Способ получения карбоната кальция

Изобретение может быть использовано в фармацевтической промышленности, в парфюмерии, при изготовлении пищевых добавок. Карбонат кальция осаждают реакцией водных растворов солей кальция с водными растворами карбонатов в присутствии неионогенного поверхностно-активного вещества при температуре не ниже 85°С. Затем карбонат кальция отделяют от раствора фильтрованием. В водные растворы карбонатов добавляют растворимые фосфаты в молярном соотношении фосфатов к карбонатам 1:100-1:20, а в водные растворы солей кальция добавляют жидкое стекло в молярном соотношении жидкого стекла к солям кальция 1:1000-1:100. В качестве водных растворов карбонатов используют растворы карбоната калия или карбоната натрия. В качестве растворимых фосфатов используют гидрофосфат калия или дигидрофосфат калия, а в качестве водных растворов солей кальция - растворы хлорида кальция или нитрата кальция. Изобретение позволяет повысить биологическую доступность триглицеридов и жирорастворимых веществ, в том числе витаминов, за счет эмульгирующего действия полученного карбоната кальция и увеличения глубины гидролиза триглицеридов. 1 ил., 2 табл., 2 пр.

 

Изобретение относится к способам получения карбонатов кальция и может быть использовано в фармацевтической промышленности, в парфюмерии и при изготовлении пищевых добавок.

Известен способ получения осажденного карбоната кальция (GB №921077, МПК C01F 11/18, опубл. 13.03.1963 г.), согласно которому карбонат кальция получают реакцией водных растворов солей кальция, например нитрата или хлорида, с водными растворами карбоната аммония, натрия или калия в присутствии водорастворимых фторидов, например фторидов натрия, калия или аммония. Фторид используется предпочтительно в пропорции 0,05-5 вес. частей на 100 вес. частей карбоната. По окончании осаждения получаемой реакционной смеси ее перемешивают в течение 2-3-х минут и затем фильтруют, причем фильтрат не содержит измеримых количеств фтора.

Основной недостаток этого способа заключается в том, что карбонат кальция, полученный таким образом, содержит большое количество фтора (до 5%). Однако употребление большого количества фтора перорально, особенно детьми, вредно для здоровья.

Наиболее близким к предложенному способу по существу является выбранный нами за прототип способ получения тонкодисперсного карбоната кальция (RU 2314999, МПК C01F 11/18, опубл. 20.01.2008 г.), включающий осаждение карбоната кальция реакцией водных растворов солей кальция с водными растворами карбонатов и отделение карбоната кальция от раствора фильтрованием, при этом реакцию проводят в присутствии катионного поверхностно-активного вещества при температуре не ниже 85°С и при воздействии ультразвуком.

Основной недостаток этого способа заключается в том, что полученный этим способом карбонат кальция не повышает биодоступность триглицеридов, что показывают приведенные ниже результаты экспериментов (табл.1, образец 15).

Основным техническим результатом предложенного изобретения является повышение биодоступности триглицеридов за счет эмульгирующего действия на них полученного заявляемым способом карбоната кальция, а также за счет увеличения в 2-3 раза глубины гидролиза триглицеридов на карбонате кальция при малых значениях их перекисного числа.

Указанный технический результат заявляемого способа достигается тем, что в способе получения карбоната кальция, включающем осаждение карбоната кальция реакцией водных растворов солей кальция с водными растворами карбонатов в присутствии поверхностно-активного вещества при температуре не ниже 85°С и отделение карбоната кальция от раствора фильтрованием, согласно предложенному решению в водные растворы карбонатов добавляют растворимые фосфаты в молярном соотношении фосфатов к карбонатам 1:100-1:20, используют неионогенное поверхностно-активное вещество, а в водные растворы солей кальция добавляют жидкое стекло в молярном соотношении жидкого стекла к солям кальция 1:1000-1:100, причем в качестве водных растворов карбонатов используют растворы карбоната калия или карбоната натрия, в качестве растворимых фосфатов используют гидрофосфат калия или дигидрофосфат калия, а в качестве водных растворов солей кальция используют растворы хлорида кальция или нитрата кальция.

Примеры конкретного выполнения

Пример 1. К 200 мл 0,1 М раствора карбоната калия добавляют дигидрофосфат калия в молярном соотношении фосфата к карбонату 1:100 и 0,04 г неионогенного ПАВ Твин-80. К 200 мл 0,1 М раствора нитрата кальция добавляют жидкое стекло в молярном соотношении жидкого стекла к соли кальция 1:180. Осаждение карбоната кальция проводят реакцией водного раствора соли кальция с водным раствором карбоната при температуре 85°С. Затем проводят отделение карбоната кальция от раствора фильтрованием, осадок сушат и получают порошок карбоната кальция (табл.1, образец 3).

Пример 2. К 100 мл 1 М раствора карбоната натрия добавляют гидрофосфат калия в молярном соотношении фосфата к карбонату 1:30 и 0,03 г неионогенного ПАВ Твин-40. К 100 мл 1 М раствора соли кальция CaCl2 добавляют жидкое стекло в молярном соотношении жидкого стекла к соли кальция 1:1000. Осаждение карбоната кальция проводят реакцией водного раствора соли кальция с водным раствором карбоната при температуре 85°С. Затем проводят отделение карбоната кальция от раствора фильтрованием, осадок сушат и получают порошок карбоната кальция (табл.1, образец 9).

В качестве неионогенного ПАВ могут быть использованы также Твин-60, Твин-20 и СПЭНы, так как их свойства аналогичны.

Полученный заявленным способом карбонат кальция обладает способностью повышать биодоступность триглицеридов при их пероральном приеме. Для проверки этого в порошок карбоната кальция добавляют до насыщения триглицерид - рыбий жир - методом стеклянной палочки, описанным в ГОСТ 21119.8-75 (ИСО 787-5-80), и измеряют маслоемкость. Маслоемкость карбоната кальция, полученного в примерах 1 и 2, для рыбьего жира составила 55,8 г/100 г и 67,1 г/100 г соответственно.

Затем порошку карбоната кальция, насыщенного рыбьим жиром, придают форму таблетки и проводят ее растворение при температуре 37°С в растворе HCl с добавкой ацидинпепсина (рН 2). Известно, что скорость растворения таблетки лекарственного вещества определяет скорость и полноту всасывания лекарственного вещества в крови, т.е. биодоступность препарата [Э.А.Коржавых, А.С.Румянцев. Таблетки и их разновидности. // Российские аптеки, 2003, №12. - С.16-20]. Следовательно, повышая растворимость таблетки в желудочном соке, можно увеличивать биодоступность находящихся в ней веществ. Кинетика растворения в растворе соляной кислоты полученного заявленным способом карбоната кальция (образец 3) приведена на фиг. 1.

Как видно из фиг. 1, таблетка из карбоната кальция, насыщенного рыбьим жиром, растворяется в растворе соляной кислоты в течение 10 мин. При этом образуется однородная эмульсия белого цвета, состоящая из очень мелких капель рыбьего жира.

В организме человека эмульгирующее действие на триглицериды оказывают соли желчных кислот, которые резко уменьшают поверхностное натяжение на поверхности раздела жир/вода. Это облегчает воздействие на жиры липазы панкреатического сока, которая действует только на те триглицериды, которые находятся в форме эмульсии [Т.Т.Березов, Б.Ф.Коровкин. Биологическая химия. - М.: Медицина, 1998. - с. 188]. Эмульгирование триглицеридов на карбонате кальция, полученном заявляемым способом, приводит к расщеплению и всасыванию их уже в желудке, что повышает биодоступность триглицеридов и жирорастворимых веществ, в том числе витаминов А, Е, D, F и К.

Кроме того, увеличение биодоступности рыбьего жира достигают также вследствие того, что на карбонате кальция, полученном заявляемым способом, происходит гидролиз рыбьего жира, т.е. разложение жира с выделением свободных жирных кислот, в результате продукты гидролиза могут всасываться в желудке и 12-перстной кишке. При этом перекисное число значительно не увеличивается, а это означает, что нежелательного окисления жиров практически не происходит. Обычно гидролиз жиров в организме происходит под действием липазы панкреатического сока, и всасывание продуктов гидролиза идет только в тонком кишечнике [там же, с. 363].

Глубину гидролиза рыбьего жира, смешанного с карбонатом кальция, полученным заявляемым способом, определяют по известной методике [Определение глубины гидролиза жира / Лабораторный практикум по технологии переработки жиров. - М.: ВО Агропромиздат, 1991. - С.98], а перекисное число - по ГОСТу [ГОСТ Р 51487-99. Масла растительные и животные. Метод определения перекисного числа]. Результаты измерений для образцов карбоната кальция, полученных при различных молярных соотношениях исходных компонентов, приведены в табл.1.

Как видно из табл.1, величина глубины гидролиза триглицеридов на карбонате кальция, полученном по заявляемому способу, в 2-3 раза больше по сравнению с прототипом. При этом значения перекисного числа минимальны.

Результаты измерений глубины гидролиза и перекисного числа для образца 5 при использовании в качестве триглицеридов льняного масла, витамина Е и чесночного масла представлены в табл.2.

Таким образом, предложенное изобретение обеспечивает повышение биодоступности триглицеридов за счет эмульгирующего действия на них полученного заявляемым способом карбоната кальция, а также за счет увеличения в 2-3 раза глубины гидролиза триглицеридов на карбонате кальция при малых значениях их перекисного числа.

Способ получения карбоната кальция, включающий осаждение карбоната кальция реакцией водных растворов солей кальция с водными растворами карбонатов в присутствии поверхностно-активного вещества при температуре не ниже 85°С и отделение карбоната кальция от раствора фильтрованием, отличающийся тем, что в водные растворы карбонатов добавляют растворимые фосфаты в молярном соотношении фосфатов к карбонатам 1:100-1:20, используют неионогенное поверхностно-активное вещество, а в водные растворы солей кальция добавляют жидкое стекло в молярном соотношении жидкого стекла к солям кальция 1:1000-1:100, причем в качестве водных растворов карбонатов используют растворы карбоната калия или карбоната натрия, в качестве растворимых фосфатов используют гидрофосфат калия или дигидрофосфат калия, а в качестве водных растворов солей кальция используют растворы хлорида кальция или нитрата кальция.



 

Похожие патенты:

Изобретение может быть использовано в химической промышленности. Для получения карбоната кальция материал, содержащий оксид кальция, приводят в контакт в водной среде с диоксидом углерода в серии установок для карбонизации.

Изобретение может быть использовано в химической промышленности. В качестве добавки в водную суспензию, имеющую рН между 8,5 и 11, для повышения рН этой суспензии на по меньшей мере 0,3 единицы рН используют 2-амино-2-метил-1-пропанол (АМП).

Изобретение может быть использовано в химической промышленности. Способ комплексной переработки природных рассолов хлоридного кальциево-магниевого типа включает получение кристаллогидрата хлорида кальция с примесью хлорида магния и обогащение рассола по литию с дальнейшей переработкой литиевого концентрата на соединения лития.

Изобретение может быть использовано в производстве строительных и отделочных материалов, изделий из пластмасс, в частности из поливинилхлорида и полимерной глины.

Изобретение относится к цветной металлургии и может быть использовано для синтеза активных добавок и для глубокой очистки алюминатных растворов глиноземного производства от органических примесей и кремнезема.

Настоящее изобретение относится к технической области получения обработанных продуктов минеральных наполнителей, содержащих карбонат кальция, применению их в материалах пластиков, в материалах пленки, а также для ароматизирующих изделий.

Изобретение относится к получению разбавленного раствора каустической соды при помощи ионообменной технологии. Способ получения разбавленного раствора каустической соды из диоксида углерода, образующегося при сжигании твердых отходов, гидроксида кальция и хлорида натрия включает реакцию соленой воды или кислой соленой воды с диоксидом углерода и гидроксидом кальция в комплексной мембранной системе с получением карбоната натрия, затем полученный карбонат натрия подвергают реакции с гидроксидом кальция с получением гидроксида натрия, при этом для проведения реакции между карбонатом натрия и гидроксидом кальция используют энергию от сжигания твердых отходов.

Изобретение может быть использовано в химической промышленности. Способ получения ультрадисперсных порошков карбонатов включает карбонизацию водной суспензии исходного сырья в условиях повышения давления двуокиси углерода при одновременной гомогенизации суспензии.
Изобретение может быть использовано при получении продуктов для оптического стекловарения. Способ получения чистого карбоната кальция включает карбонизацию газообразным диоксидом углерода водной суспензии гидроксида кальция.
Изобретение относится к химико-фармацевтической промышленности и представляет собой носитель для жевательной резинки в виде частиц для контролируемого высвобождения активного ингредиента (ингредиентов), абсорбированного в указанном носителе и/или адсорбированного на нем, характеризующийся тем, что указанный носитель содержит 0,1-50 мкм частицы карбоната кальция, предварительно обработанного кислотой, выбранной из группы, состоящей из H2SO4, HSO4-, Н3РО4, щавелевой кислоты и их смесей, и газообразным СО2, при этом удельная площадь поверхности БЭТ частиц карбоната кальция повышена до уровня более 15 м2/г согласно стандартному методу измерения удельной площади поверхности БЭТ.
Изобретение относится к области инкапсуляции, в частности способу получения микрокапсул карбоната кальция и карбоната магния в оболочке из альгината натрия. Согласно способу по изобретению карбонат кальция или карбонат магния растворяют в изопропаноле, добавляют полученный раствор к раствору альгината натрия в изопропаноле в присутствии Е472с при перемешивании со скоростью 1000 об/с.
Изобретение относится к фармацевтической промышленности и представляет собой отбеливатель кровоподтеков в виде водного раствора для внутрикожной или подкожной инъекции, содержащий гидрокарбонат натрия, перекись водорода, динатриевую соль этилендиаминтетрауксусной кислоты и воду для инъекции, причем компоненты в растворе находятся в определенном соотношении в мас.%.
Изобретение относится к медицине, в частности к фармации, фармакологии, реанимации, анестезиологии, скорой медицинской помощи и трансфузиологии, и может быть применено для лечения пациентов при геморрагическом шоке.

Изобретение относится к концентрированному кислотному компоненту для получения гемодиализирующего раствора. Кислотный компонент включает из расчета для получения 1 литра раствора в очищенной для гемодиализа воде следующие компоненты: 204,7-215,0 г натрия хлорида NaCl, 6,2-9,0 г кальция хлорида CaCl2*2Н2O, 3,56-7,12 г магния хлорида MgCl2*6H2O, 5,22-10,44 г калия хлорида KCl, 0,021-6,28 г уксусной кислоты и 0,02-6,2 г янтарной кислоты.
Изобретение относится к области медицины, а именно к фармации, и касается разработки медицинских стоматологических карандашей, содержащих кальция глюконат, и может быть использовано в комплексном лечении заболеваний полости рта, связанных с недостатком кальция в организме.
Изобретение относится к области фармацевтики и представляет собой способ лечения пародонтита путем проведения инстилляций в пародонтальные карманы и аппликаций на десну геля «Холисал» 2-3 раза в день, в течение 20 дней, отличающийся тем, что дополнительно назначают препарат «Кальций-вит Д3С» по 1 капсуле 2 раза в день в течение месяца, с повторением курса лечения через 6 месяцев.

Группа изобретений относится к фармацевтической композиции для адсорбирования фосфата в организме и/или из биологических жидкостей при внутреннем или наружном применении и к биологически активной пищевой добавке.
Изобретение относится к концентрированному кислотному компоненту для бикарбонатного гемодиализа. Кислотный компонент включает натрий (Na+) в количестве 2450,0-4550,0 мэкв/л, хлор (Cl-)в количестве 2453,5-4553,5 мэкв/л, водород H+ (соляная кислота), сукцинат и цитрат, каждый в количестве 3,5-98,0 мэкв/л.
Изобретение относится к фармацевтической промышленности и представляет собой фармацевтическую композицию для перорального применения для снижения уровня глюкозы в крови, содержащую инсулин, водорастворимую органическую кислоту, водорастворимый инертный наполнитель и вспомогательное вещество, отличающуюся тем, что в качестве вспомогательного вещества содержит карбонат или бикарбонат натрия, а в качестве водорастворимой органической кислоты - лимонную кислоту или винную кислоту, или аскорбиновую кислоту, или молочную кислоту, причем количество карбоната или бикарбоната натрия должно быть в 2-6 раз меньше количества указанной органической кислоты, а компоненты в композиции находятся в определенном соотношении в мас.%.

Изобретение относится к применению смешанных соединений металлов для получения лекарственного средства, предназначенного для нейтрализации желудочной кислоты или буферного действия на нее, а также для лечения состояния или заболевания, связанного с высокими уровнями кислоты в желудке.

Настоящее изобретение относится к зерновому продукту для детей младшего возраста. Зерновой продукт включает гидролизованную цельнозерновую композицию, альфа-амилазу или ее фрагмент, влагосодержание менее 5 масс.%, обогащение витаминами и минералами.
Наверх