Способ определения теплопроводности

Изобретение относится к способам измерений теплопроводности веществ, материалов и изделий и может быть использовано в теплофизическом приборостроении. Способ осуществляют путем теплового воздействие на образец с последующим охлаждением, измерения разности температур на границах исследуемого участка образца и количества тепла, поступившего в него за время интегрирования разности. Новизна способа заключается в том, что дополнительно осуществляют второе тепловое воздействие, измеряют перепады температур на данных границах относительно температуры окружающей среды, время начала интегрирования задают на стадии первого охлаждения, а его окончание определяют при втором охлаждении, в момент равенства взвешенных сумм перепадов температур в указанные моменты времени: Δt(0, τ2)+pΔt(L, τ2)=Δt(0, τ1)+pΔt(L, τ1), где τ1, τ2 - время начала и окончания интегрирования, p - весовой коэффициент. Теплопроводность определяют по формуле. Технический результат - увеличение точности определения теплопроводности. 2 ил.

 

Настоящее изобретение относится к способам измерений теплопроводности веществ, материалов и изделий и может быть использовано в теплофизическом приборостроении.

Из существующего уровня техники известен способ определения теплопроводности, который включает многократное импульсное тепловое воздействие от точечного источника на исследуемый материал, осуществляемое в определенные моменты времени, интегрирование во времени температуры в двух заданных точках его поверхности, фиксирование частоты следования импульсов и определение коэффициента теплопроводности по формуле (патент RU №2149387, МКИ G01N 25/18).

Недостатками данного технического решения являются низкая точность измерения, обусловленная следующими причинами: расчетная формула способа получена для точечного импульсного источника тепла при условии теплоизоляции поверхности образца, что приводит к динамической погрешности измерения температур, погрешности из-за отличия реальных размеров нагревателя от точечного и наличия тепловых потерь с поверхности образца в реальных условиях измерения. Кроме того, формула сложна при технической реализации.

Наиболее близким к заявленному техническому решению является способ определения теплопроводности, который включает тепловое воздействие на образец с последующим охлаждением до начальной температуры, измерение разности температур и удельного количества тепла, поступившего в образец, измерение разности температур от момента подачи теплового импульса до момента достижения начального значения температуры образца, а теплопроводность определяют по формуле

где L - толщина образца; Q - удельное количество тепла, поступившего в образец; Δt(τ) - разность температур; Т - промежуток времени от момента подачи теплового импульса до момента достижения начального значения температуры образца (см. Азима Ю.И. Метод измерения теплопроводности на основе интегральной формы уравнения Фурье.// Заводская лаборатория. Диагностика материалов. - 2000. - Т. 66, №6. - С. 27-32).

Недостатком данного технического решения является низкая точность измерения теплопроводности вследствие того, что в нем не учитывается теплообмен поверхности образца с окружающей средой. Кроме того, в данном способе предполагается начинать и заканчивать измерение при равномерном распределении температуры, что фиксируется по нулевой разности температур. В этом случае увеличивается относительная погрешность измерения температуры и увеличивается время измерения. Окончание измерения не при нулевой разности приводит к дополнительной погрешности из-за влияния объемной теплоемкости образца.

Задачей, на решение которой направлено заявляемое изобретение, является повышение точности определения теплопроводности за счет учета тепловых потерь с поверхности образца, уменьшения влияния его объемной теплоемкости и уменьшения погрешности измерения температуры.

Данная задача решается за счет того, что в заявленном способе определения теплопроводности, включающем тепловое воздействие на образец с последующим охлаждением, измерение разности температур на границах исследуемого участка образца и удельного количества тепла, поступившего в него за время интегрирования разности, дополнительно осуществляют второе тепловое воздействие, измеряют перепады температур на данных границах относительно температуры окружающей среды, время начала интегрирования задают на стадии первого охлаждения, а его окончание определяют при втором охлаждении, в момент равенства взвешенных сумм перепадов температур в указанные моменты времени: Δt(0, τ2)+pΔt(L, τ2)=Δt(0, τ1)+pΔt(L, τ1), где τ1, τ2 - время начала и окончания интегрирования, p - весовой коэффициент, и теплопроводность определяют по формуле

где k0, k1, k2 - коэффициенты, определяемые в процессе градуировки;

- удельное количество тепла, поступившего в образец за интервал [τ1, τ2]; Δt(0, τ), Δt(L, τ) - перепад температур на границах исследуемого участка [0, L] образца относительно температуры окружающей среды

Дополнительное измерение перепада температур на границах исследуемого участка [0, L] образца относительно температуры окружающей среды, позволяет решить поставленную задачу за счет учета в расчетной формуле тепловых потерь с поверхности образца:

Осуществление второго теплового воздействия позволяет обеспечить выполнение условия, заложенного теорией способа измерения (см. условия (2)). При этом окончание интегрирования фиксируется не по нулевой разности температур, а по условию равенства взвешенных сумм температур, что уменьшает погрешность измерения температуры и ее интегрального значения. Фиксирование начала и окончания интегрирования на стадии охлаждения обеспечивает уменьшение динамической погрешности измерения температуры. Кроме того, по сравнению с прототипом, уменьшается время измерения.

Для обоснования расчетной формулы определения теплопроводности необходимо рассмотреть основные положения теории, на которой базируется заявленный способ. В нем используется математическое описание теплопередачи в объекте исследования в виде интегральной формы уравнения теплопроводности. Для полуограниченного тела при наличии нагревателя конечных размеров, интегральную форму в приближенном виде, предназначенном для способа определения теплопроводности, можно записать в следующем виде:

где Kis, , - коэффициенты; p0, p1 - весовые коэффициенты при температурах, соответственно: t(0, τ) и t(L, τ); , , - количество тепла, поступившего и ушедшего за интервал времени [τ1, τ2] с единицы поверхности образца, вследствие кондуктивного и конвективного теплообмена с элементами измерительной ячейки (нагреватель, опора на фиг. 1, воздушная или иная среда).

Для определения теплопроводности необходимо исключить из уравнения (1) аккумуляционную составляющую путем обеспечения в моменты времени τ1 и τ2 равенства взвешенных сумм температур или перепадов температур относительно окружающей среды:

где Σtp(τ)=t(0, τ)+pt(L, τ), p=p1/p0.

Тепловые потери с поверхности образца (второе и третье слагаемое левой части (1)) можно выразить через измеряемые перепады температур Δt(0, τ) и Δt(L, τ) относительно температуры окружающей среды, тогда уравнение для определения теплопроводности, с учетом (2), примет вид, соответствующий расчетной формуле в заявленном способе. Аналогичная расчетная формула получается для образцов в виде цилиндра и параллелепипеда.

Если принять в уравнении (2) τ1=0 и τ2=Τ (Τ - время, при котором температурное поле образца возвращается к начальному равномерному распределению, что фиксируется по нулевой разности температур) и отсутствуют тепловые потери с поверхности образца, то получим расчетную формулу прототипа.

Сущность изобретения поясняется чертежами.

На фиг. 1 - схема измерительной ячейки для измерения теплопроводности низкотеплопроводных материалов на образцах в виде полуограниченного тела.

На фиг. 2 - графики, поясняющие способ определения теплопроводности.

Пример конкретного использования заявленного способа показан на измерительной ячейке, представленной на фиг. 1, для образцов в виде полуограниченного тела из низкотеплопроводного материала. Ее основными элементами являются образец 1, теплоприемник 2, выполненный из теплопроводного материала; тепломер 3, электрический нагреватель 4, закрепленный на торцевой поверхности тепломера, опора 5 для термопары из теплоизоляционного материала; термопары 6 и 7, одна из которых выполнена в виде пятачковой и закреплена на опоре 5, а вторая расположена между тепломером 3 и нагревателем 4. Свободные спаи термопар находятся на теплоприемнике 2, температура которого за время измерения практически не изменяется и равна температуре окружающей среды. В начальный момент времени τ=0 подают импульс тепла, обеспечивающий нагрев образца до температуры, близкой к максимальной, со скоростью (2÷4) К/с, обеспечивающей минимальное время измерения при достаточной точности измерения температуры. При этом измеряют разность и перепад температур относительно окружающей среды с помощью вышеописанных термопар. После этого образец охлаждают до установления взвешенной суммы перепада температур Σtр1) заданной величины Ω или в течение заданного промежутка времени, по окончании которого определяют взвешенную сумму перепада температур Σtр1), принимающую некоторое текущее значение Ω, т.е. Σtр1)=Ω. Затем подают второй импульс тепла и одновременно начинают измерять удельное количество тепла и интегрирование разности температур Δt(τ). На стадии второго остывания образца интегрирование заканчивается в момент времени τ2, когда взвешенная сумма перепадов температур Σtр2) не достигнет величины Ω, равной ее значению в момент времени τ1, т.е. Σtр2)=Σtр1)=Ω. Значение теплопроводности определяется по расчетной формуле заявленного способа. Коэффициенты k0, k1, k2, входящие в расчетную формулу способа, имеют аналитическое выражение, но в условиях постоянного монтажа термопар в измерительной ячейке, для увеличения точности, рационально их определять в процессе градуировки измерительного прибора по эталонным образцам. Весовой коэффициент р может быть вычислен приближенно аналитически и уточнен в процессе градуировки.

Данный способ прошел теоретические исследования методом имитационного моделирования на различных моделях: аналитической модели полуограниченного тела с источником тепла прямоугольной формы размером 6×15 мм2 при координатах точек измерения температуры х=0 и L=9 мм; дискретной модели измерительной ячейки, показанной на схеме фиг. 1. Уменьшение погрешности определения теплопроводности по сравнению с прототипом в диапазоне теплопроводности от 0,03 Вт/(м·К) до 0,5 Вт/(м·К) составило от 2 до 20 раз при изменении температуропроводности в пределах от 10-7 м2/с до 10-6 м2/с.

Способ определения теплопроводности, включающий тепловое воздействие на образец с последующим охлаждением, измерение разности температур на границах исследуемого участка образца и удельного количества тепла, поступившего в него за время интегрирования разности, отличающийся тем, что дополнительно осуществляют второе тепловое воздействие, измеряют перепады температур на данных границах относительно температуры окружающей среды, время начала интегрирования задают на стадии первого охлаждения, а его окончание определяют при втором охлаждении, в момент равенства взвешенных сумм перепадов температур в указанные моменты времени: Δt(0, τ2)+pΔt(L, τ2)=Δt(0, τ1)+pΔt(L, τ1), где τ1, τ2 - время начала и окончания интегрирования, p - весовой коэффициент, и теплопроводность определяют по формуле

где k0, k1, k2 - коэффициенты, определяемые в процессе градуировки;
- удельное количество тепла, поступившего в образец за интервал [τ1, τ2];
Δt(0, τ), Δt(L, τ) - перепад температур на границах исследуемого участка [0, L] образца относительно температуры окружающей среды.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности и касается определения тепловых свойств пород, слагающих разрез скважины и пласт в целом. Техническим результатом является повышение точности измерения среднеинтегрального значения теплопроводности горных пород по разрезу скважины и определение коэффициентов теплопередачи через НКТ и через обсадную колонну, а также длины циркуляционной системы скважины.

Изобретение относится к бесконтактным методам исследований теплофизических характеристик твердых тел и может быть использовано для исследований теплофизических характеристик изделий, используемых в авиакосмической, машиностроительной и энергетической промышленности.

Изобретение относится к теплофизике и может быть использовано для определения степени черноты поверхности композитных и тонкопленочных материалов. Способ основан на применении нагрева поверхности образца и регистрации радиационной температуры от образца с покрытием известного значения степени черноты и от образца без покрытия.

Изобретение относится к способам определение теплопроводности и температуропроводности материалов. В соответствии с предлагаемым способом регистрируют электрические сигналы, соответствующие начальным температурам поверхностей исследуемого образца материала по меньшей мере двух эталонных образцов с известными теплопроводностью и температуропроводностью.

Изобретение относится к теплофизике и может быть использовано для определения степени черноты поверхности композитных и тонкопленочных материалов. Устройство применимо при нагреве поверхности образца и регистрации радиационной температуры от образцов с покрытием известного значения степени черноты и без покрытия.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного материала.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала.

Изобретение относится к теплотехнике и может быть использовано для измерения рабочих характеристик теплообменников. Заявлено устройство для измерения рабочих характеристик теплообменников, включающее теплоизолированный корпус парогенератора с крышкой, изоляторы, электроды, теплообменник, соединенный трубопроводом с крышкой и нижней частью корпуса парогенератора, расширительную емкость, измерительно-вычислительный блок, соединенный с электродами.

Устройство относится к области измерительной техники и может быть использовано для теплового контроля материалов. Устройство содержит источник импульсного нагрева, четыре термопары, четыре усилителя, дифференциатор, семь интеграторов, пять компараторов, шесть масштабных усилителей, датчик длительности импульса нагрева, четыре блока деления, три блока умножения, экстрематор, переключатель, два делителя частоты, четыре блока памяти, шесть сумматоров, источник опорного напряжения, пять блоков вычитания, блок управления, шесть блоков памяти, переключатель, четыре блока деления и два квадратора.

Изобретение относится к области исследования теплофизических свойств материалов и может быть использовано в теплофизическом приборостроении. Способ осуществляют путем двух тепловых воздействий на двухслойную пластину с последующими охлаждениями, измерения разности температур и теплового потока. Образец устанавливают поверхностью покрытия на теплоприемник и нагреватель. Разность температур измеряют в точках на противоположной поверхности пластины, одна из которых находится на ближней к нагревателю границе. Дополнительно измеряют перепад температур между этой точкой и окружающей средой. Время начала интегрирования задают при первом охлаждении, а окончание определяют при втором охлаждении, в момент достижения того же перепада температур, что и в начале. Теплопроводность определяют по формуле. Технический результат - увеличение точности и упрощение определения теплопроводности. 3 ил.

Изобретение относится к стационарным способам определения теплопроводности твердого тела и может быть использовано в строительстве и теплоэнергетике для проведения в натурных условиях теплофизических исследований теплоизоляционных материалов, установленных на трубопроводах круглого сечения. Сущность способа заключается в нагреве твердого тела цилиндрической формы контактным способом с помощью трубопровода с движущимся внутри него теплоносителем. По известному массовому расходу и температуре теплоносителя определяют его скорость и режим течения. По известной скорости, режиму течения теплоносителя и предварительно заданной температуре внутренней поверхности трубопровода определяют коэффициент теплоотдачи между теплоносителем и внутренней поверхностью трубопровода. По известной температуре наружной поверхности твердого тела, измеренной контактным или бесконтактным измерителем температуры, и окружающей среды определяют коэффициент теплоотдачи между наружной поверхностью твердого тела и окружающей средой. По уравнению теплопередачи для двухслойной цилиндрической стенки при стационарном тепловом режиме определяют коэффициент теплопроводности твердого тела. Технический результат - повышение точности определения коэффициента теплопроводности твердого тела цилиндрической формы при стационарном тепловом режиме. 4 ил.

Изобретение относится к теплофизическим измерениям и может быть использовано в теплофизическом приборостроении. Способ заключается в нагревании одной из поверхностей образца или ее участка до максимальной температуры, которую поддерживают до момента времени, когда измеряемая разность температур на границах исследуемого участка уменьшится до заданного значения. Затем снижают мощность нагрева до наступления стадии остывания образца с измеряемой скоростью изменения температуры, не превышающей установленного значения. Измеряют удельное количество тепла, приращения температуры на границах за два последовательных интервала времени, первый из которых определяется моментами времени: подачи тепла и достижения установленной скорости изменения температуры. Теплопроводность и объемную теплоемкость определяют по формулам. Технический результат - увеличение точности определения теплофизических свойств и уменьшение времени измерения. 4 ил.

Изобретение относится к способам определения теплофизических характеристик твердых тел и позволяет измерять теплопроводность образцов твердых тел, являющихся малыми во всех трех измерениях. Систему, состоящую из исследуемого образца, закрепленного между двумя одинаковыми эталонными образцами, изготовленными из одного прозрачного материала известной теплопроводности, где все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами, помещают в интерферометр. При создании в системе стационарного одномерного теплового потока, направленного перпендикулярно плоскости контактов, интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы, а теплопроводность вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, теплопроводности эталонных образцов и высоты исследуемого образца. Технический результат - повышение точности определения теплопроводности образцов малого размера. 1 ил.

Изобретение относится к области изучения теплофизических свойств материалов и может быть использовано для определения теплопроводности материалов. Способы характеристики неоднородности и определения теплопроводности материалов предусматривают нагрев поверхности образцов неоднородных материалов в процессе движения относительно друг друга образцов, источника нагрева и блока регистрации температуры. Предварительно параметры измерений регулируют так, чтобы обеспечить наилучшее пространственное разрешение и требуемую погрешность измерений. Измеряют распределение начальной температуры на поверхности образцов до и после нагрева, и на основе изменения температуры вдоль линии движения блока регистрации температуры определяют неоднородность образцов. Теплопроводность однородных участков исследуемых образцов определяют расчетным путем, используя при этом зарегистрированные значения избыточных температур, соответствующих данным однородным участкам исследуемых образцов. Технический результат - повышение точности получаемых данных. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к области технической физики и предназначено для измерения теплопроводности строительных и теплоизоляционных и иных материалов. Устройство для измерения теплопроводности включает тепловой блок, состоящий из малого измерительного нагревателя, малого охранного нагревательного элемента, выполняющего охранную функцию в случае измерения образцов малых размеров или единичного образца крупноформатной конструкции или выполняющего функцию большого измерительного нагревателя в случае измерения образцов больших размеров, большого охранного нагревательного элемента и двух охранных пластин, холодильный блок, состоящий из основания и охранной пластины, установленной под основанием, и измерительную зону, расположенную между тепловым и холодильным блоками. Причем на основании и на каждой из охранных пластин теплового и холодильного блока закреплены трубы, составляющие змеевидный контур, по которым течет теплоноситель в случае теплового блока и хладоноситель в случае холодильного блока. При этом на каждой из двух торцевых сторон устройства дополнительно размещена боковая охранная зона в виде системы по меньшей мере двух труб с теплоносителем. При этом устройство выполнено с возможностью поворота, обеспечивающего поворот измеряемого образца, находящегося в нем. Технический результат - повышение точности проводимых измерений. 9 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициента теплопроводности жидких теплоизоляционных материалов. Сущность заявленного способа заключается в определении измерителем теплопроводности эквивалентного коэффициента теплопроводности плоского трехслойного образца квадратного сечения, состоящего из двух одинаковых теплопроводных эталонов известной толщины с известным коэффициентом теплопроводности материала и слоя жидкой тепловой изоляции известной толщины, расположенного между эталонами. По известным значениям коэффициентов теплопроводности плоского трехслойного образца и теплопроводных эталонов, толщинам отдельных слоев плоского трехслойного образца (эталонов и жидкой тепловой изоляции) вычисляют по специальной расчетной формуле коэффициент теплопроводности жидкой тепловой изоляции. Технический результат - повышение точности определения коэффициента теплопроводности жидкой тепловой изоляции в лабораторных условиях. 1 ил.

Изобретение относится к области теплофизики и может быть использовано для определения тепловой проводимости контактов между прозрачными образцами или между прозрачным и высокотеплопроводным образцами. Систему, состоящую из двух прозрачных образцов либо двух прозрачных и закрепленного между ними высокотеплопроводного образца, где все образцы выполнены в форме прямоугольных параллелепипедов с одинаковыми основаниями, которыми образцы приведены в контакт, помещают в интерферометр. Световой пучок интерферометра направляют перпендикулярно одной из боковых граней каждого прозрачного образца. При создании в системе стационарного одномерного теплового потока, направленного перпендикулярно плоскости контакта, интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через прозрачные образцы. Тепловую проводимость любого из контактов вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, известной теплопроводности и геометрических размеров образцов. Технический результат - повышение достоверности получаемых результатов. 1 ил.

Изобретение относится к области теплофизических измерений и может быть использовано для определения относительной теплопроводности материалов. Плоский исследуемый образец известной толщины помещают между двумя алмазными наковальнями с теплопроводностью, существенно превышающей теплопроводность образца, и подвергают высокому давлению, предварительно установив в верхнюю наковальню нагреватель. Затем изменяют величину внешнего воздействия давления. По изменению разности температур между верхней и нижней наковальнями рассчитывают относительное изменение теплопроводности образца при изменении давления. Мощность источника теплоты при этом постоянна. Технический результат - повышение точности получаемых данных. 2 ил.

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу осуществляют нагрев исследуемого объекта воздействием импульса СВЧ-излучения, измерение в заданный момент времени после воздействия импульса СВЧ-излучения избыточной температуры на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся на расстояниях Х1 и Х2 от плоскости электромагнитного воздействия. Определяют зависимость затухания мощности теплового воздействия от глубины исследуемого тела. Затем осуществляют прямолинейную аппроксимацию участка полученной кривой, ограниченного поверхностью исследуемого объекта и точкой, расстояние до которой берется равным значению, превышающим на порядок расстояние до наиболее удаленной от линии теплового воздействия точки контроля х2 избыточной температуры. Измеряют угол α между аппроксимирующей прямой и поверхностью исследуемого тела. Устанавливают рупорную антенну СВЧ-излучения под углом α к поверхности исследуемого тела и осуществляют импульсное тепловое воздействие. Имея информацию о мощности теплового воздействия на исследуемое изделие и измеренных избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений. Технический результат - повышение точности получаемых данных. 5 ил., 3 табл.
Наверх