Электролизер для производства алюминия

Изобретение относится к конструкциям электролизеров для получения алюминия. Электролизер содержит катодное устройство, имеющее ванну с угольной подиной, выложенную из угольных блоков, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, на угольной подине по периметру анода расположены тумбы, или поплавки, стойкие к разрушению в криолитоглиноземных расплавах и жидком алюминии, причем верхняя поверхность тумбы или поплавка выступает выше уровня катодного алюминия и тумбы или поплавки можно перемещать и/или заменять при необходимости. Тумбы или поплавки выполнены из углерода, карбида кремния, их комбинации. Верхняя поверхность тумбы или поплавка выполнена плоской, или выпуклой, или вогнутой, или наклонной к горизонту. Обеспечивается снижение удельного расхода энергии за счет уменьшения межполюсного зазора (МПЗ), омического сопротивления и падения напряжения в МПЗ, повышение выхода по току вследствие увеличения гидродинамического сопротивления для движения расплава у границы алюминий-электролит по периметру анода и, следовательно, уменьшения перемешивания расплава и «обратных» реакций металла с анодными газами. 5 з.п. ф-лы, 6 ил.

 

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к конструкции электролизеров для получения алюминия.

Известен электролизер [Х. Чанг, В. де Нора и Дж.А. Секхар «Материалы, используемые в производстве алюминия методом Эру-Холла». - Изд-во: КГУ, Красноярск. - 1998], содержащий катодное устройство и анодное устройство. Катодное устройство содержит ванну с угольной подиной, выложенную из угольных блоков с вмонтированными токоподводами, заключенными в металлический кожух. Между металлическим кожухом и угольными блоками размещены огнеупорные и теплоизоляционные материалы. Анодное устройство содержит угольные аноды, соединенные с анодной шиной. Аноды размещены в верхней части ванны и погружены в расплавленный электролит.

Недостатком известной конструкции электролизера является то, что разработанные для нее технологии характеризуются весьма высоким удельным расходом энергии W, определяемым уравнением

W = v k η , где V - напряжение на ванне, В; η - выход по току, k - электрохимический эквивалент [кг/кА*ч].

Обычно в технологиях получения алюминия W=13-15 кВт·ч/кг металла. Однако этот расход энергии приблизительно в 2 раза больше, чем предсказываемый теоретически. Для этого есть две причины:

1. В напряжении V большую часть занимает омическое падение напряжения в электролите, определяемое величиной межэлектродного (межполюсного) зазора (МПЗ). Обычно это расстояние составляет около 5 см.

2. Выход по току η снижается при резком увеличении взаимодействия (так называемое «обратное взаимодействие») анодных продуктов (углекислого газа) и катодных продуктов (растворенного алюминия) при увеличении гидродинамического перемешивания (циркуляции) электролита и/или металла.

Таким образом, одним из важнейших недостатков вышеуказанной конструкции являются относительно высокое омическое сопротивление МПЗ и высокий расход энергии.

Известен электролизер для производства алюминия [US 4405433, C25C 3/08, опубл. 20.09.1983], состоящий из анодного токоподвода, угольного анода, угольного катода с расположенными под анодом дополнительными элементами - «грибами», сделанными из диборида титана, изоляции, электролита, жидкого алюминия, блюмсов.

Недостатком известной конструкции электролизера является недостаточная термомеханическая и химическая стойкость «грибов», сделанных из диборида титана, особенно на границах металл-электролит; сложность прикрепления «грибов» к подине и невозможность осуществления такого прикрепления в ныне действующих электролизерах, малая площадь контакта «гриба» с угольной подиной, а также относительно высокая стоимость и невозможность оперативного удаления «грибов» из межэлектродного зазора при необходимости, например, опускания анода на катод.

Наиболее близким техническим решением, выбранным в качестве прототипа, является электролизер для производства алюминия [RU №111540, C25C 3/06, опубл. 20.12.2011], включающий катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными катодными токоподводами, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, отличающийся тем, что на угольной подине под каждым из анодов расположены тумбы с более высокой удельной электропроводностью, чем электролит, стойкие к разрушению в криолитоглиноземных расплавах и жидком алюминии, причем верхняя поверхность тумбы выступает выше уровня катодного алюминия, а тумбы выполнены с возможностью перемещения и/или замены при необходимости.

Недостатками известной конструкции электролизера являются: относительно большие объем пространства в МПЗ, занимаемый тумбами, вес и стоимость тумб, сложности перемещения и/или замены тумб при необходимости. В случае необходимости использования утяжелителей, расположенных внутри тумбы, например чугунной «гири» или заливки, это может снижать надежность конструкции вследствие разности коэффициентов термического расширения материалов, а также проникновения электролита через поры тумбы к материалу утяжелителя, приводя к его преждевременной коррозии и загрязнению катодного металла. Практически затруднительна возможность автоматического регулирования вертикального перемещения тумбы при изменении толщины слоя катодного металла.

Кроме вышеописанного, известным недостатком ныне существующих электролизеров с горизонтальным расположением электродов (фиг.3, анод 1 и катод 2) является тот факт, что образующиеся на аноде 1 газы устремляются к краям анода, приводя в движение расплав 4. По периметру анода 1, где анодные газы 7 устремляются вверх, образуя гидродинамическое разрежение на границе раздела алюминий-электролит, образуется поднимающаяся вверх волна алюминия 9. На вершине волны частицы алюминия могут отрываться и, будучи захваченными газовыми пузырями 7, устремляются вверх в электролите 4 и к аноду 1, где окисляются, т.е. происходит обратная реакция, которая уменьшает выход по току электролизера. В результате данного явления выход по току может уменьшаться приблизительно на 0,3%.

Техническим результатом изобретения является снижение удельного расхода энергии за счет уменьшения МПЗ, омического сопротивления и падения напряжения в МПЗ, повышение выхода по току вследствие увеличения гидродинамического сопротивления для движения расплава у границы алюминий-электролит по периметру анода, и, следовательно, уменьшения перемешивания расплава и «обратных» реакций металла с анодными газами.

Технический результат достигается тем, что в электролизере для производства алюминия, включающем катодное устройство, содержащее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными катодными токоподводами, заключенных в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, новым является то, что он снабжен тумбами или поплавками, размещенными по периметру анода в межполюсном зазоре на границе поверхностей катодный алюминий-электролит, верхняя поверхность которых выступает выше уровня катодного алюминия, с возможностью перемещения и/или замены тумбы или поплавка при необходимости. Новым также является то, что тумбы или поплавки выполнены из углеродных блоков, в частности из отходов в виде боя стандартных подовых блоков, обожженных анодов и/или электродов, карбида кремния или комбинации углерода и карбида кремния, находящихся и/или плавающих на границе катодный металл/электролит вследствие разницы плотностей материалов. Внешние поверхности тумбы или поплавка предварительно покрыты или пропитаны защитными ингибиторными веществами; под каждым анодом может быть установлено от 1 до 240 тумб или поплавков, которые (поплавки) могут быть любой формы, например параллелепипед, призма, куб, гексагональной, ортогональной, шаровидной, эллипсоидной, полусферической, цилиндрической, а также комбинациями форм и т.д. Верхняя поверхность тумбы или поплавка выполнена плоской, или выпуклой, или вогнутой, или наклонной к горизонту.

Изобретение дополняют частные отличительные признаки, направленные также на решение поставленной задачи:

1. Поплавки имеют плотность меньше, чем у катодного металла, но больше, чем у электролита, плавают на границе катодный металл/электролит вследствие разницы плотностей материалов, причем верхняя поверхность поплавка выступает выше уровня катодного алюминия.

2. Тумбы или поплавки могут быть выполнены из углеродных блоков, блоков из карбида кремния или их комбинации, в частности из отходов в виде боя стандартных блоков, обожженных анодов и/или электродов, находящихся на границе катодный металл/электролит вследствие разницы плотностей материалов.

3. Тумбы или поплавки, перед тем как разместить в пространство МПЗ, обтягивают в вакуумную упаковку из фольги катодного металла и подогревают до температуры как можно ближе к температуре электролиза, но меньшей, чем температура плавления катодного металла. Затем тумбу или поплавок помещают в пространство МПЗ.

4. Тумбы могут быть выполнены из карбида кремния и/или материала типа ANAPLAST.

5. Внешние поверхности тумбы или поплавка предварительно обработаны/пропитаны защитными ингибиторными веществами.

6. По периметру анода может быть установлено от 1 до 240 тумб или поплавков.

7. Верхняя поверхность тумб или поплавков выполнена плоской, или выпуклой, или вогнутой, или наклонной к горизонту.

8. Поплавки могут быть любой формы, например параллелепипед, призма, куб, гексагональной, ортогональной, шаровидной, эллипсоидной, полусферической, цилиндрической, комбинации различных форм и т.д., но особенности конструкции и унификация поплавков могут учитываться для оптимальности конструкции и процесса электролиза.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Сущность изобретения поясняется чертежами 1-6.

Электролизер содержит угольный анод с анодным токоподводом 1, угольную подину (катод) 2. Нижняя поверхность угольного анода погружена в электролит 3. Внутри электролизера выложена футеровка 6. Электролизер снабжен традиционным устройством для подачи сырья (глинозем, фторсоли и т.п.) и отвода отходящих газов 8, устройством для подвода тока 3 к катоду 2. В межполюсном зазоре (МПЗ) на границе поверхностей катодный металл-электролит 4 по периметру анода 1, в том месте, где обычно образуется волна катодного металла 9 (фиг.3), помещаются тумбы или поплавки в форме параллелепипеда 10 (фиг.4) или других форм или их комбинаций (фиг.5), в т.ч. призма, куб, гексагональной, ортогональной, шаровидной, эллипсоидной, полусферической, цилиндрической, причем в нижней части тумбы или поплавка имеются сквозные отверстия 12 для протекания алюминия (фиг.5). В отличие от тумбы поплавок прикрепляют кронштейнами 11 по периметру анода 1 (фиг.6), причем кронштейны 1 изготовлены из карбида кремния или аналогичного токонепроводящего материала, стойкого в криолитоглиноземных расплавах и алюминии при температурах 950-1100°C.

Монтаж алюминиевого электролизера осуществляется следующим образом.

Тумбы или поплавки, перед тем как разместить в пространство МПЗ, могут быть обтянуты в вакуумную упаковку из фольги катодного металла с целью закрытия поверхностных пор, защиты поплавка от окисления на воздухе, улучшения теплопередачи и подогреты до температуры как можно ближе к температуре электролиза, но меньшей, чем температура плавления катодного металла. Затем поплавок помещают в пространство МПЗ.

При этом происходит улучшение следующих ТЭП электролиза алюминия: уменьшение МПЗ, рабочего напряжения и удельного расхода энергии, увеличение выхода по току и производительности электролизера.

1. Электролизер для производства алюминия, содержащий катодное устройство, имеющее ванну с угольной подиной, выложенную из угольных блоков с вмонтированными катодными токоподводами, заключенными в металлический кожух, с размещенными между металлическим кожухом и угольными блоками огнеупорными и теплоизоляционными материалами, анодное устройство, содержащее угольные аноды, соединенные с анодной шиной, размещенные в верхней части ванны и погруженные в расплавленный электролит, отличающийся тем, что он снабжен блоками в виде тумб или поплавков, размещенными по периметру анода в межполюсном зазоре на границе поверхностей катодный алюминий-электролит, верхняя поверхность которых выступает над уровнем катодного алюминия, выполненными с возможностью перемещения и/или их замены при необходимости.

2. Электролизер по п.1, отличающийся тем, что блоки в виде тумб или поплавков выполнены из углеродных материалов, в частности из отходов в виде боя стандартных подовых блоков, обожженных анодов и/или электродов, карбида кремния или комбинации углерода и карбида кремния, находящихся и/или плавающих на границе катодный металл-электролит вследствие разницы плотностей материалов.

3. Электролизер по п.1, отличающийся тем, что внешние поверхности тумбы или поплавка предварительно покрыты или пропитаны защитными ингибиторными веществами.

4. Электролизер по п.1, отличающийся тем, что под каждым анодом установлено от 1 до 240 тумб или поплавков.

5. Электролизер по п.1, отличающийся тем, что поплавки выполнены любой формы, например в виде параллелепипеда, призмы, куба, гексагональной, ортогональной, шаровидной, эллипсоидной, полусферической, цилиндрической, а также в виде комбинаций упомянутых форм.

6. Электролизер по п.1, отличающийся тем, что верхняя поверхность тумбы или поплавка выполнена плоской, или выпуклой, или вогнутой, или наклонной к горизонту.



 

Похожие патенты:
Изобретение относится к углеродному изделию, которое производят обжигом смеси, содержащей, по меньшей мере, кокс. Кокс представляет собой кокс с низкой графитируемостью.

Изобретение относится к футеровке алюминиевого электролизера. Футеровка включает подину и токоотводящие элементы из алюминия, выполненные жидкими в верхней части в контакте с расплавом алюминия и твердыми - в нижней части и установленные проходящими вертикально через подину.

Изобретение относится к конструкции катодного кожуха электролизера для получения алюминия электролитическим способом. Катодный кожух содержит продольные и торцевые стенки с вертикальными ребрами жесткости, днище, шпангоуты, которые охватывают стенки и днище, и фланцевый лист.

Изобретение относится к катодному блоку для алюминиевого электролизера. Катодный блок содержит слой композита, содержащий графит и твердый материал, такой как TiB2, присутствующий с одномодовым гранулометрическим составом, при этом d50 составляет между 10 и 20 мкм, в частности между 12 и 18 мкм, преимущественно между 14 и 16 мкм.

Изобретение относится к катоду для ячейки электролизера для получения алюминия из его оксида в электролитической ванне. Катод имеет обращенную к электролитической ванне верхнюю часть и нижнюю часть, снабженную контактами для подвода тока.

Изобретение относится к конструкции электролизеров для получения алюминия. Под каждым анодом на поверхности подины размещены перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры из материала, менее электропроводного, чем алюминий, перпендикулярно и/или под углом 45-90° к плоскости подины, перпендикулярно и/или под углом 45-90° к продольной оси катодных стержней, полностью или частично препятствующие протеканию вдоль подины горизонтальных составляющих катодного тока в слое алюминия.

Изобретение относится к определению степени износа в среде алюминиевых электролизеров образцов карбидокремниевых блоков, используемых для боковой футеровки кожуха алюминиевых электролизеров.

Настоящее изобретение относится к способу производства комбинированных подовых блоков для алюминиевых электролизеров. Способ включает введение материала углеродистой подложки в форму и нанесение на нее слоя композиционного жаростойкого материала, содержащего борид металла, уплотнение содержимого формы в виде катодного блока и обжиг катодного блока, в качестве материала углеродистой подложки и слоя композиционного жаростойкого материала используют материалы, имеющие близкие коэффициенты термического линейного расширения и значения натриевого расширения и следующий гранулометрический состав: содержание фракций в углеродистой подложке (-10+0,071) мм - 76±10 мас.% и (-0,071+0) мм - 24±10 мас.%, содержание фракций в слое композиционного жаростойкого материала (-10+0,071) мм - 50±30 мас.% и (-0,071+0) мм - 30±50 мас.%, при этом материал углеродистой подложки вводят в предварительно нагретую до температуры материала форму.

Изобретение относится к конструкции катодной секции алюминиевого электролизера. Катодная секция содержит катодный углеродный блок, катодный токоведущий стержень с электропроводной частью из материала с высокой удельной электропроводностью, установленный во внутренней полости катодного углеродного блока и закрепленный в нем с помощью чугунной заливки.

Изобретение относится к электролизерам для получения алюминия. На поверхности подины размещены перегородки и/или решетки, и/или смачиваемые алюминием открытопористые ячеистые структуры из материала, менее электропроводного, чем алюминий, перпендикулярно и/или под углом 45°-90° к плоскости подины, перпендикулярно и/или под углом 45°-90° к продольной оси катодных стержней, полностью или частично препятствующие протеканию вдоль подины горизонтальных составляющих катодного тока в слое алюминия.

Изобретение относится к способу футеровки катодного устройства при монтаже катодных устройств электролизеров для производства первичного алюминия. Способ включает засыпку порошкообразного материала в катодный кожух электролизера, разравнивание его с помощью рейки, укрытие засыпанного материала пылеизолирующей пленкой и уплотнение, осуществляемое в два этапа: предварительного статического и окончательного динамического воздействия путем последовательного перемещения рабочих органов статического и динамического уплотнения вдоль продольной оси катода алюминиевого электролизера через упругую прокладку, выполненную из не менее чем двух слоев: нижнего, предотвращающего выдавливание порошкообразного материала вперед по ходу движения и верхнего, обеспечивающего сцепление прокладки с рабочим органом статического уплотнения, при этом динамическое воздействие осуществляют виброблоком, соединенным с блоком статической обработки посредством упругих элементов с возможностью одновременного перемещения относительно горизонтальной и вертикальной осей. Обеспечивается сокращение расходов на футеровочные материалы и уменьшение трудозатрат при их монтаже. 6 з.п. ф-лы, 9ил.
Изобретение относится к способу получения катодного блока электролизера для получения алюминия. Способ включает заготовку исходных материалов, содержащих кокс и порошок твердого материала, как, например TiB2, а также, при необходимости, углеродсодержащего материала, перемешивание исходных материалов, формование катодного блока, карбонизацию, графитизацию и охлаждение, при этом графитизацию проводят при температурах от 2300 до 3000°C, в частности от 2400 до 2900°, причем второй слой получают с толщиной, составляющей от 10 до 50%, в частности от 15 до 45%, от общей толщины катодного блока. Обеспечиваются высокая износостойкость в отношении алюминия и криолита, и снижение энергопотребления. 7 з.п. ф-лы.

Изобретение относится к катодной подине, способу ее изготовления и применения в электролитической ячейке для производства алюминия. Катодная подина содержит по крайней мере два катодных блока и/или по крайней мере катодный блок и боковой облицовочный блок, размещенные на заданном расстоянии с образованием по крайней мере одного зазора, материал для межблочного соединения, представляющий собой по крайней мере одну предварительно уплотненную пластину из расширенного графита, заполняющий зазор с возможностью присоединения по крайней мере к одному катодному блоку. Раскрыты способ изготовления катодной подины и ее использование в электролитической ячейке для производства алюминия. Обеспечивается увеличение эффективной катодной поверхности алюминиевого электролизера. 3 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к способу изготовления катодного блока алюминиевого электролизера. Способ включает приготовление исходных материалов, содержащих два сорта кокса с различными характеристиками изменения объема, формование катодного блока, карбонизацию, графитизацию и охлаждение, во время которых в одном и том же температурном диапазоне первый сорт кокса имеет более сильные усадку и/или расширение, чем второй сорт кокса. Раскрыт также катодный блок алюминиевого электролизера. Обеспечивается увеличение длительности срока службы катодных блоков. 2 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к укрытиям для улавливания газов, выделяющихся в процессе электролиза, электролизеров с обожженными анодами для производства алюминия. Укрытие содержит горизонтальный настил, выполненный с П-образными проемами для анододержателей, и П-образную раму, установленную по каждому П-образному проему с торцевой и боковых сторон соответственно, жестко закрепленную на торце П-образного проема уплотнительную планку, жестко закрепленные на боковых сторонах П-образного проема направляющие, в которых с возможностью перемещения закреплена П-образная рама. П-образная рама и уплотнительная планка выполнены из гибкого уплотняющего элемента, закрепленного одной стороной между нижней и верхней прижимными пластинами с возможностью деформации незакрепленной стороны гибкого уплотняющего элемента и перекрытия зазора между П-образным проемом и анододержателем. Верхняя и нижняя пластины П-образной рамы и уплотнительной планки изготовлены из легких немагнитных металлов или сплавов. Гибкий уплотняющий элемент изготовлен из многослойного текстильного материала, уложенного в один или несколько слоев. П-образная рама имеет ручку. Нижняя прижимная пластина выполнена толще и длиннее верхней прижимной пластины, а пластины и уплотняющий элемент соединены винтами. Обеспечивается повышение герметичности электролизера и исключение риска его механического повреждения при замене анода. 4 з.п. ф-лы, 2 ил.

Изобретение относится к электролизеру для получения алюминия (варианты) и способу получения алюминия в алюминиевом электролизере. Электролизер содержит анод, катодный узел, имеющий катодный блок с пазом в нем и токоотводящий подузел, по меньшей мере, частично расположенный в упомянутом пазе и выполненный с возможностью расширения в поперечном направлении с обеспечением сопряжения его с пазом посредством устройства осевого сжатия, прилегающего к концу токоотводящего подузла, выполненного с возможностью приложения осевой силы к концу токоотводящего подузла и расположенного полностью вне токоотводящего подузла. Раскрыт также способ получения алюминия в алюминиевом электролизере с использованием упомянутого устройства осевого сжатия. Обеспечивается снижение падения катодного напряжения за счет улучшения контакта, обеспечивающего уменьшение сопротивление стыка по поверхности раздела между катодным блоком и токоотводящим подузлом. 3 н. и 19 з.п. ф-лы, 23 ил., 1 табл.

Изобретение относится к катодному блоку и катоду алюминиевого электролизера. Катодный блок для алюминиевого электролизера содержит основной слой из графита и расположенный на нем верхний слой, выполненный из углеродного композиционного материала, содержащего от 15 до менее чем 50 вес.% твердого материала с температурой плавления по меньшей мере 1000°C и имеющий толщину от 50 до 400 мкм. Раскрыт также катод, содержащий упомянутый катодный блок, и применение упомянутого катода для электролиза металла, в частности алюминия. Обеспечивается повышение срока службы катодного блока и катода. 3 н. и 18 з.п. ф-лы, 1 ил.

Изобретение относится к катодному блоку и катоду алюминиевого электролизера. Катодный блок имеет базовый слой, содержащий графит, и размещенный на нем покровный слой, выполненный из графитового композитного материала, содержащего от 1 до 50% по весу твердого материала с температурой плавления по меньшей мере 1000°С и имеющего толщину от 50 до 400 мкм. Раскрыт также катод и его применение в алюминиевом электролизере. Обеспечивается повышение срока службы катодного блока и катода. 3 н. и 25 з.п. ф-лы, 1 ил.

Изобретение относится к способу футеровки катодного устройства электролизера для получения алюминия неформованными материалами. В способе, включающем кладку кирпичной бровки по периметру внутренней боковой поверхности металлического кожуха, засыпку и горизонтальное выравнивание теплоизоляционного материала, состоящего из неграфитированного углерода, в кожух катодного устройства, засыпку и горизонтальное выравнивание огнеупорного слоя, совместное уплотнение огнеупорного и теплоизоляционного слоев вибропрессованием, установку подовых и бортовых блоков с последующей заделкой швов между ними холоднонабивной подовой массой, перед засыпкой теплоизоляционный материал смешивают с мелкодисперсными органическими частицами. Обеспечивается снижение стоимости футеровочных материалов и сокращение энергозатрат за счет стабилизации теплофизических характеристик теплоизоляции катодного устройства электролизера. 3 з.п. ф-лы, 3 ил.

Изобретение относится к способу футеровки катодного устройства электролизера для производства первичного алюминия электролизом. Способ включает загрузку теплоизоляционного слоя, состоящего из неграфитированного углерода, в кожух катодного устройства, формирование огнеупорного слоя засыпкой порошка алюмосиликатного состава и его уплотнение вибропрессованием, установку подовых и бортовых блоков с последующей заделкой швов между ними холоднонабивной подовой массой. Теплоизоляционный материал, состоящий из неграфитированного углерода, помещают в кассетные модули и укладывают в цоколь электролизера по меньшей мере в один слой, а швы между ними пересыпают неграфитированным углеродом. Обеспечивается сокращение пылевыделения при монтаже катодного устройства, снижение энергозатрат при работе электролизера за счет оптимизации теплофизических характеристик футеровочных материалов цоколя электролизера. 3 з.п. ф-лы, 1 ил., 1 табл.
Наверх