Микроконтроллерное устройство для измерения емкости и сопротивления и передачи результата измерения по радиоканалу

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин емкостными и резистивными датчиками и передачи результата измерения по радиоканалу. Микроконтроллерное устройство для измерения емкости и сопротивления и передачи результата измерения по радиоканалу содержит микроконтроллер (МК) 1, образцовый резистор 2 (Ro), емкостный датчик 3 (Сх), например, влажности воздуха, резистор 4 (измеряемое сопротивление Rx), например термосопротивление, конденсатор образцовой емкости 5 (Со), резистивный делитель, состоящий из резисторов 6 и 7, выход 8 передачи двоичного кода. Резисторы 2 и 4 первыми выводами подключены к не инвертирующему входу аналогового компаратора МК 1 и первым обкладкам емкостного датчика 3 и конденсатора 5 образцовой емкости, первые выводы резисторов 6 и 7 делителя напряжения подключены к инвертирующему входу аналогового компаратора МК 1, вторые выводы резисторов 2 и 4 подключены, соответственно, к первому и второму выходам МК 1, вторые обкладки емкостного датчика 3 и конденсатора 5 образцовой емкости подключены, соответственно, к третьему и четвертому выходам МК 1, вторые выводы резисторов 6 и 7 делителя напряжения подключены соответственно к пятому и шестому выходам МК 1, выход передачи результата измерения МК 1 подключен к входу приема двоичного кода радиомодуля 8, дискретный выход радиомодуля 8 подключен к входу управления энергосберегающим режимом МК. Технический результат заключается в расширении функциональных возможностей. 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин емкостными и резистивными датчиками и передачи результата измерения по радиоканалу.

Уровень техники

Известно устройство для измерения неэлектрических величин конденсаторными датчиками, содержащее первый и второй генераторы, микроконтроллер (МК) и цифровой индикатор, во времязадающие цепи генераторов включены, соответственно, конденсаторный датчик измеряемой емкости и конденсатор образцовой емкости, времязадающие резисторы включены по известным схемам, выходы генераторов подключены к счетным входам соответствующих счетчиков МК, один из выводов МК подключен к входам разрешения генерирования обоих генераторов, цифровой индикатор подключен к МК (см. пат. РФ №2214610, кл. G01R 27/26).

Недостатки известного решения - ограничены функциональные возможности - устройство не позволяет передавать результаты измерения емкости и сопротивления по радиоканалу.

Известно устройство для измерения емкости и диэлектрических потерь конденсаторного датчика, содержащее МК, цифровой индикатор, первый и второй генераторы, времязадающие цепи которых содержат, соответственно, конденсаторный датчик, конденсатор образцовой емкости и времязадающие резисторы, включенные по известным схемам, управляемые ключи, выходы первого и второго генераторов подключены к входам МК, выход МК подключен к входам разрешения генерирования обоих генераторов, к выходу передачи двоичного кода МК подключен цифровой индикатор (см. пат. РФ №2258232, кл. G01R 27/26).

Недостатки известного решения - ограничены функциональные возможности - устройство не позволяет передавать результаты измерения емкости и сопротивления по радиоканалу.

Наиболее близким по технической сущности к заявляемому техническому решению и принятым авторами за прототип является микроконтроллерный измерительный преобразователь емкости и сопротивления в двоичный код, содержащий микроконтроллер, емкостный датчик, конденсатор образцовой емкости, образцовый резистор, резистор измеряемого сопротивления, резистивный делитель напряжения, выход передачи двоичного кода, причем, резисторы образцового и измеряемого сопротивления первыми выводами подключены к первым обкладкам, соответственно, емкостного датчика и конденсатора образцовой емкости, первые выводы резисторов делителя напряжения подключены к первому входу аналогового компаратора микроконтроллера, а вторые выводы подключены соответственно к выводам питания микроконтроллера, первые выводы образцового и измеряемого резисторов подключены к второму входу аналогового компаратора микроконтроллера, вторые выводы образцового и измеряемого резисторов подключены, соответственно, к первому и второму выходам микроконтроллера, вторые обкладки емкостного датчика и конденсатора образцовой емкости подключены, соответственно, к третьему и четвертому выходам микроконтроллера (см. пат. РФ №2391677, кл. G01R 27/26).

Недостатки известного решения - ограничены функциональные возможности - устройство не позволяет передавать результаты измерения емкости и сопротивления по радиоканалу

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к расширению функциональных возможностей, а именно измерительная информация передается по радиоканалу.

Технический результат достигается тем, что в микроконтроллерное устройство для измерения емкости и сопротивления и передачи результата измерения по радиоканалу, содержащее микроконтроллер, емкостный датчик, конденсатор образцовой емкости, образцовый резистор и резистор измеряемого сопротивления, первый и второй резисторы делителя напряжения, выход передачи двоичного кода, резисторы образцового и измеряемого сопротивления первыми выводами подключены к первым обкладкам, соответственно, емкостного датчика и конденсатора образцовой емкости, первые выводы резисторов делителя напряжения подключены к первому входу аналогового компаратора микроконтроллера, первые выводы образцового и измеряемого резисторов подключены к второму входу аналогового компаратора микроконтроллера, вторые выводы образцового и измеряемого резисторов подключены, соответственно, к первому и второму выходам микроконтроллера, вторые обкладки емкостного датчика и конденсатора образцовой емкости подключены, соответственно, к третьему и четвертому выходам МК, введен радиомодуль, причем вторые выводы первого и второго резисторов делителя напряжения подключены, соответственно, к пятому и шестому выходам микроконтроллера, выход передачи двоичного кода микроконтроллера подключен к входу приема двоичного кода радиомодуля, дискретный выход радиомодуля подключен к входу управления энергосберегающим режимом микроконтроллера.

Краткое описание чертежей

На рисунке 1 представлена структурная схема микроконтроллерного устройства для измерения емкости и сопротивления и передачи результата измерения по радиоканалу

Осуществление изобретения

Микроконтроллерное устройство для измерения емкости и сопротивления и передачи результата измерения по радиоканалу содержит (рисунок 1) микроконтроллер (МК) 1, образцовый резистор 2 (Ro), емкостный датчик 3 (Сх), например, влажности воздуха, резистор 4 (измеряемое сопротивление Rx), например термосопротивление, конденсатор образцовой емкости 5 (Со), резистивный делитель, состоящий из резисторов 6 и 7, выход 8 передачи двоичного кода. Резисторы 2 и 4 первыми выводами подключены к не инвертирующему входу аналогового компаратора МК 1 и первым обкладкам емкостного датчика 3 и конденсатора 5 образцовой емкости, первые выводы резисторов 6 и 7 делителя напряжения подключены к инвертирующему входу аналогового компаратора МК 1, вторые выводы резисторов 2 и 4 подключены, соответственно, к первому и второму выходам МК 1, вторые обкладки емкостного датчика 3 и конденсатора 5 образцовой емкости подключены, соответственно, к третьему и четвертому выходам МК 1, вторые выводы резисторов 6 и 7 делителя напряжения подключены, соответственно к пятому и шестому выходам МК 1, выход передачи результата измерения МК 1 подключен к входу приема двоичного кода радиомодуля 8, дискретный выход радиомодуля 8 подключен к входу управления энергосберегающим режимом МК 1.

Микроконтроллерное устройство для измерения емкости и сопротивления и передачи результата измерения по радиоканалу работает следующим образом.

Радиомодуль 8 переходит, благодаря встроенному таймеру, из спящего режима в активный и подает на вход управления энергосберегающим режимом МК1 сигнал (например, логическую 1), переводящий МК 1 из спящего режима в активный.

МК 1 выводит на пятый выход высокий уровень напряжения, на шестой выход низкий уровень напряжения, по цепи резистивного делителя 6, 7 протекает ток. На инвертирующий вход аналогового компаратора МК 1 подается с резистивного делителя 6, 7 напряжение, равное 0,63Uh, где Uh - напряжение между пятым и шестым выходами МК 1, т.е. напряжение высокого уровня (логическая 1). Для измерения емкости 3 МК отключает цепь, состоящую из резистора 4 и конденсатора 5, путем перевода второго и четвертого выходов, к которым подключена эта цепь, в высокоомное состояние. Затем, МК выводит на третий выход низкий уровень напряжения (лог. 0) и разряжает емкость 3 через резистор 2, путем вывода лог. 0 на первый выход. Через некоторое время МК 1 выводит высокий уровень напряжения (лог. 1) на первый выход и запускает внутренний, заранее обнуленный двоичный счетчик. Когда напряжение на емкостном датчике 3 достигнет уровня 0,63Uh, на выходе аналогового компаратора будет сформирована лог. 1. По этому сигналу МК 1 останавливает двоичный счетчик и сохраняет его содержимое, т.е. двоичный код N, который пропорционален постоянной времени τ=Ro·Cx. Двоичный код N определяется выражением N=τ/Т, где Т - период (длительность такта) тактового генератора МК 1, определяется Т=1/f, где f - частота тактового генератора МК 1. МК 1 определяет постоянную времени из выражения τ=T·N, а затем определяет Сх=T·N/Ro, где Ro известно.

Для измерения сопротивления резистора 4 МК 1 выполняет тот же алгоритм, что и для измерения емкости 3. Определяет Rx из выражения Rx=T·N/Co, где Со известно.

Двоичные коды результатов преобразований МК 1 передает через выход в радиомодуль 8. Радиомодуль 8 передает по радиоканалу информацию, которая принимается радиоприемником и передается, например, в компьютер, где обрабатывается и выводится на монитор в соответствующих единицах измерения, например в градусах или процентах относительной влажности воздуха. Это в том случае, когда температура контролируется с помощью резистивного датчика 4 и влажность контролируется с помощью емкостного датчика 3 (рисунок 1).

Предлагаемое изобретение по сравнению с прототипом и другими известными решениями имеет следующие преимущества: расширены функциональные возможности, а именно измерительная информация передается по радиоканалу, что значительно упрощает организацию систем сбора информации о контролируемых физических величинах.

Микроконтроллерное устройство для измерения емкости и сопротивления и передачи результата измерения по радиоканалу содержит микроконтроллер, емкостный датчик, конденсатор образцовой емкости, образцовый резистор и резистор измеряемого сопротивления, первый и второй резисторы делителя напряжения, выход передачи двоичного кода, резисторы образцового и измеряемого сопротивления первыми выводами подключены к первым обкладкам, соответственно, емкостного датчика и конденсатора образцовой емкости, причем первые выводы резисторов делителя напряжения подключены к первому входу аналогового компаратора микроконтроллера, первые выводы образцового и измеряемого резисторов подключены к второму входу аналогового компаратора микроконтроллера, вторые выводы образцового и измеряемого резисторов подключены, соответственно, к первому и второму выходам микроконтроллера, вторые обкладки емкостного датчика и конденсатора образцовой емкости подключены, соответственно, к третьему и четвертому выходам МК, отличающееся тем, что в него введен радиомодуль, причем вторые выводы первого и второго резисторов делителя напряжения подключены, соответственно, к пятому и шестому выходам микроконтроллера, выход передачи двоичного кода микроконтроллера подключен к входу приема двоичного кода радиомодуля, дискретный выход радиомодуля подключен к входу управления энергосберегающим режимом микроконтроллера.



 

Похожие патенты:

Техническое решение относится к технике резонансных радиотехнических измерений для вычисления и мониторинга комплексной диэлектрической проницаемости материалов.

Изобретение относится к технике СВЧ и предназначено для ответвления и регистрации прямой и отраженной микроволновой мощности в квазиоптическом зеркальном тракте большой мощности (1-500 кВт) при длительности импульса СВЧ 1-100 мс, в диапазоне частот 30-80 ГГц.

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления. Сущность изобретения заключается в снижении погрешности определения емкости и сопротивления за счет применения нескольких измерений с последующей их статистической обработкой.

Изобретение относится к устройствам для контроля процесса пропитки наполнителя полимерным связующим, в частности преформ, преимущественно в процессе инфузии, и может найти применение при изготовлении изделий из полимерных композиционных материалов как простой, так и сложной геометрической формы и различных размеров, в которых в качестве наполнителя могут быть использованы, например, преформы из стекло- или углеволокна.

Изобретение относится к электротехнике и может быть использовано при создании переносных устройств поиска присоединений с поврежденной изоляцией сетей постоянного оперативного тока.

Изобретение относится к технике электрических измерений и может быть использовано для измерения израсходованного ресурса электрической изоляции электрооборудования.

Изобретение относится к контролю электрических параметров и может быть применено в авиационной технике. Устройство состоит из основного блока и универсального соединителя.

Изобретение относится к электрическим измерениям, а именно к устройствам контроля сопротивления изоляции электрической сети переменного тока. Устройство контроля сопротивления изоляции электрической сети переменного тока содержит фильтр низкой частоты, вход которого подключен к контролируемой сети, источник опорного напряжения, индикатор и компараторы аварийной и предупредительной сигнализации.

Изобретение относится к измерительной технике, предназначено для измерения параметров RC-двухполюсников и может использоваться при физико-химических исследованиях жидкостей, в системах контроля диэлектрических характеристик веществ и материалов с большим удельным сопротивлением, а также при создании измерительных средств контроля качественных показателей моторных масел.

Изобретение относится к измерительной технике, а именно к области измерения и контроля электрофизических параметров полупроводниковых приборов, и может быть использовано для измерения емкости любого двухполюсника.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с функцией измерения тока в цепи резистивного датчика содержит: (см. чертеж) резистор 1 (R1), резистор 2 (R2), резистор 3 (R3) резистор 4 (R4), т.е. резистивный датчик, резистор 5 (R5) и микроконтроллер 6. Резисторы 1 и 2 первыми выводами подключены к первому входу аналогового мультиплексора микроконтроллера 6, резисторы 3 и 4 первыми выводами подключены ко второму входу аналогового мультиплексора микроконтроллера 6, второй вывод резистора 4 и первый вывод резистора 5 подключены к третьему входу аналогового мультиплексора микроконтроллера 6, вторые выводы резисторов 1 и 3 подключены к первому цифровому выходу микроконтроллера 6, вторые выводы резисторов 2 и 5 подключены ко второму цифровому выходу микроконтроллера 6. Выход аналогового мультиплексора микроконтроллера 6 подключен ко входу аналого-цифрового преобразователя (АЦП), встроенного в микроконтроллер 6. Технический результат заключается в повышении точности. 1 ил.

Изобретение относится к области эксплуатации автомобильной техники и может быть использовано для диагностирования работоспособности электрической проводки автомобильной техники и поиска неисправностей при ремонте. Устройство для диагностирования разъемных электрических контактных соединений содержит мост сопротивлений, одним плечом которого является диагностируемое сопротивление, измерительный прибор, источник электрического тока, соединенный к двум вершинам моста, дополнительно содержит два конденсатора, два ключа, дифференциальный усилитель. При этом конденсаторы соединяют входы усилителя с вершинами моста, ключи соединены параллельно с конденсаторами, а измерительный прибор соединен с выходом дифференциального усилителя. Технический результат заключается в расширении функциональных возможностей за счет возможности диагностирования флуктуации переходного сопротивления контактов по шумовой составляющей тока, а также в повышении чувствительности устройства. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, емкости и напряжения. Микроконтроллерный измерительный преобразователь сопротивления, емкости и напряжения в двоичный код содержит четыре резистора, два генератора, управляемые напряжением и снабженные входами разрешения генерирования, и микроконтроллер; первые выводы резисторов подключены соответственно к первому, второму, третьему и четвертому выходам микроконтроллера, вторые выводы первого и второго резисторов подключены к входу управления напряжением первого генератора, вторые выводы третьего и четвертого резисторов подключены к входу управления напряжением второго генератора, выходы генераторов подключены к счетным входам встроенных в микроконтроллер первого и второго двоичных счетчиков. Техническим результатом является повышение точности преобразования сопротивления, емкости и напряжения в двоичный код. 1 з.п. ф-лы, 1 ил.

Способ определения параметров прибора СВЧ, включающий измерение в n точках рабочей полосы частот его комплексных параметров рассеяния, моделирование его в рабочей полосе частот в виде эквивалентной схемы, содержащей активные и реактивные элементы, каждый из которых описывают соответствующим параметром, не зависящим от частоты, определение собственно параметров посредством математической процедуры. Причем эквивалентную схему прибора СВЧ представляют в виде Т-образного соединения трех комплексных сопротивлений Z1, Z2, Z3, при этом комплексное сопротивление Z3 включают параллельно, а комплексные сопротивления Z1 и Z2 включают последовательно входу и выходу прибора СВЧ слева и справа относительно комплексного сопротивления Z3 соответственно, каждое из трех комплексных сопротивлений представляют последовательным соединением активного элемента - сопротивления, которое описывают параметром Ri, и двух реактивных элементов - индуктивности, которую описывают параметром Li, и емкости, которую описывают параметром Ci, а определение собственно параметров осуществляют посредством двух математических процедур, при этом в первой определяют три комплексных сопротивления в n точках рабочей полосы частот, во второй - собственно параметры прибора СВЧ Ri, Li и Ci из соответствующих математических формул. Технический результат заключается в существенном упрощении способа и повышении точности определения. 1 з.п. ф-лы.

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый резонатор, измеряют резонансную частоту открытого резонатора и по измеренной частоте открытого резонатора, производят отсчет величины измеряемой электрической величины. Техническим результатом заявляемого технического решения является повышение точности измерения электрической величины. 1 ил.

Изобретение относится к области наноэлектроники и может быть использовано в различных областях наноиндустрии. Заявлен способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве. Для нагрева пленочного образца и измерения его электрического сопротивления образец помещают в кварцевый реактор, содержащий корпус, на внешней поверхности которого бифилярно намотан резистивный нагреватель, а в стенке корпуса, в центральной его части, установлена термопара с возможностью измерения температуры упомянутого образца. Причем образец внутри корпуса устанавливают в С-образных зажимах с плоскими губками, которые выполняют из вольфрамовой проволоки. С-образные зажимы раскрепляют на растяжках, которые выполняют в виде пружин из вольфрамовой проволоки меньшего диаметра. После чего при помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры. Через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение. Необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек. Технический результат - повышение точности получаемых данных. 1 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике. Заявленный кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов, преимущественно, пленочных образцов из нанокомпозиционных материалов, содержит корпус, на внешней поверхности которого бифилярно намотан резистивный нагреватель; внутри корпуса на растяжках, выполненных в виде пружин из вольфрамовой проволоки, установлены C-образные зажимы с плоскими губками для размещения исследуемого образца, выполненные из вольфрамовой проволоки, причем в стенке корпуса, в центральной его части, установлена термопара с возможностью измерения температуры упомянутого образца, размещаемого в C-образных зажимах. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах [ f p 1 ,   f p 2 ] определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины. Причем в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Хн, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где - начальное, при номинальном значении измеряемой физической величины, значение Хн, [Хн1, Хн2] - фиксированные пределы изменения Хн0, соответствующие фиксированным пределам [ f p 1 ,   f p 2 ] , - амплитуда колебаний в волноводном резонаторе при величине Хн0 оконечной нагрузки. Технический результат заключается в упрощении процесса измерения. 2 ил.

Изобретение относится к электроэнергетике, в частности к строительству воздушных линий электропередачи и заземляющих устройств. Для проектирования и строительства линий электропередачи проводятся изыскательские работы, при этом исследуется местность, определяются характеристики грунта, в том числе электрическое сопротивление земли. Для измерений электрического сопротивления земли в котловане предложена упрощенная конструкция измерительного устройства, состоящего из двух симметрично изогнутых штанг, соединенных шарниром. На штангах закрепляются измерительные электроды, штепсельные разъемы и провода, соединяющие их. Для измерений устройство устанавливается в котлован, подключаются измерительные приборы, с помощью рукояток штанги разводятся к стенкам котлована, электроды внедряются в землю, производятся измерения. Техническим результатом является повышение точности измерений электрического сопротивления земли, снижение массы измерительного устройства и времени, затрачиваемого на измерения. При этом предлагается измерять электрическое сопротивление непосредственно в котловане перед установкой опоры, а результаты измерений использовать при монтаже заземляющего устройства. 2 ил.

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов содержит источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора (СТ) подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего СТ. К резисторному ограничителю тока заряда подключен первый электрод коммутатора. Первичная обмотка повышающего СТ подключена к источнику напряжения переменного тока. Через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего СТ. Эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами. Блок регистрации и обработки сигнала содержит первый и второй АЦП, первый и второй блоки быстрого преобразования Фурье (ББПФ), блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных. Первый АЦП подключен к потенциальному выходу тестируемого токового шунта и к первому ББПФ. Второй АЦП подключен к выходу эталонного трансформатора тока и к второму ББПФ, который соединен с блоком функционального преобразования. Блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных. Блок формирования треугольного импульса подключен к входам первого и второго АЦП, а блок сравнения спектров подключен к выходам первого и второго ББПФ. Технический результат заключается в снижении влияния искажения спектра преобразуемых сигналов на определяемые амплитудно-частотную и фазочастотную характеристики тестируемого шунта и уменьшение погрешности численных преобразований над спектрами на частотах, соответствующих высоким гармоникам спектров. 2 ил.
Наверх