Установка для одновременно-раздельной эксплуатации пластов в скважине

Изобретение относится к нефтедобывающей промышленности и может быть применено в скважинных насосных установках. Установка содержит колонну лифтовых труб, кабель, хвостовик, пакеры, электропогружной насос с обратным клапаном для откачки продукции пластов с входным модулем и электродвигателем, кожух, охватывающий электродвигатель с кабелем и входным модулем и сообщенный с хвостовиком, оснащенным несколькими каналами, каждый из которых сообщен с одним из участков скважины, манометры, функционально связанные с блоком управления установкой, переключающий клапан с корпусом и запорным органом, расположенный ниже кожуха и обеспечивающий сообщение одного из участков скважины с полостью кожуха через соответствующий канал. Переключающий клапан оснащен поршнем с продольным каналом, сообщающим пространство под клапаном с кожухом, а обратный клапан установлен в продольном канале поршня. Поршень выполнен с возможностью ограниченного продольного перемещения вместе с обратным клапаном вниз под действием перепада давлений в колонне лифтовых труб и канале хвостовика, сообщенном с одним из участков скважины, или вверх под действием потока откачиваемой жидкости. Поршень изготовлен с возможностью взаимодействия с исполнительным механизмом, позволяющим поочередно открывать один из каналов хвостовика, перекрывая остальные, при каждом возвратно-поступательном перемещении поршня. Технический результат заключается в повышении эффективности одновременно-раздельной эксплуатации пластов в скважине. 4 з.п. ф-лы, 3 ил.

 

Изобретение относится к нефтедобывающей промышленности, в частности, к скважинным насосным установкам, эксплуатирующим одновременно несколько объектов.

Известна насосная установка для одновременно-раздельной эксплуатации пластов (см. патент РФ №2482267, опубл. 20.05.2013, бюл. №14), содержащая систему регулирования дебитов пластов с помощью золотниковых клапанов с электроприводом.

Недостатками установки являются высокая сложность из-за наличия дополнительного пакера, двух золотниковых клапанов с электроприводами, низкий к.п.д., так как регулирование дебитов пластов производят штуцированием, низкий срок службы из-за размыва потоком золотников при штудировании.

Наиболее близка по своей технической сущности к предлагаемой установка, содержащая электроцентробежный насос, двигатель и входной узел которого помещены в кожух, сообщенный через хвостовик, имеющий несколько каналов, с пластами, разделенными пакерами, а в каждом канале установлен электроклапан для подключения и отключения пластов по сигналу от датчиков давления, установленных в этих каналах (см. патент РФ №2339795, опубл. 27.11.2008, бюл. №39).

Недостатком данной установки является сложность конструкции из-за необходимости установки клапана с кабелем для подвода к ним электропитания.

Техническими задачами, решаемыми предлагаемой установкой, являются упрощение и удешевление конструкции за счет исключения электрических или гидравлических клапанов и линий для управления ими.

Указанные технические задачи решаются установкой для одновременно-раздельной эксплуатации пластов в скважине, содержащей колонну лифтовых труб, кабель, хвостовик, пакеры, установленные снаружи хвостовика между пластами и разобщающие скважину на участки, электропогружной насос с обратным клапаном для откачки продукции пластов с входным модулем и электродвигателем, кожух, охватывающий электродвигатель с кабелем и входным модулем и сообщенный с хвостовиком, оснащенным несколькими каналами, каждый из которых сообщен с одним из участков скважины, манометры, функционально связанные с блоком управления установкой, переключающий клапан с корпусом и запорным органом, расположенный ниже кожуха и обеспечивающий сообщение одного из участков скважины с полостью кожуха через соответствующий канал.

Новым является то, что переключающий клапан оснащен поршнем с продольным каналом, сообщающим пространство под клапаном с кожухом, а обратный клапан установлен в продольном канале поршня, причем поршень выполнен с возможностью ограниченного продольного перемещения вместе с обратным клапаном вниз под действием перепада давлений в колонне лифтовых труб и канале хвостовика, сообщенном с одним из участков скважины, или вверх под действием потока откачиваемой жидкости, при этом поршень изготовлен с возможностью взаимодействия с исполнительным механизмом, позволяющим поочередно открывать один из каналов хвостовика, перекрывая остальные, при каждом возвратно-поступательном перемещении поршня.

Новым является также то, что поршень выполнен подпружиненным вверх.

Новым является также то, что исполнительный механизм выполнен в виде цилиндра с замкнутым по периметру фигурным пазом, взаимодействующим со штифтом на втулке запорного органа переключающего клапана.

Новым является также то, что запорный орган переключающего клапана выполнен соосно поршню с продольным отверстием, которое сверху сообщено с продольным каналом поршня, а снизу - с одним из каналов хвостовика.

Новым является также то, что переключающий клапан выполнен в виде вала с продольным отверстием, которое сверху сообщено с продольным каналом поршня, а в стенках вала выполнены поперечные отверстия с возможностью поочередного сообщения с соответствующим каналом хвостовика при каждом повороте вала, связанного с исполнительным механизмом.

Сущность изобретения заключается в том, что для привода запорного органа переключающего клапана используют перепад давления между полостью лифтовых труб и полостью канала хвостовика.

На фиг.1 показана схема установки, на фиг.2 - вариант схемы установки, на фиг.3 - фигурный паз.

Установка на фиг.1 содержит электропогружной насос 1 с входным модулем 2 и электродвигателем 3, к которому через узел герметичного ввода кабеля 4 на кожухе 5 подведен электрический кабель 6, размещенный вдоль колонны лифтовых труб 7, хвостовик 8 с каналами труб 9 и 10, в которых размещены манометры 11, функционально связанные с блоком управления (на чертеже не показан) насосом 1. Каналы 9 и 10 сообщены каждый со своим участком скважины 12, содержащим объекты эксплуатации - (пласт) 13 верхний и нижний 14, разделенные пакером 15. Переключение каналов 9 или 10 осуществляет переключающий клапан 16, включающий корпус 17, подпружиненный вверх пружиной 18, поршень 19 с продольным каналом 20, оснащенным обратным клапаном 21 и выступом 22 в верхней части с канавкой 23, взаимодействующей со штифтом 24 корпуса 17, исполнительный механизм 25 в виде фигурного паза 26 (фиг.3) на нижнем выступе 27 (фиг.1) поршня 19, взаимодействующего со штифтом 28, на втулке 29 запорного органа 30, выполненного с отверстием 31, сообщенным сверху с каналом 20 поршня 19, а снизу - с одним из каналов 9 или 10 хвостовика 18.

Установка на фиг.2 содержит те же основные элементы конструкции, что и на фиг.1, но отличается конструкцией исполнения запорного органа 30 клапана 16. К втулке 29 присоединен герметично установленный в корпусе 17 вал 32 с центральным каналом 33, заглушенным пробкой 34 в нижней части.

В вале выполнены два сквозных радиальных отверстия: одно 35 - с возможностью совпадения в одном из положений вала 32 с каналом 10, выполненным радиально в стенке корпуса 17, и другое 36 - с возможностью совпадения в другом положении вала 32 с каналом 9, также выполненным в стенке корпуса 17.

Канал 9 сообщен с полостью хвостовика 8.

Работает установка следующим образом.

После запуска электродвигателя 3 (фиг.1), питаемого через кабель 6, введенный через герметичный ввод 4 внутрь кожуха 5 погружной электронасос 1 начинает откачку жидкости, которая из нижнего подпакерного участка скважины 12, сообщенного с пластом 14, поступает через хвостовик 8, канал 9 корпуса 17 переключающего клапана 16, канал 31 запорного органа 30, канал 20 в поршне 19, открыв обратный клапан 21, через полость кожуха 5 и входное устройство 2 на прием насоса 1, которым перекачивается по колонне лифтовых труб 7 на устье (на фиг. не показано) скважины 12 и далее в систему сбора. Канал 9 сообщен через хвостовик 8 с участком скважины 12, находящимся под пакером 15, насос 1 отбирает оттуда жидкость, снижая забойное давление у нижнего пласта 14. При достижении забойным давлением установленной минимальной величины датчик давления 11 дает блоку управления команду на остановку двигателя 3 погружного насоса 1. Поскольку давление жидкости в колонне лифтовых труб 7 больше, чем забойное давление, обратный клапан 21 закрывается, перекрывая канал 20, а поршень 19 под действием этого перепада давлений перемещается вниз. При этом штифт 24, двигаясь по пазу 23 верхнего выступа 22 поршня 19, препятствует вращению поршня 19, а штифт 28 нижнего выступа 27 приводит в действие исполнительный механизм 25, двигаясь по фигурному пазу 26 (фиг.3), он поворачивает втулку запорного органа 30 (фиг.1) на 180°, отверстие 31 которого совмещается с каналом 10.

По истечении времени, достаточного для достижения штифтом 28 верхней точки фигурного паза 26 (фиг.3), блок управления запускает двигатель 3 (фиг.1) насоса 1, который через канал 10, отверстие 31, канал 20 перекачивает жидкость из верхнего надпакерного участка скважины 12 и, соответственно, из пласта 13 через лифтовые трубы 7 на устье скважины 12. Обратный клапан 12 открывается, а поршень 19 под действием потока жидкости и пружины 18 возвращается в верхнюю точку, при этом штифт 28 перемещается по фигурному пазу 26 (фиг.3), не вращая втулку 29 (фиг.1), в исходную точку следующей наклонной части фигурного паза 26.

Пока насос 1 перекачивает вверх жидкость из верхнего пласта 13, в подпакерной части пласта происходит накопление жидкости из нижнего пласта 14, забойное давление около него растет, а около верхнего пласта 13 забойное давление по мере откачки жидкости снижается.

После достижения забойным давлением верхнего пласта минимальной величины манометр 11 дает команду на остановку двигателя 3. Все повторяется, как и в предыдущем цикле: поршень 19 идет вниз, запорный орган 30 поворачивается на 180°, отверстие 31 совмещается с каналом 9, сообщенным с нижним пластом 14. Затем блок управления запускает двигатель 1, поршень 19 поднимается вверх и все повторяется вновь. Блок управления фиксирует и суммирует время работы насоса 3 по каждому пласту с учетом показаний устьевого расходомера, что позволяет определить объемы добычи по каждому из пластов за сутки или любой другой промежуток времени.

Работа установки по фиг.2 немногим отличается от предыдущей. Работа начинается, как показано на фиг.2, с откачки из нижнего пласта 14. При этом жидкость из пласта 14 протекает по хвостовику 8, каналу 9, отверстию 36, каналу 33 вала 32. Пробка 34 препятствует прямому попаданию жидкости из хвостовика в канал 33. После команды манометра 11 и остановки работы насоса 1 и срабатывания всего механизма втулка 29 поворачивает вал 32 на 180° и отверстие 35 совпадает с каналом 10, сообщенным через верхнюю (надпакерную) часть скважины 12 с верхним пластом 13, и при включении двигателя 3 насоса 1 последний начинает откачку жидкости из него.

При достижении забойных давлений у верхнего пласта 13 минимальной величины верхний манометр 11 дает команду блоку управления на остановку двигателя 3 насоса 1. Происходит переключение клапана 17 снова на откачку из нижнего пласта 13. Затем циклы повторяются.

Следует отметить, что показан простейший алгоритм работы установки. Если время достижения минимального забойного давления у пластов сильно отличается, то можно в алгоритм работы блока управления добавить переключение (отключение двигателя), дополнительно производимое при достижении максимальной величины забойного давления у пласта, где происходит накопление.

Например, нижний пласт имеет ограниченный пакером 15 объем накопления, поэтому повышение забойного давления происходит быстрее и, пока идет откачка жидкости из верхнего пласта 13, может несколько раз произойти переключение на нижний пласт 14.

Если забойное давление ни у одного из пластов не достигло максимального значения, насос может не включаться до тех пор, пока какой-то из них не достигнет максимальной величины забойного давления.

Производительность насоса должна быть выше суммы продуктивности пластов.

При работе с большим чем два количеством пластов могут быть алгоритмы и соответственные изменения конструкции установки, обеспечивающие постоянную работу одного из пластов, а другие будут периодически подключаться-отключаться.

Таким образом, предлагаемая установка позволяет организовать одновременно-раздельную эксплуатацию нескольких пластов путем поочередной откачки их продукции без использования электрических или гидравлических клапанов и линий для управления ими, что позволяет упростить и удешевить конструкцию в целом.

1. Установка для одновременно-раздельной эксплуатации пластов в скважине, содержащая колонну лифтовых труб, кабель, хвостовик, пакеры, установленные снаружи хвостовика между пластами и разобщающие скважину на участки, электропогружной насос с обратным клапаном для откачки продукции пластов с входным модулем и электродвигателем, кожух, охватывающий электродвигатель с кабелем и входным модулем и сообщенный с хвостовиком, оснащенным несколькими каналами, каждый из которых сообщен с одним из участков скважины, манометры, функционально связанные с блоком управления установкой, переключающий клапан с корпусом и запорным органом, расположенный ниже кожуха и обеспечивающий сообщение одного из участков скважины с полостью кожуха через соответствующий канал, отличающаяся тем, что переключающий клапан оснащен поршнем с продольным каналом, сообщающим пространство под клапаном с кожухом, а обратный клапан установлен в продольном канале поршня, причем поршень выполнен с возможностью ограниченного продольного перемещения вместе с обратным клапаном вниз под действием перепада давлений в колонне лифтовых труб и канале хвостовика, сообщенном с одним из участков скважины, или вверх под действием потока откачиваемой жидкости, при этом поршень изготовлен с возможностью взаимодействия с исполнительным механизмом, позволяющим поочередно открывать один из каналов хвостовика, перекрывая остальные, при каждом возвратно-поступательном перемещении поршня.

2. Установка для одновременно-раздельной эксплуатации пластов в скважине по п.1, отличающаяся тем, что поршень выполнен подпружиненным вверх.

3. Установка для одновременно-раздельной эксплуатации пластов в скважине по п.1 или п.2, отличающаяся тем, что исполнительный механизм выполнен в виде цилиндра с замкнутым по периметру фигурным пазом, взаимодействующим со штифтом на втулке запорного органа переключающего клапана.

4. Установка для одновременно-раздельной эксплуатации пластов в скважине по п.3, отличающаяся тем, что запорный орган переключающего клапана выполнен соосно поршню с продольным отверстием, которое сверху сообщено с продольным каналом поршня, а снизу - с одним из каналов хвостовика.

5. Установка для одновременно-раздельной эксплуатации пластов в скважине по п.3, отличающаяся тем, что переключающий клапан выполнен в виде вала с продольным отверстием, которое сверху сообщено с продольным каналом поршня, а в стенках вала выполнены поперечные отверстия с возможностью поочередного сообщения с соответствующим каналом хвостовика при каждом повороте вала, связанного с исполнительным механизмом.



 

Похожие патенты:

Группа изобретений относится к области горного дела, в частности к нефтедобыче, и может быть использована для добычи нефти из двух пластов одной скважины с малым содержанием газа.

Изобретение относится к нефтяной промышленности и может быть применено для одновременно-раздельной эксплуатации двух пластов одной скважины. Насосная пакерная система включает в себя спущенный в скважину и посаженный между пластами пакер и выше него насосную установку, состоящую из электродвигателя с кабелем, гидрозащиты, телеметрии, нижнего и верхнего насосов с приемными узлами и кожуха с кабельным вводом, верхний конец которого охватывает приемный узел нижнего насоса, а нижний конец расположен ниже электродвигателя.

Изобретение относится к нефтедобывающей промышленности и может быть применено для одновременно-раздельной добычи нефти. Установка содержит устьевой силовой агрегат, погружной гидропривод с подвижным ступенчатым плунжером, связанный с устьевым силовым агрегатом при помощи гидравлических каналов, передающих знакопеременные нагрузки через приводную среду на него.

Группа изобретений относится к нефтедобывающей промышленности, в частности к эксплуатации нефтяных месторождений с высокой обводненностью добываемой продукции.

Изобретение относится к нефтегазовой отрасли, в частности к системе и соответствующему способу добычи углеводородов из нескольких поземных пластов, а также к смешиванию или к одновременному извлечению таких углеводородов.

Изобретение относится к нефтегазодобывающей промышленности, а именно к разработке и эксплуатации нефтяных пластов с зонами различной проницаемости. Устройство включает колонну труб, оснащенную фильтрами и пакерами снаружи, выполненными в виде пластырей, установленных с учетом длины зон с соответствующей проницаемостью.

Изобретение относится к селективному освоению и обработке многопластовой скважины или пласта, состоящего из зон с различной проницаемостью. Устройство содержит патрубки с отверстиями, размещенными напротив каждого из продуктивных пластов или зон с различной проницаемостью, герметично разделенных между собой пакерами.

Изобретение относится к нефтегазодобывающей промышленности, в частности к устьевому оборудованию скважин для одновременно-раздельной эксплуатации двух объектов.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена для одновременно-раздельной добычи скважинного флюида из двух пластов одной скважиной.

Группа изобретений относится к способам и средствам, обеспечивающим измерение параметров продуктивных слоев, и может быть применена для одновременно-раздельной эксплуатации многопластовой скважины.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена для одновременно-раздельной закачки в два пласта. Установка состоит из спущенной в скважину на колонне труб компоновки подземного оборудования, включающей воронку-центратор, нижний пакер, переводник-центратор, устройство распределения закачки, верхний пакер, удлинитель. Устройство распределения закачки состоит из корпусной и извлекаемой частей, снабжено верхним автономным манометром, средним автономным манометром и нижним автономным манометром. Верхний и нижний штуцеры установлены в извлекаемую часть УРЗ с возможностью извлечения обоих штуцеров за одну спуско-подъемную операцию. Технический результат заключается в обеспечении возможности получения информации о величине давления закачки до и после каждого штуцера в течение продолжительного периода времени, получении достоверных данных по режиму закачки, а также повышении надежности технологии. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к скважинным насосным установкам и может быть применено для управления скважиной. Способ включает отдельный спуск и установку в скважину колонны труб с пакерной системой для двух продуктивных пластов, состоящей из пакеров, межпакерной трубы, перфорированного патрубка и полированной втулки. Причем верхний пакер имеет направляющую воронку и максимально возможный диаметр проходного канала, достаточный для прохождения через него компоновки труб и приборов. Отдельный спуск колонны труб, оснащенной электропогружным насосом, хвостовиком, закрепленным в нижней части насосного оборудования, либо блока телеметрии, либо герметичного или негерметичного кожуха электропривода, представленным колонной труб либо штанг, на котором располагают как минимум один пакер, разделяющий потоки жидкости пластов, управляемые электрические либо электромеханические клапаны, регулирующие либо отсекающие поступление флюида из пластов в скважину, блоки датчиков контроля параметров работы пластов, которые размещают в интервале перфорации каждого продуктивного пласта либо над интервалом перфорации каждого продуктивного пласта. Причем датчики давления и температуры располагают под электромагнитными или электромеханическими клапанами, что дает возможность регулировать забойное давление и контролировать пластовое давление и температуру. Влагомеры и расходомеры располагают над электромагнитными или электромеханическими клапанами либо под электромагнитными или электромеханическими клапанами. Управление электромагнитными или электромеханическими клапанами и информационный обмен с блоками датчиков контроля параметров работы пластов осуществляют как по отдельной электрической линии, имеющей как минимум одну жилу, либо в составе четвертой жилы погружного кабеля питания электронасосов, либо по отдельной электрической линии вместо четвертой жилы погружного кабеля питания электронасосов, либо от «нулевой точки» электропогружного двигателя, либо от телеметрической системы погружного электродвигателя. При прохождении электрической линии по корпусу погружного электродвигателя может использоваться, а может не использоваться вставка из электрической линии малого диаметра, закрытая от механических повреждений защитным кожухом либо защитными протекторами, либо может закрываться, а может не закрываться от механических повреждений кожухом, установленным аналогично кожуху охлаждения электроцентробежного насоса. Хвостовик может быть оснащен, а может быть не оснащен аварийным разъединительным устройством с рассчитанными на определенную нагрузку срезными элементами, компенсатором хода термобарических изменений длины колонны труб. Исходя из полученных от датчиков данных, определяются оптимальные режимы одновременно-раздельной или поочередной эксплуатации продуктивных пластов скважины. Установка оптимальных режимов эксплуатации пластов и их последующая корректировка осуществляется действием блоков клапанов управления работой пластов в автоматическом или ручном режимах, автоматизированная система контроля работы скважинной системы позволяет вести дистанционный он-лайн-мониторинг системы разработки месторождения и вносить корректировки в режимы эксплуатации пластов скважины. Технический результат заключается в повышении эффективности управления скважиной при одновременно-раздельной эксплуатации. 4 ил.

Изобретение относится к нефтедобывающей промышленности и может быть применено для эксплуатации скважин с двумя пластами. Способ включает монтаж в скважине насосной установки, состоящей из колонны лифтовых труб, электроприводного центробежного и возвратно-поступательного насосов, кабеля, питающего электропривод центробежного насоса от наземной станции управления, пакера с кабельным вводом, разобщающего пласты в определенном интервале скважины, и системы погружной телеметрии, связанной кабелем со станцией управления. После монтажа осуществляют одновременный или раздельный запуск в работу вышеуказанных насосов для откачивания флюида из пластов по колонне лифтовых труб на поверхность скважины с возможностью учета их дебитов на станции управления. В зависимости от объема газа, выделяемого нижним пластом скважины, откачивание флюида центробежным насосом ведут либо прямотоком по колонне лифтовых труб либо через сопло жидкоструйного эжектора, установленного ниже возвратно-поступательного насоса с возможностью стравливания газовой шапки из подпакерной затрубной полости скважины, для чего турбулентный поток флюида на выходе из центробежного насоса переводят в ламинарный. При падении давления флюида на выходе из центробежного насоса и/или превышении потребляемого им тока выполняют подземную промывку центробежного насоса. Для этого из насосной установки монтажным инструментом последовательно удаляют возвратно-поступательный насос и жидкоструйный эжектор, на месте последнего устанавливают перепускной узел, состоящий из коаксиальных труб с сообщающими радиальными каналами. Затем из устья скважины по колонне лифтовых труб через коаксиальную полость и радиальные каналы перепускного узла закачивают промывочную жидкость в подпакерную затрубную полость скважины, которой под давлением через входной модуль промывают центробежный насос, из последнего использованную промывочную жидкость под остаточным давлением направляют по аксиальной полости и радиальные каналы перепускного узла через надпакерную затрубную полость в устье скважины. После промывки центробежного насоса из насосной установки удаляют перепускной узел и на его месте последовательно устанавливают жидкоструйный эжектор и возвратно-поступательный насос, и продолжают откачивание флюида из пластов на поверхность скважины. Технический результат заключается в сокращении трудозатрат на обслуживание скважины. 1 з.п. ф-лы. 3 ил.

Группа изобретений относится к горному делу и может быть применена для выборочного регулирования потоков в многостволовой скважине. Создана система трубных колонн для выборочного регулирования раздельно проходящих потоков текучей смеси с изменяющимися скоростями для операций строительства скважин, нагнетания или добычи текучих смесей жидкостей, газов и/или твердых частиц, которые могут нагнетаться в или отбираться из одной или нескольких близких зон подземного прохода, подземной каверны, углеводородного или геотермального коллектора. Текучая смесь, перемещение которой обеспечивается через радиальный проход распределительного переводника системы трубных колонн между трубными колоннами и, по меньшей мере, одной другой трубой может управляться, по меньшей мере, одним элементом регулирования потока, сообщенным с ближайшим к осевой линии концентрическим и/или кольцевым проходом. Перемещение текучей среды может выборочно регулироваться для различных конфигураций одной или нескольких, по существу, углеводородных и/или, по существу, водных скважин ниже одного основного ствола и оборудования устья скважины. Технический результат заключается в повышении эффективности регулирования потоков в многостволовой скважине. 2 н. и 18 з.п. ф-лы, 123 ил.

Группа изобретений относится к вариантам блока регулирования и учета добычи флюида из многопластовой скважины. Блок по первому варианту содержит корпус, ограниченный снизу стыковочным узлом с каналами потоков пластовых флюидов и сверху стыковочным узлом с установленными на нем регулируемыми клапанами в количестве, равном числу эксплуатируемых пластов скважины. В корпусе размещены сопряженные между собой стаканы, которые полым торцом герметично сопряжены с верхним стыковочным узлом, и цилиндры, последние противоположным концом установлены в соответствующих каналах нижнего стыковочного узла, образующие межтрубное пространство и обособленные продольные каналы для потоков флюида из соответствующих пластов в устье скважины. В стаканах выполнено перепускное седло с радиальными каналами в стенке стакана по обе стороны седла. Радиальные каналы ниже перепускного седла выполнены со стороны торца стакана. Выше перепускного седла установлена запорная игла, выполненная в виде золотника, на последнем расположен сальник, посредством которого запорная игла герметично перемещается в стакане от электропривода, размещенного в герметичной полости стакана и закрепленного в стыковочном узле, сообщающего запорной игле возвратно-поступательные движения относительно перепускного седла. Электроприводы запорных игл снабжены устройствами измерения линейных перемещений запорной иглы с датчиками Холла. В продольных каналах цилиндров расположены контрольно-измерительные приборы, функционально связанные кабелем с блоком телеметрии и/или пунктом управления и электропитания скважины, размещенным в стенке стакана, с возможностью передачи управляющих команд регулировочным клапанам и информации о технологических параметрах флюида в пластах скважины через кабельный разъем. Во втором варианте блока в стакане ниже перепускного седла выполнен канал, аксиальный перепускному седлу, сообщающему продольный канал с межтрубным пространством, а контрольно-измерительные приборы установлены в стенке каждого цилиндра и связаны кабелем в межтрубном пространстве. Технический результат заключается в повышении надежности одновременно-раздельной эксплуатации многопластовых скважин. 2 н. и 2 з.п. ф-лы, 2 ил.
Изобретение относится к нефтяной промышленности и может найти применение при разработке многопластового нефтяного месторождения. Технический результат - повышение нефтеотдачи месторождения. При разработке многопластового нефтяного месторождения ведут закачку рабочего агента через нагнетательные скважины общим фильтром. Отбор пластовой продукции через добывающие скважины тоже ведут общим фильтром. Разрабатывают верхний пласт в режиме компенсации отбора закачкой рабочего агента при давлении нагнетания в соответствии с приемистостью пласта. Вблизи нагнетательной скважины организуют шурф и закачивают рабочий агент через шурф в нагнетательную скважину с повышенным давлением закачки, достаточным для поступления рабочего агента как в верхний, так и в нижний пласт. Добывающие скважины эксплуатируют в режиме постоянного забойного давления. После реагирования добывающих скважин на повышение давления закачки рабочего агента продолжают разработку в режиме компенсации отбора закачкой рабочего агента. Производят перераспределение компенсации отбора по двум пластам одновременно от добывающих скважин с высокой обводненностью пластовой продукции и высоким забойным давлением к добывающим скважинам с низкой обводненностью и низким забойным давлением. Для этого на добывающих скважинах с увеличивающейся обводненностью пластовой продукции уменьшают время работы насосного оборудования при постоянном забойном давлении. На добывающих скважинах с низкой обводненностью увеличивают время работы насосного оборудования при постоянном забойном давлении. 1 пр.
Изобретение относится к нефтяной промышленности и может найти применение при разработке многопластовой нефтяной залежи. Технический результат - повышение нефтеотдачи. При разработке многопластового нефтяного месторождения осуществляют отбор пластовой продукции через добывающие скважины, закачку рабочего агента через нагнетательные скважины и проведение гидроразрыва пласта в нагнетательной скважине. До проведения гидроразрыва пласта проводят закачку рабочего агента в нижний продуктивный пласт при отсутствии приема рабочего агента верхним продуктивным пластом. В нагнетательной скважине проводят гидроразрыв верхнего продуктивного пласта. Разобщают продуктивные пласты и организуют раздельную закачку рабочего агента в продуктивные пласты. Вблизи нагнетательной скважины организуют шурф и закачивают рабочий агент через шурф в верхний продуктивный пласт с повышенным давлением закачки. При увеличении забойного давления в реагирующей добывающей скважине увеличивают отбор пластовой продукции. Регулируют режимы работы скважин отдельно по каждому продуктивному пласту и добиваются оптимальной компенсации отбора. Продолжают разработку с поддержанием оптимальной компенсации отбора по каждому продуктивному пласту. 1 пр.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена для одновременно-раздельной эксплуатации двухпластовых скважин. Способ включает проведение промывки и шаблонирования скважины, спускоподъемных операций с поблочным монтажом внутрискважинного оборудования и добычу скважинного флюида. Сначала спускают нижний блок, состоящий из воронки, забойного и опорного пакеров с прямоточной муфтой, в которой установлены трубчатые элементы с раструбами раздвижного трубного соединения, которые последовательно свинчивают в устье скважины насосно-компрессорными трубами (НКТ) и спускают с помощью посадочной колонны, оснащенной сбивным клапаном, репером и гидравлическим монтажным инструментом, последний цангой зацепляют за внутреннюю проточку в наружном трубчатом элементе с фиксированием глубины посадки, нивелируемой репером, и веса - с помощью динамометра. Вторым приемом на колонне НКТ в эксплуатационную колонну с определенной скоростью спускают второй блок внутрискважинного оборудования, состоящего из блока регулирования потоков и учета флюида (БРПУ) с ниппелями трубчатых элементов раздвижного трубного соединения, муфты ввода кабеля связи с кабельным разъемом и электроцентробежный насос (ЭЦН) с частотно-регулируемым электроприводом, соединенным с силовым кабелем и оснащенным телеметрической системой (ТМС), до полного сочленения раздвижного трубного соединения. Колонну НКТ подгоночным патрубком герметично соединяют с планшайбой устьевой арматуры, концы обоих кабелей пропускают через кабельный ввод планшайбы и последнюю закрепляют на фланце эксплуатационной колонны. Кабели герметизируют в кабельном вводе планшайбы и подсоединяют к пункту электропитания и панели управления. Герметичность посадки пакеров проверяют понижением статического уровня жидкости в надпакерном пространстве ЭЦН под контролем манометра. Изменением частоты вращения ЭЦН посредством частотно-регулируемого электропривода и положений клапанов БРПУ скважину вводят в рабочий режим эксплуатации под контролем ТМС. Технический результат заключается в повышении надежности эксплуатации двухпластовых скважин и сокращении сроков ввода их в эксплуатацию. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к добыче нефти и может быть применено для одновременно-раздельной эксплуатации многопластовой скважины. Установка содержит электроприводной центробежный насос (ЭЦН), блок регулирования потоков и учета пластовых продуктов (БРПУ), забойный и опорный пакеры с якорными устройствами и стыковочный узел, соединяющий БРПУ с опорным пакером. ЭЦН оснащен блоком телемеханической системы (ТМС) и соединен со станцией управления (СУ) силовым кабелем. БРПУ включает регулируемые электроприводные клапана (РЭК), расположенные в обособленных каналах, сообщающихся через окна с внутрискважинным пространством. РЭК связаны кабелем через кабельный разъем с наземной панелью управления (ПУ). Стыковочный узел содержит трубчатые элементы подвижного соединения концевых штуцеров с развальцованным торцом и гладких ниппелей с направляющим конусом и манжетой для герметичного телескопического соединения с концевыми штуцерами, образующие коаксиальные проточные каналы и обеспечивающие поблочный монтаж и демонтаж насосной установки. Штуцеры соединены со стволом опорного пакера прямоточной многоканальной муфтой, к последней присоединен патрубок забора скважинного продукта из нижнего пласта, подвижно расположенный в центральном отверстии радиально-проточной муфты, оснащенной кольцевой манжетой и присоединенной к стволу опорного пакера, образующий с ним коаксиальный канал, сообщающийся с верхним пластом через радиальные каналы радиально-проточной муфты, которая сопряжена с хвостовиком, соединенным со стволом забойного пакера. На внутренней поверхности наружного концевого штуцера выполнена кольцевая канавка для зацепления опорного и забойного пакеров монтажным инструментом при поблочном монтаже и демонтаже насосной установки. БРПУ соединен с насосом посредством муфты, в стенке которой выполнено окно для контакта извлекаемого скважинного продукта с блоком ТМС. В обособленных каналах размещены датчики контрольно-измерительных приборов (КИП) параметров добываемого продукта, связанные кабелем, размещенным в полости соединительной муфты и пропущенным через окно в ее стенке и внутрискважинное пространство, связанным с ПУ. РЭК и датчики КИП могут быть соединены кабелем от кабельного разъема с блоком ТМС, последний связан через силовой кабель с СУ и ПУ. Технический результат заключается в повышении надежности эксплуатации скважин. 5 з.п. ф-лы, 3 ил.

Группа изобретений относится к эксплуатации скважин на нескольких горизонтах. Технический результат - снижение затрат на разработку запасов в нефтяной и газовой промышленности. Устройство для образования по меньшей мере одной системы трубных колонн содержит по меньшей мере один промежуточный распределительный переводник или радиальный проход для текучей среды из коллектора, расположенные между верхним концом множества труб и нижним концом множества труб для формирования стационарных трубных барьеров, расположенных внутри барьера обсадной трубы, и соответствующий окружающий обсадную колонну проход через подземный пласт. Окружающий обсадную колонну проход отделен от потока коллектора изоляцией на нижнем конце, образуя в результате упомянутую по меньшей мере одну систему трубных колонн и соответствующее множество стационарных трубных барьеров давления для потока коллектора между системой труб устья скважины на верхнем конце и изоляцией на нижнем конце. Текучие среды в коллекторе протекают через внутренний проход множества труб и по меньшей мере один концентрический промежуточный проход, окружающий внутренний проход в по меньшей мере один регулятор потока или из него. Упомянутый по меньшей мере один регулятор потока выполнен с возможностью перемещения через, размещения вдоль и по выбору поперек, с возможностью удаления из положения поперек посредством спускоподъема через внутренний проход для подземного перевода множества потоков смеси текучих сред по радиусу внутрь или наружу по радиальному проходу текучей среды коллектора. Причем перевод потока смеси текучих сред осуществляется между по меньшей мере двумя из: внутреннего прохода и по меньшей мере одного концентрического промежуточного прохода, и окружающего прохода для выборочного регулирования, при работе, и доступа к по меньшей мере части потока смеси текучих сред по меньшей мере одного из коллекторов. При этом множество потоков смесей текучих сред передается в область, близкую к коллектору, или из нее во время множества операций с коллектором. 3 н. и 27 з.п. ф-лы, 83 ил.
Наверх