Способ получения нанокапсул биопага-д

Изобретение относится к области нанотехнологий и ветеринарной медицине, а именно представляет собой способ инкапсуляции. Отличительной особенностью предлагаемого способа является использование биопага-Д и оболочки микрокапсул натрий карбоксиметилцеллюлозы, а также использование осадителя - 1,2-дихлорэтана при получении нанокапсул физико-химическим методом осаждения нерастворителем. При реализации изобретения обеспечивается упрощение и ускорение процесса получения микрокапсул и увеличение выхода по массе. 3 пр.

 

Изобретение относится к области нанотехнологий и ветеринарной медицине, в частности к способу получения нанокапсул биопага-Д натрий карбоксиметилцеллюлозы.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением в инертной атмосфере при температуре от -15 до -50°C и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы, что может приводить к разрушению части микрокапсул и в итоге к уменьшению выхода конечного продукта.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.

В пат. 2139046, МПК A61K 9/50, A61K 49/00, A61K 51/00, Российская Федерация, опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно, выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. После вымораживания смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащий твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас.% неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя, получение микрокапсул химическим методом полимеризации, технологическая сложность.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат. 20110223314 , МПК B05D 7/00 20060101 B05D 007/00, B05C 3/02 20060101 B05C 003/02; B05C 11/00 20060101 B05C 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138 US , МПК C11D 3/37; B01J 13/08; C11D 17/00 опубликован 01.12.2011 описан способ получения твердых микрокапсул, растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/127030 US , МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00 опубликован 13.10.2011 предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.

Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от ProCepT, Бельгия)).

В пат. WO/2011/104526 GB , МПК B01J 13/00; B01J 13/14; C09B 67/00; C09D 11/02 опубликован 01.09.2011 предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.

Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.

В пат. WO/2011/056935 US , МПК C11D 17/00; A61K 8/11; B01J 3/02; C11D 3/50 опубликован 12.05.2011 описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируется агент, выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

Наиболее близким методом является способ, предложенный в пат. 2134967 , МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация, (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения микрокапсул биопага-Д в натрий карбоксиметилцеллюлозе, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул биопага-Д, отличающимся тем, что в качестве оболочки микрокапсул используется натрий карбоксиметилцеллюлоза при получении нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - 1,2-дихлорэтанола, процесс получения осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул натрий карбоксиметилцеллюлозы при их получении физико-химическим методом осаждения нерастворителем с применением 1,2-дихлорэтана в качестве осадителя.

Результатом предлагаемого метода являются получение нанокапсул ветеринарных препаратов на примере биопага-Д в натрий карбоксиметилцеллюлозе при 25°C в течение 15 минут. Выход нанокапсул составляет более 90%.

ПРИМЕР 1 Получение нанокапсул биопага-Д, соотношение ядро : оболочка 3:1

К 1 г натрий карбоксиметилцеллюлозы в изопропаноле медленно добавляют 3 г биопага-Д и 0,05 г препарата E472c в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл 1,2-дихлорэтана. Полученную суспензию нанокапсул отфильтровывают, промывают 1,2-дихлорэтаном и сушат.

Получено 4 г белого порошка.

ПРИМЕР 2 Получение нанокапсул биопага-Д, соотношение ядро : оболочка 1:1

К 1 г натрий карбоксиметилцеллюлозы в изопропаноле медленно добавляют 1 г биопага-Д и 0,05 г препарата E472c в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл 1,2-дихлорэтана. Полученную суспензию нанокапсул отфильтровывают, промывают 1,2-дихлорэтаном и сушат.

Получено 2 г белого порошка.

ПРИМЕР 3 Получение нанокапсул биопага-Д, соотношение ядро : оболочка 1:3

К 3 г натрий карбоксиметилцеллюлозы в изопропаноле медленно добавляют 1 г биопага-Д и 0,05 г препарата E472c в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл 1,2-дихлорэтана. Полученную суспензию нанокапсул отфильтровывают, промывают 1,2-дихлорэтаном и сушат.

Получено 4 г белого порошка.

Получены нанокапсулы ветеринарного препарата на примере биопага-Д в натрий карбоксиметилцеллюлозе. Процесс прост в исполнении и длится в течение 15 минут, не требует специального оборудования.

Предложенная методика пригодна для ветеринарной промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул биопага-Д в натрий карбоксиметилцеллюлозе.

Способ получения нанокапсул биопага-Д, характеризующийся тем, что в качестве оболочки используется натрий карбоксиметилцеллюлоза, которую осаждают из изопропанола в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества путем добавления 1,2-дихлорэтана в качестве осадителя, и при этом сушка суспензии полученных нанокапсул происходит при 25˚С.



 

Похожие патенты:
Изобретение относится к химико-фармацевтической промышленности и представляет собой cпособ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядра нанокапсул используется фенбендазол, в качестве оболочки - пектин, который осаждают из суспензии в бензоле путем добавления в качестве нерастворителя четыреххлористого углерода при 25°С.
Изобретение относится к области нанотехнологии, а именно представляет собой способ получения нанокапсул. Отличительной особенностью предлагаемого способа является использование 2,4-дихлорфеноксиуксусной кислоты и оболочки нанокапсул каррагинана, а также использование осадителя - ацетонитрила при получении нанокапсул физико-химическим методом осаждения нерастворителем.

Изобретение относится пьезоэлектрическим датчикам, предназначенным для дистанционного контроля различных физических и химических величин. Технический результат, который дает осуществление изобретения, заключается в обеспечении максимальной чувствительность датчика к концентрации моноокиси углерода за счет использования в качестве импеданса, зависящего от концентрации моноокиси углерода, наностержней оксида цинка, сопротивление которых близко к сопротивлению излучения отражательного ВШП.
Адъювант // 2550263
Изобретение относится к биотехнологии и иммунологии, а именно к применению наногранул фторуглеродного материала в качестве адъюванта для вакцин. Предложенное изобретение может быть использовано в области медицины и ветеринарии для конструирования и производства высокоэффективных вакцин.

Изобретения относятся к нанотехнологии и могут быть использованы при изготовлении катализаторов и сорбентов. Графеновая пемза состоит из графенов, расположенных параллельно на расстояниях больше 0,335 нм, и аморфного углерода в качестве связующего по их краям, при соотношении графена и связующего от 1:0,1 до 1:1 по массе.
Изобретение относится к медицине, а именно к хирургии, и может быть использовано при лечении пациентов с острым анаэробным парапроктитом. В период предоперационной подготовки пациента выполняют катетеризацию мочевого пузыря и дренирование прямой кишки.
Изобретение относится к контролю содержания веществ в промышленных сточных водах методом жидкостной хроматографии. Для определения концентрации пентаэритрита в водных растворах используют раствор с содержанием пентаэритрита от 1 до 100 мг/дм3.

Изобретение относится к измерительной технике, представляет собой спектральный магнитоэллипсометр и предназначено для контроля in situ производства в условиях сверхвысокого вакуума наноразмерных магнитных структур.

Использование: для преобразования солнечной энергии в электричество. Сущность изобретения заключается в том, что фотоэлектрический преобразователь содержит воронкообразные сквозные отверстия с просветляющим покрытием и толстопленочное покрытие (с обратной стороны), содержащее сферические микрочастицы, способные отражать сквозные солнечные лучи на грани сквозных отверстий.

Изобретение относится к противоопухолевому лекарственному средству пролонгированного действия на основе ингибитора синтеза эстрогенов - анастрозола. Лекарственное средство содержит анастрозол, сополимер молочной и гликолевой, поливиниловый спирт и D-маннитол.
Изобретение относится к способу получения микрокапсул розмарина. Указанный способ характеризуется тем, что смесь розмарина и диметилсульфоксида диспергируют в суспензию каррагинана в этаноле в присутствии препарата Е472с, затем приливают толуол и воду, полученную суспензию микрокапсул отфильтровывают и сушат, при этом соотношении ядро/оболочка в микрокапсулах составляет 1:1 или 1:3.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения микрокапсул препарата, обладающих супрамолекулярными свойствами, методом осаждения нерастворителем, отличающийся тем, что в качестве препарата используется сульфат железа или сульфат цинка, предварительно растворенный в воде, в качестве оболочки - альгинат натрия, который осаждают из раствора в бутаноле путем добавления в качестве нерастворителя этанола с последующей сушкой при комнатной температуре.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения микрокапсул, обладающих супрамолекулярными свойствами, методом осаждения нерастворителем, отличающийся тем, что в качестве ядра микрокапсул используется тривитамин, предварительно растворенный в диметилсульфоксиде, в качестве оболочки - ксантановая камедь, которую осаждают из раствора в бутаноле путем добавления в качестве нерастворителя толуола и воды с последующей сушкой при комнатной температуре.
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядра микрокапсул используется фенбендазол, в качестве оболочки микрокапсул используется натрийкарбоксиметилцеллюлоза, при этом 100 мг фенбендазола растворяют в 1 мл диметилсульфоксида, или диоксана, или диметилформамида, полученную смесь диспергируют в растворе натрийкарбоксиметилцеллюлозы в изопропаноле, содержащем 300 мг указанного полимера, в присутствии 0,01 г поверхностно-активной добавки Ε472с при перемешивании 1000 об/сек, далее приливают 2 мл бутанола и 1 мл дистиллированной воды, полученную суспензию микрокапсул отфильтровывают и сушат при 25 °С.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения микрокапсул лекарственного препарата, обладающих супрамолекулярными свойствами, методом осаждения нерастворителем, отличающийся тем, что в качестве лекарственного препарата используется порошок ягод унаби, предварительно растворенный в бутаноле, в качестве оболочки - каррагинан, который осаждают из раствора в ацетоне путем добавления в качестве нерастворителя этанола и воды, с последующей сушкой при комнатной температуре.

Изобретение относится к области химико-фармацевтической промышленности и представляет собой cпособ получения микрокапсул, обладающих супрамолекулярными свойствами, методом осаждения нерастворителем, отличающийся тем, что в качестве ядра микрокапсул используется ароматизатор «яблоко», предварительно растворенный в бутаноле, в качестве оболочки - каррагинан, который осаждают из раствора в изопропаноле путем добавления в качестве нерастворителя бутанола и воды, с последующей сушкой при комнатной температуре.
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядра микрокапсул используется фенбендазол, предварительно растворенный в диоксане или диметилсульфоксиде, в качестве оболочки - натрийкарбоксиметилцеллюлоза, которую осаждают из раствора в карбиноле путем добавления в качестве нерастворителя изопропанола и воды при 25°С.
Изобретение относится к способу получения микрокапсул метрибузина. Указанный способ характеризуется тем, что к водному раствору поливинилового спирта прибавляют метрибузин и препарат Е472с, полученную смесь перемешивают до растворения компонентов реакционной смеси и затем приливают метилкарбинол в качестве первого осадителя и изопропанол в качестве второго осадителя, полученную суспензию микрокапсул отфильтровывают, промывают изопропанолом и сушат.
Изобретение относится к способу получения микрокапсул масла ши. Указанный способ характеризуется тем, что масло ши растворяют в диметилсульфоксиде, полученную смесь диспергируют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с, приливают изопропанол и воду, полученную суспензию микрокапсул отфильтровывают и сушат, при этом соотношение ядро/полимер в микрокапсулах составляет 1:1 или 1:3.

Изобретение относится к способу получения микрокапсул лекарственных препаратов группы пенициллинов. Указанный способ характеризуется тем, что к альгинату натрия в бутаноле добавляют препарат Е472с, к полученной суспензии прибавляют лекарственный препарат группы пенициллинов, растворенный в этаноле, после образования твердой фазы приливают метанол и дистиллированную воду, полученную суспензию микрокапсул отфильтровывают, промывают ацетоном и сушат в эксикаторе.
Изобретение относится к области фармацевтики, а именно к способам получения микрокапсул. Способ получения частиц инкапсулированного антисептика-стимулятора Дорогова (АСД) 2 фракция, где в качестве оболочки микрокапсул используется каппа-каррагинан, характеризуется тем, что 100 мг АСД 2 фракция диспергируют в растворе каппа-каррагинана в бензоле, содержащем 100-300 мг каппа-карагинана в присутствии 0,01 г препарата Е 472с при перемешивании 1300 об/сек, далее приливают 5 мл гексана и 1 мл воды, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения микрокапсул и увеличение выхода по массе. 2 пр.
Наверх