Способ и система георадиолокационного каротажа

Заявленная группа изобретений относится к области скважинной геофизики и может быть использована для исследования подповерхностных структур из скважин. Сущность: формируют сверхширокополосные видеоимпульсы длительностью 10-11-10-8 с. Излучают видеоимпульсы передающей антенной (2), размещенной в диэлектрическом корпусе, в разных азимутальных направлениях в плоскости, перпендикулярной оси скважины. Регистрируют видеоимпульсы блоком приемных антенн (3), размещенных в диэлектрическом корпусе. Записывают полноволновую форму зарегистрированного сигнала, представленную в виде двумерного кадра «амплитуда - время задержки», по которой оценивают азимутальную анизотропию среды. Обрабатывают полученную информацию в реальном масштабе времени. Визуализируют результат обработки в 4D представлении. Система для реализации способа содержит передающий и приемный блоки. При этом передающий блок включает устройство (не показано на чертеже), обеспечивающее формирование сверхширокополосных видеоимпульсов длительностью 10-11-10-8 с, передатчик (1), одну или несколько передающих антенн (2), размещенных в диэлектрическом корпусе. Приемный блок включает одну или несколько приемных антенн (3) с устройствами согласования (4), размещенных в диэлектрическом корпусе, коммутатор (5), приемник (6), блок (7) управления и связи с персональным компьютером, антенну (8) синхронизации и оптиковолоконную линию (9) синхронизации. Приемные антенны (3) размещают в диэлектрическом корпусе в такой конфигурации, которая обеспечивает формирование диаграммы направленности блока приемных антенн в двух режимах: радиозондирования и радиопросвечивания. Технический результат: повышение информативности каротажа за счет увеличения динамического диапазона сигналов, а также расширение функциональных возможностей - возможность осуществления как радиозондирования, так и радиопросвечивания (радиотомографии), причем на значительном удалении от оси скважины. 2 н.п. ф-лы, 3 ил.

 

Заявленная группа изобретений относится к области скважинной геофизики и может быть использована для обнаружения и исследования породного состава, механических и физических свойств подповерхностных структур.

Известны способы электромагнитного зондирования околоскважинного пространства устройствами, размещенными в скважинах (например, RU 71780 U1, опубл. 20.03.2008). Однако динамический диапазон таких приборов, реализованных по схеме стробоскопического преобразования отраженного сигнала в тракте приема, составляет не более 100 дБ, что позволяет применять их для оценки характеристик пород по измерениям параметров диэлектрической проницаемости только в точке измерения либо на небольших, порядка метра, расстояниях от ствола скважины для значений параметров диэлектрической проницаемости, характерных для реальных сред.

Наиболее близким аналогом заявленной группы изобретений является группа изобретений, в которой раскрыты способ и устройство радиолокационного зондирования подстилающей поверхности (RU 2490672 C1, опубл. 20.08.2013). Способ радиолокационного зондирования подстилающей поверхности заключается в формировании зондирующих импульсов с помощью газового разрядника или твердотельного генератора, излучении импульсов передающей антенной, регистрации отраженных волн приемной антенной с последующей их обработкой. Устройство для реализации этого способа включает формирователь зондирующих импульсов на газовом разряднике или твердотельный генератор, передающий блок, включающий передающую антенну, приемный блок, включающий приемную антенну, блок управления и связи с персональным компьютером.

Однако данные изобретения не предназначены для функционирования в режиме радиопросвечивания. Кроме того, известное устройство невозможно эксплуатировать в скважине, поскольку его схема, предназначенная для проведения зондирования с земной поверхности и в шахтах, не позволяет производить адекватную интерпретацию получаемых данных из-за невозможности определять ориентацию прибора в локальной системе координат, привязанной к окружающей среде, и осуществлять дистанционное управление работой прибора.

Задача, на решение которой направлена заявленная группа изобретений, заключается в проведении георадиолокационного каротажа в режимах радиозондирования и радиопросвечивания (радиотомографии) на значительном удалении (от десятков до нескольких сотен метров) от оси скважины.

Технический результат, который может быть при этом получен, заключается в повышении информативности каротажа за счет увеличения динамического диапазона сигналов, а также в расширении функциональных возможностей - то есть в возможности осуществления как радиозондирования, так и радиопросвечивания (радиотомографии), причем на значительном удалении от оси скважины.

Указанный технический результат достигается за счет того, что осуществляют формирование сверхширокополосных видеоимпульсов длительностью 10-11-10-8 с, затем излучают видеоимпульсы передающей антенной, размещенной в диэлектрическом корпусе, в разных азимутальных направлениях в плоскости, перпендикулярной оси скважины, регистрируют видеоимпульсы блоком приемных антенн, размещенных в диэлектрическом корпусе, причем приемные антенны размещены в диэлектрическом корпусе в такой конфигурации, которая обеспечивает формирование диаграммы направленности блока приемных антенн в одном из режимов: радиозондирования и радиопросвечивания, записывают полноволновую форму зарегистрированного сигнала, представленную в виде двумерного кадра «амплитуда - время задержки», по которой оценивают азимутальную анизотропию среды, обрабатывают полученную информацию в реальном масштабе времени и визуализируют результат обработки в 4D представлении. Система для реализации данного способа содержит передающий и приемный блоки, при этом передающий блок содержит устройство, обеспечивающее формирование сверхширокополосных видеоимпульсов длительностью 10-11-10-8 с, передатчик, одну или несколько передающих антенн, размещенных в диэлектрическом корпусе, приемный блок включает одну или несколько приемных антенн, размещенных в диэлектрическом корпусе, одно или несколько устройств согласования приемных антенн, коммутатор приемных антенн, приемник, блок управления и связи с персональным компьютером, антенну синхронизации и оптиковолоконную линию синхронизации, причем выходы устройств согласования приемных антенн соединены со входами приемника, а входы - с выходами коммутатора приемных антенн, первый вход которого соединен с выходами антенны синхронизации и оптиковолоконной линии синхронизации, вход-выход приемника соединен со входом-выходом блока управления и связи с ПК, один из выходов которого соединен со вторым входом коммутатора приемных антенн, а другой - со входом передатчика.

Заявленные изобретения базируются на технологии наземного георадара «Грот-12», который обеспечивает по результатам опытов зондирование на глубину до нескольких сотен метров и разрешающая способность которого составляет от 1 см до 10 м в зависимости от глубины.

На фиг.1 показана схема системы электромагнитного каротажа.

На фиг.2 показана схема работы системы в режимах радиозондирования - 3 и радиопросвечивания (радиотомографии) - Т.

На фиг.3 показаны возможные схемы размещения передающих - ПА и приемных - ПрА антенн.

Система для георадиолокационного каротажа включает приемный и передающий блоки, которые могут быть расположены как в одной скважине (режим радиозондирования), так и в разных скважинах (режим радиопросвечивания). Приемный и передающий блоки управляются при помощи компьютера, который может быть размещен как в непосредственной близости от указанных блоков, так и на земной поверхности. Передающий блок включает устройство (не показано на чертеже), обеспечивающее формирование сверхширокополосных видеоимпульсов длительностью 10-11-10-8 с (газовый разрядник или твердотельный генератор), передатчик (1), одну или несколько передающих антенн (2), размещенных в диэлектрическом корпусе. Приемный блок включает одну или несколько приемных антенн (3), размещенных в диэлектрическом корпусе, одно или несколько устройств согласования (4) приемных антенн, коммутатор (5) приемной антенны, приемник (6), блок (7) управления и связи с персональным компьютером, антенну синхронизации (8) и оптиковолоконную линию синхронизации (9).

Приемные антенны (3) размещают в диэлектрическом корпусе в такой конфигурации, которая обеспечивает формирование диаграммы направленности блока приемных антенн в двух режимах: радиозондирования и радиопросвечивания (фиг.2). Блок (7) управления и связи с ПК выставляет необходимые параметры приемника (6) и через коммутатор (5) подсоединяет одну из нескольких приемных антенн (3), затем выдает команду для передатчика (1) на излучение. По сигналу от блока (7) управления и связи с ПК передатчик (1) выдает на передающую антенну (2) высоковольтный сигнал в виде зондирующего сверхширокополосного видеоимпульса. Видеоимпульс через среду распространения попадает на антенну (8) синхронизации и (или) оптиковолоконную линию синхронизации (9), затем через коммутатор (5) попадает на приемные антенны (3) и далее на приемник (6), запуская цикл записи принимаемой информации от приемных антенн (3).

В режиме радиопросвечивания, когда приемный и передающий блоки размещены в разных скважинах, синхронизирующий импульс от передатчика к приемнику передается по оптиковолоконному кабелю скважины, потом по воздушной радиолинии до скважины, где находится приемник, а затем с поверхности скважины до приемника снова по кабелю.

В качестве объекта исследования используется полная волновая форма отраженного сверхширокополосного видеоимпульса, которая несет всю информацию о распределении диэлектрической проницаемости среды около скважинного пространства. Полная волновая форма представляет собой двумерный кадр «амплитуда - время задержки». Составной кадр из последовательного множества полных волновых форм является трехмерным; для измерения при движении вдоль оси скважины его координаты - это «азимутальное направление - время задержки - длина профиля» (с цветовой кодировкой амплитуды), а для измерения в точке при фиксации изменения параметров окружающей среды в условиях искусственного воздействия на нее - «азимутальное направление - время задержки - время регистрации» (с цветовой кодировкой амплитуды).

Заявленные изобретения позволят решать такие задачи, как выделение, корреляция и оконтуривание залежей нефти, оценка характера насыщения пластов различными углеводородами (нефть, газ, газогидраты), твердыми полезными ископаемыми и флюидами, в том числе с низкой пористостью и трещинно-кавернозного типа.

1. Способ георадиолокационного каротажа, заключающийся в формировании сверхширокополосных видеоимпульсов длительностью 10-11-10-8 с, излучении видеоимпульсов передающей антенной, размещенной в диэлектрическом корпусе, в разных азимутальных направлениях в плоскости, перпендикулярной оси скважины, регистрации видеоимпульсов блоком приемных антенн, размещенных в диэлектрическом корпусе, причем приемные антенны размещены в диэлектрическом корпусе в такой конфигурации, которая обеспечивает формирование диаграммы направленности блока приемных антенн в двух режимах: радиозондирования и радиопросвечивания, записи полноволновой формы зарегистрированного сигнала, представленной в виде двумерного кадра «амплитуда - время задержки», по которой оценивают азимутальную анизотропию среды, обработке полученной информации в реальном масштабе времени и визуализации результата обработки в 4D представлении.

2. Система для реализации способа по п.1, содержащая передающий и приемный блоки, при этом передающий блок включает устройство, обеспечивающее формирование сверхширокополосных видеоимпульсов длительностью 10-11-10-8 с, передатчик, одну или несколько передающих антенн, размещенных в диэлектрическом корпусе, приемный блок включает одну или несколько приемных антенн с устройствами согласования, размещенных в диэлектрическом корпусе, одно или несколько устройств согласования приемных антенн, коммутатор приемных антенн, приемник, блок управления и связи с персональным компьютером, антенну синхронизации и оптиковолоконную линию синхронизации, причем выходы устройств согласования приемных антенн соединены со входами приемника, а входы - с выходами коммутатора приемных антенн, первый вход которого соединен с выходами антенны синхронизации и оптиковолоконной линией связи, вход-выход приемника соединен со входом-выходом блока управления и связи с ПК, первый выход которого соединен со вторым входом коммутатора приемных антенн, а второй выход - со входом передатчика.



 

Похожие патенты:

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля изменения состояния поверхности открытых водоемов, вызванного их загрязнением поверхностно-активными веществами, при проведении экологических и природоохранных мероприятий. Техническим результатом изобретения является возможность при осуществлении анализа характеристик бликов зеркального отражения учитывать фактор влияния, ветра, что обеспечивает повышение точности определения наличия загрязнения, а также степени его интенсивности. Согласно изобретению поверхность облучают лазером, регистрируют блики зеркального отражения и определяют их характеристики.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала. .

Изобретение относится к геофизическим исследованиям с управляемым источником. Сущность: способ содержит этапы, на которых: развертывают по меньшей мере один приемник и электрический дипольный источник; передают электромагнитное поле от электрического дипольного источника; детектируют первую горизонтальную составляющую и вторую горизонтальную составляющую отклика электромагнитного поля на передаваемое электрическое поле, используя по меньшей мере один приемник, и вычисляют вертикальную составляющую отклика электромагнитного поля, используя детектированные первую и вторую горизонтальные составляющие отклика электромагнитного поля, причем эти первую и вторую горизонтальные составляющие комбинируют.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Устройство обнаружения носимых осколочных взрывных устройств содержит СВЧ передающее устройство с частотой f1, СВЧ передающее устройство с частотой f2, СВЧ приемное устройство комбинационных частот второго порядка, СВЧ приемное устройство комбинационных частот третьего порядка.

Изобретение относится к области геофизики и может быть использовано для определения электрофизических параметров объектов, с которыми пространственно связаны месторождения полезных ископаемых в условиях техногенной инфраструктуры, построенной с применением металлоконструкций.

Предлагаемое устройство относится к контрольно-поисковым средствам, а именно к устройствам обнаружения местоположения людей, оказавшихся под завалами, образовавшимися в результате стихийного (землетрясения, торнадо, цунами и др.) или иного бедствия, и поиска взрывчатых и наркотических веществ, и может быть использовано при техногенных авариях, природных катастрофах, террористических актах и при предотвращении опасных для населения акций.

Изобретение относится к области геофизики и может быть использовано для поиска засыпанных биообъектов или их останков. Заявлен способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления.

Использование: изобретение относится к области техники, занимающейся подповерхностной радиолокацией объектов. Сущность изобретения заключается в зондировании среды сверхнизкочастотными гармоническими электромагнитными колебаниями.

Использование: для детектирования электромагнитного излучения. Сущность: заключается в том, что быстродействующая и миниатюрная система детектирования, в частности, электромагнитного излучения в гигагерцовом и терагерцовом диапазонах содержит полупроводниковую структуру, имеющую двумерный слой носителей заряда или квазидвумерный слой носителей заряда с включенным одним дефектом или многочисленными дефектами, по меньшей мере первый и второй контакты для слоя носителей заряда и устройство для измерения фотоэлектродвижущей силы между первым и вторым контактами.

Изобретение относится к области геофизики и может быть использовано для исследования подповерхностных структур. .

Изобретение относится к области геофизики и может быть использовано при исследовании залежей сверхвязких нефтей. Сущность изобретения: излучают электромагнитные волны и принимают сигналы, отраженные от границ раздела слоев зондируемой среды, после чего проводят обработку результатов измерений. При этом предварительно строят структурные карты поднятия, а также временные сейсмические разрезы отраженных границ верхней части осадочного чехла, изучают материалы геофизических исследований скважин, материалы керна. На поверхности намечают линии профилей с учетом структурных карт поднятия и временных сейсмических разрезов отраженных границ верхней части осадочного чехла. Линии профилей проводят во взаимно перпендикулярных направлениях через пробуренные скважины с выходом за контур поднятия не менее чем на 500 м. Выполняют занесение в базу данных координат крайних и переломных точек линий профилей. Проводят рассмотрение возможных внешних помех, вводят по необходимости корректировки координат линий профилей. Проводят привязку линий профилей на местности, определяют высотные и координатные точки исследования. Проводят тестовые исследования на одной линии профилей. Экспериментально назначают длительность записи отраженной волны замера совокупности электромагнитных сигналов, зарегистрированных в точке приема в течение заданного времени после излучения электромагнитной волны, как превышающую двойное время пробега электромагнитной волны до самого глубокого объекта исследований. На основании сведений о глубинах и предполагаемых или заранее известных значений скоростях распространения электромагнитных волн в среде, полученных при анализе геофизических исследований и материалов керна, проводят выбор фиксированного времени, в течение которого приемник принимает отраженные сигналы. При этом шаг дискретизации по времени выбирают достаточным для детального описания электромагнитного отраженного сигнала в количестве от 10 до 20 точек на период центральной частоты. В ходе полевых наблюдений излучение электромагнитных волн от передатчика мощностью 10 МВт и прием отраженного сигнала выполняют последовательно тремя антеннами на трех частотах: 50 МГц, 25 МГц и 10 МГц в линейном и логарифмическом режимах записи и регистрации с шагом 4-6 м. Импульс, полученный на наиболее высокой частоте, учитывают как отражающий детальность исследований и высокое разрешение, а на наиболее низкой - как максимальную глубину зондирования. При этом в линейном режиме регистрации импульса проводят выделение и дискретизацию отраженного сигнала нижней части разреза. В логарифмическом режиме выполняют регистрацию «загрубления» высокой амплитуды сигнала и усиление низкой амплитудной записи верхней части разреза. В результате обработки полевых материалов строят временные разрезы, на которых волновая картина отображает особенности геологического строения и состава горных пород. По изменению свойств диэлектрической проницаемости выделяют границы раздела пластов и дифрагирующих объектов в полях электромагнитных волн, определяемых осью синфазности отраженных волн. Для визуализации используют выделение поля обратного отражения из совокупности полученных данных с использованием частотной и пространственной фильтрации. Применяют функцию сложения-вычитания для радарограмм, записанных в линейном и логарифмическом режимах, посредством которых добиваются детального расчленения нижней части радарограммы. Для литолого-стратиграфической привязки границ отраженных волн проводят коррекцию скоростных характеристик электромагнитного импульса и материалов геофизических исследований скважин и данных отбора керна. При этом устанавливают закономерности в характере и распространении электромагнитного сигнала. Выделяют объекты со слабыми и переходными отражающими характеристиками. Поисковым признаком границы залежи на временном разрезе выбирают уменьшение времени прохождения границы выделенного нефтяного пласта и увеличение амплитуды сигнала относительно показаний вне залежи. Строят карты временных отражений электромагнитного импульса, на основании которых картируют стратиграфические поверхности отражающих горизонтов верхней части осадочного чехла. По изменениям амплитуды и знака электромагнитного сигнала в разных средах над залежью, при переходе и за пределами залежи строят карты нефтенасыщенных толщин. Технический результат: прогнозирование залежей сверхвязких нефтей. 11 ил.

Изобретение относится к геофизике, а именно к георадиолокации, и может использоваться на труднодоступных и ограниченных участках для исследования геометрии горных пород. Заявленный способ заключается в том, что геолокацию проводят с изменением углов разворота антенного блока георадара. При этом в месте проведения исследований, в ограниченном пространстве, выполняют углубление полуцилиндрической формы, в котором осуществляют зондирования в различных угловых положениях антенного блока георадара, для чего перемещают его по поверхности углубления, а измерения углов зондирований ведут по шкале и стрелке-отвесу, размещенным на антенном блоке. Радарограммы, записываемые с помощью данного способа, отличаются набором уникальных трасс сигналов, зарегистрированных под различными углами к отражающей горизонтальной границе, что позволяет выделить регулярные сигналы, тем самым повысить информативность данных георадиолокации. 1 ил.

Изобретение относится к области подповерхностной радиолокации, а именно к определению расположения и формы неоднородностей и включений в конденсированных средах. Сущность: способ заключается в ступенчатом изменение сигнала, в заданном диапазоне частот с равномерным шагом от f min = k min c D до f max = k max c D , где kmin=0,72, kmax=0,81,D - диаметр антенны, с - скорость света. Количество отдельных частот в диапазоне от fmin до fmax не менее пяти. Сканируется исследуемый участок поверхности. Радиоголограмма исследуемого участка фокусируется и определяется ориентация проводящего заглубленного цилиндра. Сначала антенна ориентируется по отношению к оси заглубленного цилиндра так, что вектор напряженности электрического поля располагается перпендикулярно оси цилиндра, и сканируется поверхность при перпендикулярной поляризации. Затем антенна ориентируется по отношению к оси цилиндра так, что вектор напряженности электрического поля располагается параллельно оси заглубленного цилиндра, и сканируется поверхность при параллельной поляризации. Производится фокусировка радиоголограмм цилиндра при перпендикулярной и параллельной поляризациях. Определяется глубина фокусировки изображений заглубленного цилиндра при перпендикулярной и параллельной поляризациях, радиус r заглубленного цилиндра и глубина заложения h находятся из выражений: r=l ⊥ -l || ; h=l ⊥ , где l⊥ - глубина фокусировки изображений заглубленного цилиндра при перпендикулярной поляризации, l|| - глубина фокусировки изображений заглубленного цилиндра при параллельной поляризации. Способ позволяет косвенным методом определить диаметр арматуры и других проводящих цилиндрических предметов в конденсированных средах. 9 ил.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Способ обнаружения осколочных взрывных устройств основан на методе нелинейной радиолокации и включает облучение СВЧ электромагнитным зондирующим полем и регистрацию новых составляющих в спектре отраженного сигнала. Облучение осуществляется на двух близких, но не равных частотах. Регистрация осуществляется на одной из комбинационных частот третьего порядка, значение которой меньше значений двух частот излучаемых сигналов. Все частоты берутся в диапазоне резонансного рассеяния взрывного устройства. Поляризация зондирующих СВЧ сигналов берется вращающейся с одинаковым направлением вращения, а регистрацию отраженного СВЧ сигнала на комбинационной частоте третьего порядка осуществляют с использованием противоположного направления вращения. Техническим результатом изобретения является повышение дальности обнаружения осколочных взрывных устройств.1 з.п. ф-лы, 1 ил.

Антенная система на монтажной плате с по меньшей мере двумя магнитными кольцами и прямоугольным поперечным сечением и образованными за счет этого боковыми поверхностями магнитных колец с противоположной полярностью, установленными на монтажной плате с помощью поставки, причем поверхности магнитных колец с противоположной полярностью обращены друг к другу, а центральные отверстия магнитных колец расположены соосно с отверстием проставки и образуют с ним сквозное отверстие. Эта антенная система предназначена для устройства обнаружения материалов, с помощью которого обеспечена возможность обнаружения задаваемого материала на большом расстоянии. Применимость антенной системы благодаря своей конструкции может быть свободно расширена увеличением количества магнитных колец и соответствующих проставок. Благодаря своему небольшому объему ее можно свободно интегрировать в существующие приборы и экономически выгодно производить. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов, осуществляющих поиск объектов, представляющих собой радиоэлектронные устройства и контактирующие металлические поверхности, за счет обнаружения нелинейных свойств элементов, являющихся составной частью таких объектов поиска. Достигаемый технический результат - измерение дальности до объекта поиска за счет использования двухчастотного способа зондирования с регистрацией комбинационных частот второго и третьего порядка отраженного сигнала, где в качестве одного зондирующего сигнала используется широкополосный сигнал (линейно-частотно-модулированный сигнал) на одной несущей частоте с полосой , а в качестве другого - радиоимпульс на другой несущей частоте. Обработку отраженного сигнала производят N канальной схемой на любой гармонике и комбинационной составляющей, используя оптимальную фильтрацию сложного сигнала с несущей частотой, равной промежуточной частоте (ПЧ), и полосой в М каналах и в N-M каналах, и, учитывая результаты по всем каналам, по временному положению максимума отклика измеряют дальность до объекта поиска. Способ реализуется устройством, выполненным соответствующим образом. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и радиотехники, а именно к технике связи СНЧ-КНЧ диапазона, и может быть использовано для связи с глубокопогруженными и удаленными подводными объектами. Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 6 содержит передающую систему, состоящую из задающего генератора, модулятора, системы управления, защиты и автоматизации, усилителя мощности, согласующего устройства, индикатора тока антенны и источника тока, причем прием и регистрация излучения, создаваемого СНЧ-КНЧ генераторами, осуществляются с помощью буксируемой кабельной антенны, антенного усилителя и приемника СНЧ-КНЧ диапазона, находящихся на борту подводного объекта, отличается тем, что дополнительно введены N преобразователей, N заземлителей антенной системы, выполненной в виде протяженной прямолинейной линии, состоящей из N секций, отрезков подземного неэкранированного кабеля, антенной системы длиной t, равной несколько десятков сотен километров, каждый из N преобразователей выполнен идентично и содержит секцию подземного кабеля длиной, не превышающей 20 км в антенной системе, источник электрической энергии питания каждого из блоков по цепям питания преобразователя, информационный трансформатор, силовой трансформатор, первый усилитель, интегральную цепочку (схему), второй вентиль В.2, дифференциальную цепочку, первый вентиль В.1, второй усилитель, третий усилитель, генератор тактовых импульсов, модулятор, усилитель мощности, токовый трансформатор, регулятор мощности на входе усилителя мощности, - ток в N-1 секции антенны системы длиной до 20 км; - ток в N секции антенны системы длиной до 20 км; - разность токов N-1 секции антенны и N секции антенны; каждый из N токовых трансформаторов содержит трехобмоточный трансформатор для обеспечения заданных параметров тока во всех секциях антенной системы. Технический результат заключается в обеспечении электромагнитной совместимости «Системы связи…» с РЭС, линиями электропередачи, кабельными линиями связи, инженерными сооружениями и создание условий экологической безопасности в районе размещения антенной системы радиостанции. 4 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к геофизике и археологии и может быть использовано для выявления внутренней структуры археологических объектов, представляющих собой слои ограниченного простирания и мощности, сложенные раковинами моллюсков. Для выделения границ слоя раковин в культурных отложениях на площади исследований разбивается сеть измерений, выполняются георадиолокационные измерения по профилям. Составляют электрофизическую модель геологической среды археологического памятника на основе сопоставления результатов измерений по отдельному профилю с известным для территории исследований геологическим разрезом. Определяют координаты электрофизических границ объекта поиска на георадарограммах на основе электрофизической модели. Выполняют последовательное построение карт нижней и верхней границ объекта поиска и разностной карты глубин залегания нижней и верхней границ объекта. Полученная таким образом карта мощности антропогенного слоя раковин используется для количественных расчетов параметров слоя и для реконструкции внутренней структуры древнего поселения собирателей раковин, необходимых для решения археологических задач. Технический результат заключается в обеспечении возможности повышения точности локализации и ранжирования выделенных структур с определением трехмерных координат границ объекта исследования, количественной оценки площадного распределения антропогенных карбонатных отложений с определением общего и дифференцированного (на локальных участках) объемов раковинного слоя. 4 ил.

Изобретение относится к классу геофизических приборов, предназначенных для исследований, не нарушающих структуры грунта, на глубины от нескольких десятков до нескольких сотен метров. Достигаемый технический результат - расширение диапазона обрабатываемых значений сигналов, поступающих в ответ на подачу зондирующих импульсов, что позволяет без искажений принимать информацию с различных глубин зондирования, практически исключая искажения, связанные с нелинейностью входных характеристик приемных элементов. Указанный результат достигается за счет того, что устройство содержит передающую часть и приемную часть. Передающая часть включает в себя последовательно связанные высоковольтный источник питания, формирователь зондирующих импульсов и передающую антенну, а приемная часть - последовательное связанные приемную антенну, средство обработки сигналов, средство представления результатов обработки сигналов. Средство обработки сигналов содержит двухканальный аналого-цифровой преобразователь, выходы которого подключены к входам средства объединения канальных сигналов преобразователя для передачи средству представления результатов обработки. 5 з.п. ф-лы, 8 ил.

Изобретение относится к пассивным радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра с двумя антеннами, принимающими сигналы в двух частотных диапазонах. Достигаемый технический результат – повышение пространственного разрешения изображения в первой матрице, полученной для широкой диаграммы направленности (ДНА), до разрешения второй матрицы, полученной для узкой ДНА, с сохранением температурных характеристик частотного диапазона первой. Указанный результат достигается тем, что в способе формирования изображения используют две антенны, одна из которых имеет широкую диаграмму направленности, а другая антенна - узкую ДНА. Наличие двух антенн необходимо для определения излучающих свойств объектов в разных частотных диапазонах. 4 ил.
Наверх