Электрическая машина

Изобретение относится к электрической машине. Электрическая машина содержит корпус (2), внутри которого находится статор (3) с обмотками (3а) статора, ротор (4), втулки (6, 7), проходящие сквозь корпус (2), первая часть (9) которых расположена внутри корпуса (2), а вторая часть (10) - снаружи корпуса (2). Обмотки (3а) статора соединены с первой частью (9) втулок (6, 7). Некоторые втулки (7) имеют вторые части (10), соединенные между собой при помощи элемента (12). Соединительный элемент (12) соединен с контуром (13) водяного охлаждения. Контур (13) водяного охлаждения расположен снаружи корпуса (2). Техническим результатом является повышение надежности системы охлаждения. 6 з.п. ф-лы, 2 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к электрической машине. Электрическая машина предпочтительно является вращающейся электрической машиной, такой как синхронный или асинхронный электрогенератор, в любом случае электрическая машина также может быть другой вращающейся электрической машиной, такой как синхронный или асинхронный электродвигатель, или машиной, отличной от вращающейся электрической машины.

Уровень техники

У вращающихся электрических машин, таких как электрогенераторы, имеется корпус, внутри которого находятся статор и ротор. У статора имеются обмотки статора, которые соединены с устройством, расположенным за пределами электрической машины, при помощи изоляционных втулок.

Изоляционные втулки - это компоненты, необходимые для передачи электроэнергии со статора на устройство, расположенное за пределами корпуса (например, на электрогенератор), либо с устройства, расположенного за пределами корпуса, на статор (например, на электродвигатель).

Обычно для охлаждения статора и изоляционных втулок также используется контур охлаждения. Например, контур охлаждения может быть контуром водяного охлаждения; в этом случае контур охлаждения содержит источник воды, расположенный снаружи корпуса, и трубки, по которым вода поступает к статору, расположенному внутри корпуса.

В этом случае статор соединен с втулками таким образом, чтобы вода, выходя из статора, проходила через втулки для их охлаждения.

Обычно по меньшей мере отдельные втулки соединены между собой, образуя соединение электрической машины в виде звезды (или треугольника). Для этих целей используется соединение по меньшей мере между отдельными втулками.

Известно осуществление подобного соединения при помощи трубчатых элементов, у каждого из которых имеется один конец, соединенный с втулкой, а также другой конец, соединенный с другими трубчатыми элементами.

Для их охлаждения, подобные трубчатые элементы соединены с контуром охлаждения электрической машины (через втулки) таким образом, чтобы охлаждающая вода проходила через статор, втулки, трубчатые элементы, а затем сбрасывалась.

Подобная система охлаждения имеет ряд недостатков.

На самом деле, вода, проходящая через трубчатые элементы, имеет достаточно высокую температуру, не являющуюся оптимальной для охлаждения, поскольку при достижении трубчатых элементов она уже прошла через статор и втулки.

Кроме этого для предотвращения передачи любого механического напряжения с трубчатых элементов (которые деформируются в зависимости от температуры) на втулки, между втулками и трубчатыми элементами необходимо использовать электропроводящее, деформируемое соединение. Подобное электропроводящее, деформируемое соединение включает в себя множество небольших трубок между втулками и трубчатыми элементами (поскольку оно также должно обеспечивать прохождение воды с втулок на трубчатые элементы). Подобные соединения не могут быть надежными, поскольку они могут вызывать протечки.

Раскрытие изобретения

Один из аспектов изобретения включает в себя использование электрической машины с элементами, которые соединяют втулки между собой, образуя оптимальную систему охлаждения.

Другой аспект изобретения включает в себя использование электрической машины с элементами, которые соединяют втулки между собой, образуя надежную систему охлаждения (в частности, система охлаждения является более надежной по сравнению с существующими системами охлаждения).

Осуществление этих и других аспектов обеспечивается за счет использования электрической машины, описанной в пунктах прилагаемой формулы изобретения.

Краткое описание чертежей

Дополнительные особенности и преимущества станут понятны из описания предпочтительного, но не ограничивающего варианта осуществления электрической машины, изображенного в качестве неограничивающего примера на прилагаемых чертежах.

На фиг.1 показан схематический вид электрической машины;

на фиг.2 - схематический вид трех втулок с элементом, соединяющим их между собой.

Осуществление изобретения

На фиг.1 схематически показан пример электрической машины 1. Электрическая машина 1 имеет корпус 2, внутри которого находится статор 3 и ротор 4.

Статор 3 имеет обмотки 3а, соединенные с контактными кольцами 5, которые в свою очередь соединены с втулками 6, 7.

Втулки 6, 7 проходят сквозь корпус 2 и имеют первую часть 9, расположенную внутри корпуса 2, и вторую часть 10, расположенную снаружи корпуса 2. Обмотка 3а статора соединена с первой частью 9 втулок 6, 7.

На фиг.1 показан пример трехфазной электрической машины, поэтому показано шесть втулок; как известно, каждая из обмоток трехфазной обмотки соединена с двумя втулками; в частности, каждая обмотка соединена с одной втулкой 6 и одной втулкой 7; втулки 6 соединены с электросетью или источником электроэнергии, либо с другими компонентами (в зависимости от типа электрической машины), другие втулки 7 соединены между собой. Часто они образуют соединение в виде звезды; однако, это не обязательно, поскольку втулки 6, 7 могут быть соединены в виде треугольника.

В приведенном примере втулки 7 имеют вторые части 10, соединенные между собой при помощи элемента 12. Предпочтительно, но не обязательно элемент 12 является трубчатым элементом. При дальнейшем рассмотрении будут использоваться ссылки на предпочтительный трубчатый элемент. По мере необходимости трубчатый элемент может иметь любое сечение, форму, размер и толщину стенок.

Трубчатый элемент 12 соединен с контуром 13 водяного охлаждения, расположенным снаружи корпуса 2.

Статор 3 соединен с контуром 14 водяного охлаждения, а контур 13 водяного охлаждения трубчатого элемента 12 соединен с контуром 14 водяного охлаждения статора 3.

Например, контур 13 водяного охлаждения трубчатого элемента 12 включает в себя подающую трубку 16 для подачи воды в трубчатый элемент 12, а также возвратную трубку 17 для отвода воды из трубчатого элемента 12.

Аналогичным образом контур 14 водяного охлаждения статора включает в себя источник 19 воды (например, бак), подающую трубку 20, соединенную с источником 19 воды, для подачи воды в статор 3 и возвратную трубку 21, также соединенную с источником 19 воды, для отвода воды из статора.

Предпочтительно подающая трубка 16 для подачи воды в трубчатый элемент 12 ответвляется от подающей трубки 20 для подачи воды в статор 3, а возвратная трубка 17 для отвода воды из трубчатого элемента 12 ответвляется от возвратной трубки 21 для отвода воды из статора 3.

Как видно из фигур, трубчатый элемент 12 включает в себя множество деталей 23, соединенных между собой.

Кроме этого участки 24 трубчатого элемента, расположенные между каждой из пар втулок 7, соединенных между собой, имеют U-образную форму. Это позволяет избежать или ограничить передачу напряженного состояния с трубчатого элемента 12 на втулки 7.

Как показано на фиг.2, для соединения трубчатого элемента 12 с втулками 7 используются держатели 25; один участок этих держателей 25 соединен с втулкой 7, а другой - с трубчатым элементом 12. Держатели 25 упрощают сборку трубчатого элемента 12 с втулками 7, а также увеличивают теплообмен между трубчатым элементом 12 и втулками таким образом, что трубчатый элемент 12 способствует охлаждению втулок 7 и усиливает его.

Работа электрической машины 1 будет понятной из рассмотренного и изображенного выше и, по существу, заключается в следующем.

Во время работы контур 14 охлаждения подает воду в статор 3 по трубке 20 для охлаждения статора и втулок; например, контур 14 охлаждения может быть оснащен насосом и фильтром.

Аналогичным образом, контур 13 охлаждения подает воду в трубчатый элемент 12 для его охлаждения (стрелка F). Поскольку контур 13 охлаждения расположен полностью снаружи корпуса, а вода поступает из трубки 20 (при этом он также может быть соединен с источником 19 воды), температура воды оптимально подходит для охлаждения. Кроме этого проведение возможных действий по техническому обслуживанию упрощается и ускоряется, не приводя к длительным простоям генератора (в связи с обеспечением доступа внутрь корпуса).

Разумеется, рассмотренные признаки могут использоваться независимо друг от друга.

На практике, используемые материалы и размеры могут выбираться произвольно, с учетом потребностей и известного уровня техники.

Перечень ссылочных позиций

1. электрическая машина

2. корпус

3. статор

3а. обмотки статора

4. ротор

5. контактные кольца

6. втулка

7. втулка

9. первая часть

10. вторая часть

12. трубчатый элемент

13. контур водяного охлаждения

14. контур водяного охлаждения

16. подающая трубка

17. возвратная трубка

19. источник воды

20. подающая трубка

21. возвратная трубка

23. деталь

24. участок

25. держатель

F вода.

1. Электрическая машина (1), содержащая корпус (2), внутри которого расположен статор (3) с обмотками (3а) статора и ротор (4), втулки (6), соединенные с электросетью или источником электроэнергии, а также втулки (7), соединенные между собой, причем втулки (6, 7) проходят сквозь корпус (2) и содержат первую часть (9), расположенную внутри корпуса (2), и вторую часть (10), расположенную снаружи корпуса (2), при этом обмотки (3а) статора соединены с первой частью (9) втулок (6, 7), а вторые части (10) по меньшей мере некоторых соединенных между собой втулок (7) соединены между собой электропроводящим образом посредством по меньшей мере одного соединительного элемента (12), причем по меньшей мере один соединительный элемент (12) соединен с контуром (13) водяного охлаждения, отличающаяся тем, что контур (13) водяного охлаждения находится снаружи корпуса (2), причем
статор (3) соединен с контуром (14) водяного охлаждения, а контур (13) водяного охлаждения по меньшей мере одного соединительного элемента (12) соединен с контуром (14) водяного охлаждения статора (3).

2. Машина (1) по п. 1, отличающаяся тем, что соединительной элемент является трубчатым соединительным элементом.

3. Машина (1) по п. 2, отличающаяся тем, что контур (13) водяного охлаждения по меньшей мере одного трубчатого соединительного элемента (12) включает в себя подающую трубку (16) для подачи воды по меньшей мере на один соединительный элемент (12) и возвратную трубку (17) для отвода воды по меньшей мере из одного соединительного элемента (12).

4. Машина (1) по п. 1, отличающаяся тем, что контур (14) водяного охлаждения статора (3) включает в себя источник (19) воды, подающую трубку (20) для подачи воды в статор (3) и возвратную трубку (21) для отвода воды из статора (3), при этом подающая трубка (16) для подачи воды по меньшей мере в один соединительный элемент (12) ответвляется от подающей трубки (20) для подачи воды в статор, а возвратная трубка (17) для отвода воды по меньшей мере из одного соединительного элемента (12) ответвляется от возвратной трубки (21) для отвода воды из статора (3).

5. Машина (1) по п. 1, отличающаяся тем, что по меньшей мере один соединительный элемент (12) выполнен составным из множества частей (23), соединенных между собой.

6. Машина (1) по п. 1, отличающаяся тем, что она содержит держатели (25), каждый из которых имеет часть, соединенную с втулкой (7), и часть, соединенную по меньшей мере с одним соединительным элементом (12).

7. Машина (1) по п. 1, отличающаяся тем, что участки (24) по меньшей мере одного соединительного элемента (12) между каждой из пар втулок (7), соединенных между собой, имеют U-образную форму.



 

Похожие патенты:

Изобретение относится ротору для модулируемой полюсной машины. Ротор содержит: трубчатую опорную конструкцию, образующую круговую установочную поверхность, причем трубчатая опорная конструкция содержит множество продолговатых углублений в установочной поверхности, продолговатые углубления продолжаются в направлении оси трубчатой опорной конструкции; и множество постоянных магнитов, расположенных на установочной поверхности трубчатой опорной конструкции и намагниченных в направлении окружности упомянутого ротора таким образом, чтобы создавать магнитное поле ротора, постоянные магниты отделены друг от друга в направлении окружности ротора продолжающимися в осевом направлении полюсными секциями ротора.

Изобретение относится к двигателю с сегментированным якорем. Технический результат заключается в обеспечении улучшенной конфигурации катушки обмотки якоря и ротора двигателя для повышения его эффективности.

Изобретение относится к области электротехники, в частности к электромашиностроению. Технический результат: повышение ресурса электромашины, увеличение окружной скорости индуктора, уменьшение трения в подшипниках.

Изобретение относится к электротехнике. Технический результат состоит в снижении потерь в подшипнике и улучшении эффективности работы осевого канала.

Группа изобретений относится к области военной техники, а конкретно к способам генерирования электрической энергии в полевых условиях и к устройствам, позволяющим реализовать эти способы.

Изобретение относится к области электротехники и электромашиностроения, в частности к синхронным генераторам с возбуждением от постоянных магнитов. Технический результат: стабилизация выходного напряжения и активной мощности.

Изобретение касается ротора для электрической машины, возбуждаемой постоянными магнитами, в частности для электрической машины большой мощности. Технический результат заключается в повышении надёжности крепления магнитов на корпусе ротора без применения винтовых соединений.

Генератор // 2547147
Изобретение относится к электрическому генератору для ветроэнергетических установок. Технический результат заключается в создании надежного генератора, имеющего большую глубину.

Изобретение относится к области электротехники и электромашиностроения, в частности, к охлаждению электрических машин. Статор электрической машины содержит корпус, рубашку с каналами для проточного хладагента, магнитопровод с рабочей обмоткой, охлаждение лобовых частей которой осуществляется посредством расположенных между слоями либо над слоями лобовых частей обмотки теплоотводящих элементов в виде цилиндров с ребрами на наружной поверхности, отходящими в радиальном направлении и контактирующими с рубашкой.

Изобретение относится к области электротехники. Технический результат: упрощение конструкции, увеличение окружной скорости индуктора.

Изобретение относится к области электротехники, а именно к конструкции электрических коллекторных машин постоянного тока с явно выраженными полюсами, применяемых в промышленных и тяговых установках в качестве двигателей и генераторов. Электрическая коллекторная машина постоянного тока содержит главные полюса трапецеидальной формы с центральными и боковыми немагнитными вставками в количестве не менее 5 штук, размещенными параллельно оси главных полюсов. Суммарная ширина немагнитных вставок должна быть не менее величины равномерного воздушного зазора между главным полюсом и якорем. Центральные немагнитные вставки имеют высоту, равную суммарной высоте сердечника индуктора и магнитопровода ярма по оси главного полюса. Высота боковых немагнитных вставок уменьшается при приближении к боковым поверхностям сердечника главных полюсов. Изобретение позволяет уменьшить отрицательное воздействие поля якоря и выполнить конструкцию двигателя с равномерным воздушным зазором без демпферных обмоток на главных полюсах. Также изобретение позволяет увеличить коэффициент полезного действия двигателя за счет уменьшения электрических потерь в дополнительных полюсах. 5 ил.

Изобретение относится к электрической машине с постоянным магнитом, содержащей статор и ротор, выполненный с возможностью вращения в статоре, и способу конструирования такой машины. Технический результат заключается в упрощении производства и сборки машины. Электрическая машина содержит ротор, имеющий постоянные магниты, и статор, имеющий катушки, намотанные на стержнях статора для взаимодействия с магнитами через воздушный зазор. Стержни и катушки покрыты кольцевым корпусом статора. Определяется камера, которая включает в себя охлаждающую среду для охлаждения катушек. Корпус статора содержит два сопрягающихся сегмента, которые устанавливают стержни статора и катушки в машине. Каждый сегмент формуется из усиленных пластиков. По меньшей мере один сегмент имеет сформованные на нем поверх полюсные наконечники стержней статора. 3 н. и 23 з.п. ф-лы, 24 ил.

Изобретение относится к способам охлаждения электрических машин, в частности генераторов авиационного двигателя, и касается особенностей конструктивного выполнения их системы охлаждения. Технический результат: использование тепловой энергии авиационного двигателя (вспомогательного или маршевого) для питание активной системы охлаждения. Устройство охлаждения электрической машины включает статор с аксиальными каналами охлаждения, модуль Пельтье, спаи которого электрически изолированы от конструкции электрической машины. Холодные спаи модуля Пельтье сопряжены с наружной поверхностью пакета статора, а горячие сопряжены с внутренней поверхностью корпуса электрической машины. Модуль Пельтье теплоизолирован на 1/5 сечения со стороны горячих спаев. Модуль Пельтье электрическими выводами подключен к источнику постоянного тока - батарее термопар, горячий спай которой находится в камере сгорания авиационного двигателя, а холодный спай - на корпусе входной части авиационного двигателя, сопряженной с воздухозаборником. 4 ил.

Изобретение относится к энергомашиностроению и может быть использовано в высокоскоростных электрических генераторах. Техническим результатом является повышение надежности и долговечности ротора высокоскоростного генератора, а также повышение его энергетических характеристик. Ротор высокоскоростного генератора содержит вал, на котором установлено ярмо ротора с постоянными магнитами, и бандажную оболочку. Ротор содержит также стержни с возможностью установки их в отверстия, выполненные в постоянных магнитах и торцевых поверхностях ярма ротора. 5 ил.

Изобретение относится к области электротехники и может быть использовано в многопоточной бесступенчатой электромеханической трансмиссии. Технический результат заключается в создании электрической машины с принудительным жидкостным охлаждением, обладающей высокими энергетическими показателями, с низким уровнем шума. Неподвижная часть электрической машины состоит из шихтованного магнитопровода, набранного из отдельных стальных изолированных пластин и соединенных в пакет с помощью сварных швов, выполненных на внешней стороне магнитопровода. Магнитопровод закреплён в корпусе с помощью шлицевого соединения, выполненного с центрированием по боковым поверхностям. В корпусе имеется охлаждающая магистраль, расположенная в средней части магнитопровода на внешней стороне. Между корпусом и магнитопроводом статора имеется кольцевая охлаждающая камера, разделенная шлицами на изолированные друг от друга круговые секторы, в которые подается охлаждающая жидкость из охлаждающей магистрали. Вращающаяся часть включает магнитопровод, ступицу и задающий диск датчика углового положения ротора, имеющий круговую зубцовую поверхность в форме усечённого конуса. 3 н. и 12 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к роторам вращающихся электрических машин, самим вращающимся электрическим машинам и способам изготовления роторов вращающихся электрических машин. Технический результат состоит в минимизации потерь от вихревого тока через магнит, что делает ненужной обработку поверхности магнита изолирующей пленкой. Ротор для вращающейся электрической машины включает в себя: сердечник ротора с отверстием для вставки магнита, проходящим внутри; магнит, вставленный в отверстие для вставки магнита; и изолирующий наполнитель, которым заполнено пространство между внутренней стенкой отверстия для вставки магнита и магнитом, для закрепления магнита. Магнит закреплен наполнителем так, что поверхность магнита внутри отверстия для вставки магнита находится в наклонном положении относительно направления прохождения внутренней стенки отверстия для вставки магнита. 3 н. и 7 з.п. ф-лы, 13 ил.

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах. Роторная система магнитоэлектрической машины содержит корпус турбинного блока, турбину на валу, установленном в подшипниках, корпус генератора, ротор. Ротор состоит из равномерно размещенных постоянных магнитов, намагниченных в радиальном направлении с чередующейся полярностью. Турбина и ротор установлены на едином пустотелом валу, с возможностью прокачки хладагента через его полость насосом, установленным со стороны турбины. На конце пустотелого вала выполнены спиралевидные канавки. Пустотелый вал с ротором образуют цилиндр постоянного сечения, на внешней поверхности которого установлена бандажная оболочка из высокопрочного немагнитного материала. Подшипники могут быть выполнены в виде бесконтактных газовых опор, электромагнитных подшипников или гибридных магнитных подшипников. Достигается минимизация нагрева постоянных магнитов и теплопередачи между валом турбины и валом генератора, а также повышение жесткости и механической прочности системы, благодаря выполнению вала генератора и вала турбины в виде одного цельного полого вала с возможностью прокачки хладагента через его полость и выполнению на конце ротора спиралевидных канавок. 3 з.п. ф-лы, 3 ил.

Изобретение относится к конструкции ротора электрической машины, такой как генератор. Техническим результатом является устранение электрического контакта между пластинами из-за заедания, когда совмещенная с клином поверхность (550) собранного ротора должна быть дополнительно механически обработана. Предложен ротор для электрической машины, который содержит: сложенные друг на друга пластины (415) с радиально проходящими пазами (140), расположенные по ее периферии, и первую фаску (520) на поверхности (550) каждого из пазов (140), причем указанная поверхность (550) совмещена с клином (150). Первая фаска (520) соединяет указанную поверхность (550) и первую сторону (418) пластины (415). При этом первая фаска (520) и каждая из пластин (415) могут иметь изолирующее покрытие. 3 н. и 17 з.п. ф-лы, 20 ил.

Изобретение относится к области электротехники. Технический результат: уменьшение массогабаритных характеристик, повышение надежности работы, повышение ресурса электромашины. Электромашина содержит опорный корпус статора, шихтованный сердечник статора, на внешней цилиндрической поверхности которого выполнены пазы, в которые уложены катушки обмотки статора. Статор размещен внутри цилиндрической полости ротора. Ротор содержит индуктор. Корпус ротора выполнен в виде двух тарелок из немагнитного материала, разъемно скрепленных друг с другом и обращенных друг к другу своими полостями. Постоянные магниты индуктора в форме параллелепипеда и немагнитные клинья трапецеидальной формы выполнены в виде планок, ориентированных вдоль продольной оси ротора и установленных с образованием составного кольца с чередованием полярности полюсов. Электромашина снабжена радиальными и упорными магнитными подшипниковыми узлами, расположенными на выступах опорного корпуса статора и соосных с ними Г-образных цилиндрах, выполненных на тарелках корпуса ротора. На цилиндрических выступах опорного корпуса статора жестко закреплены статорные части составных постоянных магнитов, образующие магнитную схему Хальбаха. На обращенных к ним поверхностях Г-образных цилиндров закреплены роторные части составных постоянных магнитов, образующие магнитную схему Хальбаха. Составные постоянные магниты образуют радиальные подшипники. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в синхронных генераторах. Технический результат - улучшение массогабаритных показателей. Полюсный пакет ротора синхронного генератора, содержащий множество сдвинутых относительно друг друга сегментов (101-106) полюсного пакета, каждый из которых имеет множество идентичных стальных листов полюсного пакета. Каждый стальной лист полюсного пакета имеет полюсный сердечник (110) с первой средней линией (118) и полюсный наконечник (120) со второй средней линией (128), при этом расстояние между первой и второй средней линией по меньшей мере в соседних сегментах (101-106) полюсного пакета различно. 3 н. и 3 з.п. ф-лы, 5 ил.
Наверх