Литейный сплав на основе железа

Изобретение относится к области металлургии, а именно к литейным сплавам на основе железа, применяемым для изготовления крупногабаритных изделий. Сплав содержит никель, кобальт, углерод, церий, иттрий, гафний и железо при следующем соотношении компонентов, мас.%: никель 19,0-39,0, кобальт 0,05-18,0, углерод 0,10-5,0, церий 0,01-0,50, иттрий + гафний 0,01-0,50, железо - остальное. Сплав обладает минимальным температурным коэффициентом линейного расширения (ТКЛР) в интервале температур от -60°C до 300°C и высокими литейными свойствами. 2 табл.

 

Изобретение относится к металлургии, а конкретно к литейным сплавам, применяемых для изготовления крупногабаритных изделий, получаемых методом литья и имеющих минимальное значение температурного коэффициента линейного расширения (ТКЛР), а также ТКЛР, согласованных с керамикой и имеющих высокое качество отливок.

Литейные сплавы на основе железа называют черными (разновидность чугунов и сталей) и они классифицируются в зависимости от их свойства, состава и назначения. В конце XIX века французким ученым Ч. Гийом при изучении железоникелевых сплавов был обнаружен сплав с необычными свойствами. Этот сплав, названный инваром, имеет аномально низкий температурный коэффициент линейного расширения α (ТКЛР). Классический инвар Fe -36% Ni имеет значение ТКЛР порядка 1,5×10-6 К-1 в интервале температур от -60°C до 100°C. Этот интервал температур, в котором сохраняются низкие и постоянные значения ТКЛР, получил название - интервал инварности. Сплав, в котором часть никеля заменена кобальтом, разработан в 30-х годах XX века и назван суперинваром. Все добавки каких-либо элементов (за исключением кобальта) повышают значение ТКЛР, т.е. ухудшают инварные свойства.

В настоящее время разработано большое количество инварных сплавов с небольшими добавками легирующих элементов, не вызывающих заметного влияния на ТКЛР, но с получением некоторых свойств, таких как повышение прочности (35НКТ, 35НКГ, 36НТ6), коррозионной стойкости (36НХ, 32НКД), на которые получены патенты в России и за рубежом.

Промышленно применяемые инварные (суперинварные) сплавы относятся к сплавам, получаемым путем обработки металлов давлением (ОМД). Однако изготовление деталей методом ОМД ограничено их габаритами. Потребность в крупногабаритных изделиях с низким ТКЛР возникла в связи с развитием новых отраслей техники, таких как ракетно-космическая, оптоэлектронная и авиационная. Изготовление деталей методом ОМД не представлялось возможным, поэтому крупногабаритные сложнопрофильные детали стали изготавливать методом литья.

Однако классические инвары имеют очень низкие литейные свойства, что приводит к получению отливок с большим количеством дефектов: пустоты, поры, раковины и т.д. Таким образом, основная задача создания литейных инварных сплавов - это получение высоких литейных свойств, позволяющих получить качественные крупногабаритные отливки с ТКЛР α≤3,5×10-6 К-1, a также создание сплавов, имеющих ТКЛР, согласованный с керамикой α≤6×10-6 К-1. Такие сплавы должны иметь широкий интервал инварности до температуры 350°C.

Известен высокопрочный инварный сплав, содержащий углерод, никель, титан, молибден, ниобий и железо, он дополнительно содержит алюминий при следующем соотношении компонентов, масс.%:

Углерод 0,001-0,1
Никель 34-50
Титан 0,5-3
Молибден 0,001-2,2
Ниобий 0,001-3
Алюминий 0,3-3
Железо Остальное

(см патент РФ №2023739, МПК5 C22C 28/12).

Недостатком известного сплава является сравнительно высокое значение температурного коэффициента линейного расширения (ТКЛР) и недостаточный коэффициент стабильности его свойств.

Наиболее близким по технической сущности является литейный сплав на основе железа, содержащий никель, кобальт, ниобий, редкоземельные элементы и железо, он дополнительно содержит хром при следующем соотношении компонентов, масс.%:

Никель - 31,5-33,0;

Кобальт - 6,0-8,0;

Хром - 0,1-0,5;

Редкоземельные элементы (церий, лантан, празеодим, неодим) в сумме - 0,05-0,25;

Железо - остальное.

(См. патент РФ №2183228, МПК7 C22C 28/52.)

К недостаткам известного сплава следует отнести то, что он не обладает способностью получать качественные крупногабаритные отливки с ТКЛР α≤3,5×10-6 К1, имеющие ТКЛР, согласованные с керамикой α~6×10-6 К-1.

Технической задачей заявляемого сплава является получение литейных сплавов, способных получать качественные крупногабаритные отливки с ТКЛР α≤3,5×10-6 К-1 в интервале температур [-60°С; 300°С], а также создание сплавов, имеющих ТКЛР, согласованные с керамикой α~6×10-6K-l.

Поставленный результат достигается тем, что в литейном сплаве на основе железа, содержащем никель, кобальт, углерод и железо, он дополнительно содержит церий, иттрий и гафний при следующем соотношении компонентов, масс.%:

Никель - 19,0-39,0;

Кобальт - 0,05-18,0;

Углерод - 0,10-5,0;

Церий - 0,01-0,50;

Иттрий + гафний - 0,01-0,50;

Железо - остальное.

Наличие в сплаве никеля в пределах 19,0-39,0 масс.% определяет инварность сплава, а при дополнительном содержании кобальта 0,05-18,0 масс.% обеспечивает снижение ТКЛР. Углерод не участвует в процессе упрочнения сплава, но значительно улучшает его литейные свойства и позволяет получать качественные плотные отливки, однако, в то же время он увеличивает ТКЛР. Проведенные исследования показали, что углерод в инварных сплавах может находиться либо в твердом растворе, либо в виде графита, либо в цементите (Fe3C). Наиболее сильно повышает ТКЛР углерод, находящийся в твердом растворе. В связи с этим термическая обработка углеродосодержащих инварных сплавов включает операцию отжига при температуре 1000-1200°С. В процессе отжига происходит выделение углерода и перевод его большей части в графит. Этот процесс сопровождается снижением ТКЛР до требуемой величины.

Введение в сплав церия обусловлено тем, что он образует в сплаве сульфид церия взамен сульфида железа, который совместно с железом дает легкоплавкую эвтектику и увеличивает опасность горячих трещин, в то время как сульфид церия имеет более высокую температуру, чем температура плавления сплава.

Наличие в сплаве суммарно элементов иттрий + гафний - способствует измельчению зерна и в совокупности с другими элементами улучшает литейные свойства сплава, имеющего ТКЛР, согласованный с керамикой. Однако следует иметь ввиду, что только совокупность свойств отдельных компонентов позволяет решить поставленную техническую задачу.

Сравнительные значения ТКЛР сплавов в заданном интервале температур приведены в таблице 1.

Таблица 1
Сплав по ГОСТ 14080-78 Значение ТКЛР, α×10-6, 1/C Заявляемый сплав Значение ТКЛР, 1/°С
32НКД α20÷100°С≤1,0 α20÷150°С≤1,0
30НКД α20÷300°C≤4,0 α20÷300°С≤3,5

Из таблицы 1 следует, что заявляемый сплав позволяет иметь значения ТКЛР, находящиеся на одном уровне с деформируемыми сплавами по ГОСТ 10994-74, что до настоящего времени не удавалось получить на литых сплавах. Следует отметить, что в заявляемом сплаве интервал инварности увеличен на 50°С, что значительно улучшает его свойства. Технологические (литейные) свойства заявляемого сплава приведены в таблице 2.

Таблица 2
Линейная усадка, % 1,6÷2,2
Жидкотекучесть Кж.т=1,0
Показатель трещиноустойчивости Кт.у=1,0

Литейный сплав на основе железа, содержащий никель, кобальт, углерод и железо, отличающийся тем, что он дополнительно содержит церий, иттрий и гафний, при следующем соотношении компонентов, мас.%:

никель 19,0-39,0
кобальт 0,05-18,0
углерод 0,10-5,0
церий 0,01-0,50
иттрий и гафний (в сумме) 0,01-0,50
железо остальное



 

Похожие патенты:
Изобретение относится к области черной металлургии, а именно к составам износостойких сплавов на основе железа, используемых в машиностроении. Сплав содержит, мас.%: углерод 2,5-3,5; марганец 15,0-20,0; кобальт 15,0-20,0; компонент из группы: церий, самарий, неодим, празеодим 0,1-0,5; железо - остальное.

Изобретение относится к сплавам на основе железа, которые могут быть использованы в качестве материала для режущих и обрабатывающих инструментов. .
Изобретение относится к черной металлургии, а именно к составам группы сталей, применяемых для изготовления пары трения железнодорожное колесо - железнодорожный рельс при движении колес до 500 км/час.

Изобретение относится к машиностроению, а именно к изготовлениию высокопрочных тонкостенных цилиндрических оболочек с толщиной стенки менее 0,2 мм. .
Сталь // 2323271
Изобретение относится к черной металлургии и может быть использовано в железнодорожном машиностроении, автомобилестроение, станкостроительной промышленности. .
Сталь // 2312921
Изобретение относится к области черной металлургии, в частности, к составам сталей, которые могут быть использованы в машиностроении, станкостроении и других отраслях промышленности.
Изобретение относится к области порошковой металлургии, в частности, к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа.
Изобретение относится к порошковой металлургии, в частности к магнитным материалам для постоянных магнитов. .
Сталь // 2492272
Изобретение относится к области металлургии, а именно к составам сталей, используемым для изготовления изделий методом холодной объемной штамповки. .

Изобретение относится к области металлургии, в частности к аустенитному железо-никелево-хромово-медному сплаву, а также его применению в электромагнитных устройствах.

Изобретение относится к области металлургии, а именно к сварочной проволоке, используемой для сварки криогенных сталей. .

Изобретение относится к области металлургии, конкретнее к производству конструкционных сталей повышенной и высокой прочности, улучшенной свариваемости для применения в судостроении, строительстве, мостостроении и др.
Изобретение относится к области металлургии, в частности к технологии получения горячекатаного подката тонких толщин из стали для последующей переработки в холоднокатаную полосу для эмалирования.

Изобретение относится к области металлургии, конкретнее к производству штрипсовой стали для магистральных трубопроводов диаметром до 1420 мм, толщиной не менее 20 мм и не более 40 мм.

Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаного проката, предназначенного для эмалирования. .
Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей повышенной коррозионной стойкости для производства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости.
Сталь // 2327793
Изобретение относится к области черной металлургии, а именно к составам сталей, применяемых в машиностроении. .
Изобретение относится к литейному производству. Способ включает заливку в охлаждаемую литейную форму первого слоя из суспензионной ферритной стали толщиной, составляющей 10÷50% объема литейной формы.
Наверх