Y″-[0]m-CX′Y′-[0]n-CXY-, где Rf является фторированным алкильным остатком, который может содержать, а может не содержать один или несколько катенарных атомов кислорода, p, m и n являются независимыми друг от друга или 1, или 0; X, X′, X″, Y, Y′ и Y″ являются независимыми друг от друга прочими H, F, CF3, или C2F5, при условии, что по меньшей мере одно из значений X и Y представляет собой F, CF3, или C2F5; или A является остатком:R-CFX-, где Х и R являются независимо выбранными из водорода, галогена или остатков алкила, алкенила, циклоалкила или арила, которые могут содержать, а могут не содержать один или несколько атомов фтора и которые могут иметь, а могут и не иметь один или несколько катенарных атомов кислорода; где первый окислитель является соединением, имеющим группы, выбираемые из N-оксилов, P-оксилов-, альфа-галокарбонилов, кетонов, иминов, солей иминимов и их комбинаций; и второй окислитель выбирается из электрического тока гальванического элемента, пероксида, оксидов галогенов, хлора, кислорода, озона, солей азотистой кислоты или их комбинаций.

Изобретение относится к области выделения частиц заданной дисперсности из суспензии и может быть применено в промышленности при получении нанодисперсных порошков для изготовления высокопрочных изделий с улучшенными свойствами.

Изобретение относится к способу вентилирования электролизера для производства алюминия. Способ включает: отведение газов из внутреннего пространства укрытия электролизера; охлаждение по меньшей мере части упомянутых газов с образованием холодных газов; и осуществление циркуляции по меньшей мере части упомянутых холодных газов во внутреннее пространство через одно или более распределительных устройств.

Изобретение относится к электролизной установке космического назначения, включающей электролизный модуль с выходными пневмомагистралями кислорода и водорода, снабженными конденсаторами пара, выполненными из пористого гидрофильного материла и имеющими водоотвод в окружающую среду, резервуар с водой, снабженный датчиком температуры, гидравлически связанный с электролизным модулем и работающий под избыточным давлением, газобаллонную систему хранения кислорода и водорода с пневмомагистралями выдачи этих газов с запорными элементами, имеющую, по крайней мере, по два последовательно связанных друг с другом пневмомагистралями баллона для каждого из газов, с установленными на баллонах датчиками давления, а также систему контроля параметров, подключенную к этим датчикам, датчику внешнего давления и датчику температуры.

Изобретение относится к электролизно-водному аппарату, содержащему электролизер, блок электропитания, узлы подготовки газовой смеси и инжекционную или равного давления горелку, работающую на смеси водорода с кислородом.

Изобретение относится к способу приготовления индикаторных углеродсодержащих электродов, модифицированных наночастицами металлов Au, Pt, Pd, Ni, Cu. При этом модифицирование проводится путем осаждения наночастиц металлов полученных методом лазерной абляции металлических мишеней в чистых растворителях в отсутствие стабилизаторов, на рабочую поверхность индикаторного электрода при выдерживании (не менее 5 минут) рабочей поверхности в соответствующей дисперсии (с концентрацией не менее 0,05 г/л) с последующим высушиванием на воздухе при комнатной температуре.

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств.

Изобретение относится к вариантам способа разрушения коллоидной системы посредством электрохимического разложения эмульсий, а также к установкам для их реализации.

Изобретение относится к области переработки дистиллерной жидкости, образующейся в производстве кальцинированной соды по аммиачному методу. .

Изобретение относится к способам обработки промышленных сточных вод. .

Изобретение относится к охране окружающей среды и комплексным устройствам очистки промышленных сбросов и сточных вод. .
Изобретение относится к области очистки сточных вод, в частности сточных вод, образующихся на полигонах твердых бытовых отходов, от диспергированных, эмульгированных и растворенных органических и неорганических веществ.

Изобретение относится к области очистки и обеззараживания воды. .

Изобретение относится к области очистки воды и может быть использовано для очистки и активации водопроводной воды, в пищевой промышленности, в медицине, для опреснения морской воды и т.п.

Изобретение относится к процессам очистки нефтесодержащих вод, в частности промышленных сточных вод, ливневых и талых вод. .

Изобретение относится к области полевой фармацевтической техники и может быть использовано в лечебно-профилактических учреждениях, аптеках и фармацевтических лабораториях.

Изобретение относится к средствам борьбы с загрязнениями, вносимыми процессом гравитационного дренирования при закачке пара и/или специфическими для этого процесса.
Наверх