Способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды

Изобретение относится к технической физике и может быть использовано для исследования измерителей потока насыщенного и влажного пара. Заявлен способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, включающий измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара, измерение расхода, статического давления и температуры входящего в узел смешения потока воды, измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды. Способ также включает измерение динамического разрежения в паропроводе после узла смешения потоков перегретого пара и воды, изменение режима течения влажного пара по параметрам теплового и/или массового расходов при сохранении значения статического давления, или пассивное ожидание момента возникновения такого обстоятельства, или выбор из памяти контроллера параметров течения влажного пара в прошлый момент времени с требуемым значением статического давления, теплового и массового расходов, определение в выбранном режиме всех параметров, измеряемых в исходном режиме, вычисление по совокупности всех измерений. Технический результат - повышение точности и достоверности получаемых данных. 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к технической физике, а именно к области определения истинного объемного паросодержания и скоростей фаз в паропроводе после узла смешения потоков перегретого пара и воды, может быть использовано для исследования измерителей потока насыщенного и влажного пара как средство, компенсирующее отсутствие эталонных и образцовых измерителей параметров влажного пара.

Уровень техники

Аналогом изобретения является способ контроля истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе парогенератора, включающий: измерение статического давления и степени сухости пара и расхода исходной воды в двух режимах работы парогенератора, отличающихся по параметрам теплового и(или) массового расходов при сохранении значения статического давления [Патент RU №2488105, БИ №20 от 20.07.2013].

С существенными признаками изобретения совпадает следующая совокупность признаков аналога: «измерение статического давления, изменение режима по параметрам теплового и(или) массового расходов при сохранении значения статического давления, измерение в измененном режиме всех параметров, измеряемых в исходном режиме; вычисление по совокупности всех измерений».

Недостатком аналога является:

А. Недостаточная точность определения истинного объемного паросодержания и скоростей фаз. Этот недостаток обусловлен недостаточной точностью определения степени сухости по отбираемой пробе пара; а также расхода пара по расходу исходной воды парогенератора.

Прототипом изобретения является способ определения тепловых и массовых расходов, а также степени сухости влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, включающий: измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара; измерение расхода, статического давления и температуры входящего в узел смешения потока воды; измерение давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды [Заявка RU №2011149664, МПК G01N 25/60. «Устройство для исследования средств контроля потока влажного пара», БИ №17, дата публикации 20.06.2013].

С существенными признаками изобретения совпадает следующая совокупность признаков прототипа: «измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара; измерение расхода, статического давления и температуры входящего в узел смешения потока воды; измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды».

Известный способ позволяет с высокой точностью определять тепловые и массовые расходы, а также энтальпию и степень сухости в паропроводе влажного пара после узла смешения потоков перегретого пара и воды.

Однако прототип обладает недостатком:

А. Известный способ не позволяет определять истинное объемное паросодержание и скорости движения паровой и жидкой фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, что ограничивает область применения известного способа. Так, например, без возможности определения текущих значений истинного объемного паросодержания и скоростей фаз потока невозможно исследование «константы» скольжения фаз (параметр Бенкова). Физический параметр «константа» скольжения фаз определяет отношение истинного объемного паросодержания к расходному объемному паросодержанию потока влажного пара.

Сущность изобретения

Задача, на решение которой направлено изобретение, является: способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды. При осуществлении изобретения может быть получен следующий технический результат:

А. Способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, компенсирующий отсутствие эталонных и образцовых средств аттестации и исследования измерителей насыщенного и влажного пара.

Указанный технический результат достигается тем, что способ,

включающий:

измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара; измерение расхода, статического давления и температуры входящего в узел смешения потока воды; измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды;

включает:

измерение динамического разрежения в паропроводе после узла смешения потоков перегретого пара и воды;

изменение режима течения влажного пара по параметрам теплового и(или) массового расходов при сохранении значения статического давления;

или пассивное ожидание момента возникновения такого обстоятельства;

или выбор из памяти контроллера параметров течения влажного пара в прошлый момент времени с требуемым значением статического давления, теплового и массового расходов;

измерение (определение) в измененном (выбранном) режиме, всех параметров измеряемых в исходном режиме;

вычисление по совокупности всех измерений.

Таким образом, задача изобретения решена.

На рис. 1. показана схема устройства для осуществления способа определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды.

Устройство, осуществляющее предлагаемый способ, содержит:

паропровод перегретого пара 1 с измерителем расхода 2, с измерителями статического давления 3 и температуры 4, с регулирующей и отсекающей (запирающей) арматурой 6, 8;

узел смешения потоков перегретого пара и воды 9 на участке паропровода после измерителя расхода, статического давления и температуры;

измерители статического давления 10 и температуры 11, а также измеритель динамического разрежения 5, после узла смешения;

линию подвода воды 14 к узлу смешения с измерителем расхода 15, с измерителем статического давления 16 и температуры 17, с регулирующей и отсекающей (запирающей) арматурой 18, 19;

контроллер 20, к входам которого подключены выходы всех измерителей.

В устройстве может быть использован узел смешения перегретого пара и воды показанный на схеме в известном источнике [Плетнев Г.П. Автоматическое управление и защита теплоэнергетических установок электростанций. - М.: Энергоиздат, 1986, с. 217, рис. 11.15].

В качестве датчика динамического разрежения могут быть использованы напорные трубки Пито-Прантля с приемным окном динамического разрежения, направленным по потоку пара.

Температура и давление воды, подводимой к узлу смешения, соответствует давлению насыщающих паров в отходящем от узла смешения паропроводе влажного пара.

В паропроводе, после узла смешения исходные два однофазные потока образуют двухфазный поток влажного пара. Параметры этого потока влажного пара однозначно определяются измеряемыми параметрами исходных потоков перегретого пара и воды:

1. По измеряемым значениям расхода перегретого пара, его статического давления и температуры вычисляются значения массового (Gnn) и теплового (Qnn) расходов входящего в узел смешения потока пара.

2. По измеряемым значениям расхода, статического давления и температуры во входящей линии воды вычисляются значения массового (Gводы) и теплового (Qводы) расходов входящего в узел смешения потока воды.

3. Исходя из того, что на узле смешения отсутствуют потери массы входящих в него потоков перегретого пара и воды, а тепловые потери могут быть минимизированы теплоизоляцией узлов устройства, параметры пара после узла смешения, на участке паропровода для установки исследуемых образцов с достаточной точностью, вычисляются контроллером устройства из следующих соотношений:

Массовый расход потока влажного пара после узла смешения:

где G - массовый расход влажного пара;

Gпп - массовый расход перегретого пара к узлу смешения;

Gводы - массовый расход воды к узлу смешения.

Тепловой расход с потоком влажного пара после узла смешения:

где Q - тепловой расход влажного пара;

Gпп - тепловой расход перегретого пара;

Gводы - тепловой расход с водой к узлу смешения.

Энтальпия потока влажного пара:

где i - энтальпия потока влажного пара.

Степень сухости потока влажного пара:

где x - степень сухости потока влажного пара;

i″ - энтальпия паровой фазы потока;

i′ - энтальпия жидкой фазы потока.

Значения энтальпии паровой (i″) и жидкой фаз (i′) влажного пара соответствуют статическому давлению, определяемому измерителем давления 10 после узла смешения.

Массовый расход паровой фазы потока влажного пара (G″):

Массовый расход жидкой фазы потока влажного пара (G′):

Тепловой расход с паровой фазой потока влажного пара (Q″):

Тепловой расход с жидкой фазой потока влажного пара (Q′):

Измеритель температуры (поз. 11) используют для контроля перехода перегретого потока пара во влажное состояние и обратно.

Точность определения степени сухости, массового и теплового расходов потока (и отдельных фаз) влажного пара на участке паропровода, отходящего от узла смешения, определяется по точности определения измеряемых расходов массы и тепла перегретого пара, и массы и тепла воды, подводимых к узлу смешения, а также по статическому давлению после узла смешения.

Из системы уравнений (9)…(18), в которой используются вычисляемые на текущий момент времени t значения степени сухости (xt), массового расхода (Gt) и выбранные из памяти контроллера вычисляемые параметры степени сухости (xt-τ), массового расхода (Gt-τ) момента времени t-τ в прошлом, отвечающего условию [( P t с т = P t τ с т ) и (Gt≠Gt-τ и(или) Qt≠Qt-τ)], определяются девять неизвестных параметров (αt, αt-τ, ω t ' ' , ω t τ ' ' , ω t ' , ω t τ ' , kp, ct, ct-τ) контролируемого потока:

где α - истинное объемное паросодержание;

ω″, ω′ - скорости паровой и жидкой фаз потока;

ρ″, ρ′ - плотности паровой и жидкой фаз потока;

F - площадь сечения измерительного участка паропровода;

kp - коэффициент измерителя динамического разрежения;

G - массовый расход влажного пара после узла смешения;

x - степень сухости потока влажного пара после узла смешения;

ΔPp - динамическое разрежение потока после узла смешения;

t - текущий момент времени;

t-τ - выбранный (по условию) прошлый момент времени;

с - «константа» скольжения фаз.

Эта система уравнений может быть решена вводом ограничения на статическое давление ( P t с т = P t τ с т ). Выполнение этого ограничения дает основание считать ct=ct-τ. (Зависимость параметра скольжения фаз от статического давления показана в известной книге Л. Тонг «Теплопередача при кипении и двухфазное течение», М.: Мир, 1969, 344 с.).

Алгоритм решения системы уравнений (9)…(18) может быть представлен в следующем виде:

1. Фиксируя kp в точке из области изменения этого параметра (например, kp=1,0);

2. Из уравнения (11) определяют значение ω t ' ' . Используя полученное значение ω t ' ' , из уравнения (9) определяют значение αt. Подставляя это значение αt в уравнение (10) получают значение ω t ' . Подставляя полученные значения αt, ω t ' ' , ω t ' в уравнение (12), получают значение ct при фиксированном значении kp.

3. Из уравнений (13)…(16) при фиксированном значении kp аналогичным образом получают значение ct-τ.

4. Разность значений ct и ct-τ определяет «невязку» решения при фиксированном значении kp:

ct-ct-τ=δ.

5. Если, например, абсолютное значение полученной «невязки» превышает значение ±0,0001 ( | δ | > 0,0001 ), то изменяют фиксированное значение kp и возвращаются к пункту 2 алгоритма решения задачи.

6. Если абсолютное значение полученной «невязки» не превышает значение ±0,0001 ( | δ | 0,0001 ), то «утверждаются» принятое значение kp и полученные расчетным путем значения других неизвестных параметров решаемой системы восьми нелинейных уравнений.

Таким образом, исключая время начального набора информации, например первые 20 мин работы системы, для каждого текущего момента времени t практически без запаздывания могут вычисляться истинное объемное паросодержание и скорости движения паровой и жидкой фаз потока влажного пара.

Способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, включающий измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара, измерение расхода, статического давления и температуры входящего в узел смешения потока воды, измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды, измерение динамического разрежения в паропроводе после узла смешения потоков перегретого пара и воды, изменение режима течения влажного пара по параметрам теплового и/или массового расходов при сохранении значения статического давления, или пассивное ожидание момента возникновения такого обстоятельства, или выбор из памяти контроллера параметров течения влажного пара в прошлый момент времени с требуемым значением статического давления, теплового и массового расходов, определение в выбранном режиме всех параметров, измеряемых в исходном режиме, вычисление по совокупности всех измерений.



 

Похожие патенты:

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала. .

Изобретение относится к методам расчета экстремальных значений гидрометеорологических параметров окружающей среды, которые используются при оценках риска индустриальной деятельности человека.

Настоящее изобретение относится к области измерения параметров потока текучей среды, протекающей по трубопроводу. Измерительное устройство для измерения скорости потока текучей среды, протекающей в трубопроводе в основном направлении потока, содержащее соединенный с трубопроводом отклоняющий узел, выполненный с возможностью отклонения потока текучей среды от оси основного направления потока трубопровода и направления потока в измерительный участок, при этом отклоняющий узел представляет собой герметичный резервуар, имеющий входную часть, соединенную с входным трубопроводом, выходную часть, соединенную с выходным трубопроводом, и отклоняющую часть, соединенную с входной частью и выходной частью, и содержащий трубчатый элемент, расположенный, по меньшей мере частично, в отклоняющей части и выходной части, причем трубчатый элемент имеет измерительный участок, снабженный средствами измерения скорости потока текучей среды, и соединительный участок, соединяющий трубчатый элемент с выходным трубопроводом, причем отношение площади поперечного сечения каждой из входной части, выходной части и отклоняющей части к площади поперечного сечения трубопровода составляет от 1:1 до 4:1.

Изобретение относится к устройству для измерения скорости текучей среды в трубе. Устройство для измерения скорости текучей среды в трубе содержит турбину и гидродинамический подшипник, содержащий подвижный полый стакан (30), один конец которого является глухим и который соединен с лопастями (10.1, 10.2, 10.3), и зафиксированный относительно трубы ствол (32), расположенный в полом стакане и содержащий, по меньшей мере, один первый канал (320), называемый каналом для впуска смазочной жидкости, и, по меньшей мере, один второй канал (325), называемый каналом для отвода смазочной жидкости.

Использование: в приборостроении, а именно, в технике измерения параметров ветра, в частности для измерения горизонтальных скоростей и направления ветра, для вертикальной компоненты скорости ветра, а также в аэропортах для обеспечения безопасности полетов воздушных судов.

Изобретение относится к области сельского хозяйства, а именно к почвоведению и экологии, в частности к способам измерения эмиссии парниковых газов из почвы и растений с использованием камер для отбора проб.

Изобретение относится к устройствам для измерения воздушных сигналов вертолета. Система воздушных сигналов вертолета содержит многоканальный аэрометрический приемник, имеющий 2n трубок полного давления и 2n приемных отверстий статического давления, выходы 2n трубок полного давления сообщены пневмопроводами со входами пневмоэлектрических преобразователей с электроизмерительными схемами, которые подключены к мультиплексору, выход которого через последовательно соединенные АЦП и микропроцессор подключен к системе отображения информации, выход которой является выходом системы по высотно-скоростным параметрам.

Изобретение относится к измерительной технике, в частности к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости летательного аппарата.

Изобретение относится к судовым средствам измерения скорости, основанным на излучении электромагнитных волн и приеме отраженных волн от подстилающей поверхности (вода, суша, лед), преимущественно для судов ледового плавания.

Изобретение относится к технической физике, а именно к области определения степени сухости и других термодинамических параметров влажного пара, и может быть использовано для непрерывного определения степени сухости как на объектах производства, так и на объектах потребления насыщенного и влажного пара.

Изобретение относится к технической физике и может быть использовано для определения параметров влажного пара. Заявлено устройство для определения степени сухости, энтальпии, теплового и массового расхода влажного пара, содержащее паропровод с измерителем статического давления и двумя измерителями расходных параметров потока, один из которых избирателен к параметрам паровой фазы, например направленная по потоку трубка Пито, а другой избирателен к параметрам паровой и жидкой фаз потока, например направленная навстречу потоку трубка Пито, контроллер для обработки и хранения сигналов измерителей с подключенными выходами измерителей, турбулизатор потока, а также участок постоянного сечения потока, расположенный за турбулизатором, содержащий приемники всех измерителей.

Изобретение относится к технической физике, а именно к области устройств контроля технологических параметров, и может быть использовано для контроля (определения) степени сухости, энтальпии, теплового и массового расходов влажного пара в паропроводах АЭС, ТЭС и в паровых магистралях.

Изобретение относится к технической физике, а именно к области устройств создающих поток тепловой энергии и теплоносителя с контролируемыми параметрами степени сухости, теплового и массового расходов, и может быть использовано для исследования средств контроля потока влажного пара.

Изобретение относится к технической физике, а именно к области контроля параметров влажного пара, и может быть использовано для контроля истинного объемного паросодержания и скоростей фаз влажного пара в паропроводе на потоке.

Изобретение относится к устройству для определения степени сухости потока влажного пара. .

Изобретение относится к измерительной технике, а именно к области регулирования термодинамических параметров, и может быть использовано для регулирования энтальпии теплоносителя в паропроводе прямоточного парогенератора влажного пара.

Изобретение относится к технической физике, а именно к области контроля технологических параметров, и может быть использовано для контроля степени сухости, энтальпии, теплового и массового расходов влажного пара.

Изобретение относится к технической физике, а именно к области контроля параметров влажного пара, и может быть использовано для контроля тепловой мощности, массового расхода, энтальпии и степени сухости потока влажного пара.

Изобретение относится к технической физике, а именно к области контроля мощности генераторов тепловой энергии, и может быть использовано для определения производительности прямоточного парогенератора влажного пара с деаэратором.

Изобретение относится к добыче скважинного флюида, в частности к способу измерения мультифазного потока флюида с использованием расходомера. Техническим результатом является повышение точности измерения мультифазного потока флюида.

Изобретение относится к технической физике и может быть использовано для исследования измерителей потока насыщенного и влажного пара. Заявлен способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, включающий измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара, измерение расхода, статического давления и температуры входящего в узел смешения потока воды, измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды. Способ также включает измерение динамического разрежения в паропроводе после узла смешения потоков перегретого пара и воды, изменение режима течения влажного пара по параметрам теплового иили массового расходов при сохранении значения статического давления, или пассивное ожидание момента возникновения такого обстоятельства, или выбор из памяти контроллера параметров течения влажного пара в прошлый момент времени с требуемым значением статического давления, теплового и массового расходов, определение в выбранном режиме всех параметров, измеряемых в исходном режиме, вычисление по совокупности всех измерений. Технический результат - повышение точности и достоверности получаемых данных. 1 ил.

Наверх