Устройство экспресс-контроля магнитных характеристик листовой электротехнической стали

Изобретение относится к измерительной технике, представляет собой устройство экспресс-контроля магнитных характеристик листовой электротехнической стали и предназначено для измерения динамической петли гистерезиса и основной кривой намагничивания стали на частотах от 1 до 10000 Гц. Устройство содержит генератор синусоидального напряжения, усилитель переменного напряжения, Н-образный сердечник, который прикладывается к испытуемому листу электротехнической стали, сенсор тока, первый и второй функциональные блоки, двухканальный цифровой осциллограф. На полюсах Н-образного сердечника закреплены одинаковые намагничивающие обмотки, при этом нижние и верхние (3, 4, 5, 6) соединены между собой согласованно, а пара верхних (3, 4) и пара нижних (5, 6) между собой - встречно. Внутри полюсов сердечника, в их торцевой части, расположены одинаковые измерительные обмотки, причем обмотки левой и правой частей сердечника (13, 12, 11, 10) между собой соединены последовательно встречно, а пары обмоток слева (11, 10) и справа (12, 13) соединены последовательно и согласовано. Техническим результатом является возможность определения магнитной индукции и напряженности магнитного поля участка листовой электротехнической стали, причем форма и размеры листа стали могут быть большими, чем торцевая поверхность накладного измерительного преобразователя (сердечника Н-образной формы). 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения динамической петли гистерезиса и основной кривой намагничивания листовой электротехнической стали на частотах от 1 до 10000 Гц.

Известен датчик для измерения механических характеристик ферромагнитных материалов [Пат. 2134428, Российская Федерация, МПК G01R 33/12, опубл. 10.08.1999]. Датчик используется для экспресс-контроля механических характеристик ферромагнетиков при магнитном неразрушающем контроле. Датчик состоит из двух П-образных магнитопроводов, на внешние боковые стороны которых накладываются однослойные контактные пластины из фольгированного текстолита. На полюсах размещаются намагничивающие катушки (по две на каждый сердечник). В торцевые отверстия сердечников вставляются миниатюрные феррозонды, концы которых припаиваются к контактным пластинам. Намагничивающие катушки скрепляются друг с другом и надежно фиксируются на одном из сердечников, при этом второй сердечник свободно перемещается в вертикальной плоскости и отслеживает кривизну контролируемой детали. За счет изменения радиуса кривизны перемычки сердечников можно сужать или расширять диапазон использования конкретного преобразователя относительно кривизны контролируемых деталей.

Недостатком датчика является невозможность определения индукции магнитного поля междуполюсного пространства контролируемого материала, следовательно нельзя определить динамическую петлю гистерезиса и основную кривую намагничивания.

Известно устройство для неразрушающего контроля удельных потерь в анизотропной электротехнической стали [Пат. 2029313, Российская Федерация, МПК G01R 33/12, опубл. 20.02.1995]. Устройство предназначено для оценки качества рулонной анизотропной электротехнической стали. Устройство содержит индуктивный преобразователь в виде броневого цилиндрического магнитопровода с намагничивающей обмоткой на внутреннем полюсе и измерительным элементом под внешним полюсом, блок отстройки от влияния воздушного зазора и регистрирующий прибор, снабжено датчиками толщины и натяжения полосы, блоком деления, функциональным блоком, двумя сумматорами, двумя усилителями-детекторами, фильтром нижних частот, модулирующим блоком, задатчиком смещения и тремя измерительными элементами, при этом измерительные элементы расположены на концах взаимно перпендикулярных диаметров внешнего полюса индуктивного преобразователя и подключены последовательно согласно к входам соответствующих усилителей-детекторов, выходы которых подключены к инвертирующему и неинвертирующему входам первого сумматора, выход которого соединен с входом блока отстройки от влияния воздушного зазора, выход которого подключен к неинвертирующему входу второго сумматора, выход которого подключен к первому входу моделирующего блока, второй и третий входы которого подключены к выходам датчика толщины полосы и задатчика смещения соответственно, причем выход моделирующего блока подключен к входу регистрирующего прибора, а выходы датчика натяжения полосы и датчика толщины полосы - к входам блока деления, выход которого соединен с входом функционального блока, выход которого подключен к инвертирующему входу второго сумматора.

Недостатком устройства является невозможность определения индукции магнитного поля электротехнической стали, следовательно, нельзя определить динамическую петлю гистерезиса и основную кривую намагничивания.

Известно устройство для экспресс-испытания изделий из листовой электротехнической стали [Пат. 2434237, Российская Федерация, МПК G01R 33/12, опубл. 20.11.2011] принятое за прототип, содержащее источник переменного тока, регистрирующий блок, дифференциальный магнитный мост, представляющий собой сердечник Н-образной формы, на нейтральное сечение которого нанесена измерительная катушка, а на четыре полюса - одинаковые намагничивающие катушки, соединенные последовательно, так что нижние и верхние катушки соединены между собой согласованно, а пара верхних и пара нижних между собой - встречно, и подключенные к выходу источника переменного тока, причем источник переменного тока состоит из генератора синусоидального напряжения и усилителя переменного напряжения, первый вход которого подключен к выходу генератора синусоидального напряжения, а второй - к выходу измерительной катушки, последовательно с намагничивающими катушками включен сенсор тока, запоминающее устройство, первый вход которого подключен к выходу измерительной катушки, а второй - ко второму выходу генератора синусоидального напряжения, причем регистрирующий блок имеет два входа, первый подключен к выходу запоминающего устройства, а второй - к выходу сенсора тока.

Недостатком устройства является то, что оно приспособлено к конкретному изделию из листовой электротехнической стали со строго определенными геометрическими размерами. Устройство не позволяет испытать участок листа стали произвольной формы, большей, чем геометрическая площадь торцевой поверхности накладного дифференциального магнитного моста.

Задачей изобретения является расширение функциональных возможностей устройства для экспресс-испытания изделий из листовой электротехнической стали.

Техническим результатом является обеспечение возможности определения магнитной индукции и напряженности магнитного поля участка листовой электротехнической стали, причем форма и размеры листа стали могут быть большими, чем торцевая поверхность накладного измерительного преобразователя (сердечника Н-образной формы).

Технический результат достигается за счет того, что устройство экспресс-контроля магнитных характеристик листовой электротехнической стали содержит генератор синусоидального напряжения, выход которого соединен с входом усилителя переменного напряжения, выход которого соединен с одинаковыми намагничивающими обмотками, включенными последовательно, так что нижние и верхние обмотки соединены между собой согласованно, а пара верхних и пара нижних между собой - встречно, закрепленными на полюсах сердечника Н-образной формы, изготовленного из пермаллоя, последовательно с которыми включен сенсор тока, параллельно с которым включен первый функциональный блок, внутри каждого из четырех полюсов, в их торцевой части, расположена измерительная обмотка, причем измерительные обмотки левой и правой частей сердечника между собой соединены последовательно встречно, а пары обмоток слева и справа соединены последовательно и согласовано, последовательно с одинаковыми измерительными обмотками соединен интегратор, выход которого соединен с входом второго функционального блока, а выходы функциональных блоков подключены к входам двухканального цифрового осциллографа.

На фиг.1 изображена функциональная схема устройства экспресс-контроля магнитных характеристик листовой электротехнической стали. На фиг.2 показаны форма и геометрические размеры полюса сердечника.

Устройство экспресс-контроля магнитных характеристик листовой электротехнической стали содержит генератор синусоидального напряжения 1, выход которого соединен с входом усилителя переменного напряжения 2, выход которого соединен с одинаковыми намагничивающими обмотками 3-6, включенными последовательно, так что нижние 5, 6 и верхние 3, 4 соединены между собой согласованно, а пара верхних 3, 4 и пара нижних 5, 6 между собой - встречно, закрепленными на полюсах сердечника 7 Н-образной формы, изготовленного из пермаллоя, последовательно с которыми включен сенсор тока 8, причем параллельно с сенсором тока 8 включен первый функциональный блок 9, внутри каждого из четырех полюсов сердечника 7, в их торцевой части, расположена измерительная обмотка, причем измерительные обмотки левой 10, 11 и правой 12, 13 частей сердечника 7 между собой соединены последовательно встречно, а пары обмоток слева 10, 11 и справа 12, 13 соединены последовательно и согласовано, последовательно с одинаковыми измерительными обмотками 10-13 соединен интегратор 15, выход которого соединен с входом второго функционального блока 16, а выходы функциональных блоков 9, 16 подключены к входам двухканального цифрового осциллографа 17.

Рассмотрим работу устройства экспресс-контроля магнитных характеристик листовой электротехнической стали.

Лист электротехнической стали 14 прикладывается к торцевой поверхности сердечника 7 сверху (как показано на фиг.1) или снизу. Генератор синусоидального напряжения 1 формирует сигнал синусоидального напряжения фиксированной амплитуды, который подается на вход усилителя переменного напряжения 2. Усиленный сигнал напряжения, приложенный к намагничивающим обмоткам 3-6, создает в них электрический ток, который создает магнитные потоки в верхней и нижней U-образных частях сердечника 7, в листе электротехнической стали 14 и в окружающем воздушном пространстве.

Магнитные потоки, протекающие в сердечнике 7, наводят в измерительных катушках 10-13 электродвижущую силу (ЭДС), причем ЭДС катушек 10 и 13 пропорциональна значениям магнитных потоков, протекающих в нижней части сердечника и воздушном пространстве внизу, ЭДС катушек 11 и 12 пропорциональна значениям магнитных потоков протекающих в верхней части сердечника 7, листе электротехнической стали 14 и воздушном пространстве вверху. В силу симметричной конструкции сердечника 7, с учетом соединения намагничивающих и измерительных обмоток, ЭДС измерительных обмоток 10-13 пропорциональна значениям магнитного потока протекающего в контролируемом листе электротехнической стали 14. ЭДС измерительных обмоток 10-13 интегрируется блоком 15 (интегратор), на выходе которого формируются мгновенные значения потокосцепления измерительных обмоток 10-13. Функциональный блок 16 формирует мгновенные значения индукции магнитного поля в контролируемой зоне листа электротехнической стали 14 (участок листовой стали между полюсами сердечника):

где Ψ(t) - мгновенные значения потокосцепления измерительных обмоток 10-13;

Ws - сумма числа витков измерительных обмоток 11 и 12;

AFe - площадь поперечного сечения контролируемого участка листовой электротехнической стали;

Us(t) - ЭДС измерительных обмоток 10-13.

Напряженность магнитного поля для участка листовой электротехнической стали 14 определяется по мгновенным значениям электрического тока, протекающего в намагничивающих обмотках 3-6. Значения тока измеряются с помощью сенсора тока 8. Напряжение сенсора тока преобразуется функциональным блоком 9 в напряженность магнитного поля контролируемого участка листовой электротехнической стали 14 по формуле:

где U(t) - мгновенные значения напряжения сенсора тока;

Wp - сумма числа витков намагничивающих обмоток 3 и 4;

R - значение активного сопротивления сенсора тока;

LFe - длина участка листовой электротехнической стали, равная расстоянию между осями измерительных катушек 11 и 12.

Сигналы напряженности и индукции магнитного поля подаются на первый и второй каналы цифрового осциллографа 17 соответственно. На дисплее цифрового осциллографа 17 отображаются динамическая петля гистерезиса контролируемого участка листовой электротехнической стали 14, тем самым достигается технический результат. При изменении амплитудных значений сигнала генератора синусоидального напряжения 1, на дисплее цифрового осциллографа 17 будет отображен ряд частных петель гистерезиса. Вершины петель гистерезиса образуют динамическую основную кривую намагничивания листовой электротехнической стали 14.

Устройство экспресс-контроля магнитных характеристик листовой электротехнической стали содержит генератор синусоидального напряжения, выход которого соединен с входом усилителя переменного напряжения, выход которого соединен с одинаковыми намагничивающими обмотками, включенными последовательно, так что нижние и верхние соединены между собой согласованно, а пара верхних и пара нижних между собой - встречно, закрепленными на полюсах сердечника Н-образной формы, последовательно с которыми включен сенсор тока, отличающееся тем, что дополнительно содержит первый функциональный блок, измерительные обмотки, интегратор, второй функциональный блок, двухканальный цифровой осциллограф, при этом параллельно с сенсором тока включен первый функциональный блок, а внутри каждого из четырех полюсов сердечника, в их торцевой части, расположена измерительная обмотка, причем измерительные обмотки левой и правой частей сердечника между собой соединены последовательно встречно, а пары обмоток слева и справа соединены последовательно и согласовано, также последовательно с одинаковыми измерительными обмотками соединен интегратор, выход которого соединен с входом второго функционального блока, а выходы функциональных блоков подключены к входам двухканального цифрового осциллографа.



 

Похожие патенты:

Изобретение относится к измерительной технике, представляет собой способ измерения магнитных свойств и толщины наноразмерных магнитных пленок и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п.

Изобретение относится к измерительной технике, представляет собой магнитное устройство для изучения сил внутреннего взаимодействия в растворе и может использоваться в физической химии.

Изобретение относится к системам магнитно-импедансной томографии. Система содержит систему возбуждения, имеющую несколько катушек возбуждения для генерирования магнитного поля возбуждения с целью наведения вихревых токов в исследуемом объеме, измерительную систему, имеющую несколько измерительных катушек для измерения полей, сгенерированных наведенными вихревыми токами, при этом измерительные катушки расположены в объемной (3D) геометрической компоновке, и устройство реконструкции, предназначенное для приема измерительных данных из измерительной системы и реконструкции изображения объекта в исследуемом объеме по измеренным данным.

Предложенное изобретение относится к измерительной технике, представляет собой способ определения магнитной индукции текстурированной электротехнической стали и может применяться в случаях, когда отсутствуют устройства измерения магнитных свойств или их невозможно использовать в силу таких причин, как слишком малые вес и размер образца или слишком плохое качество его поверхности.

Группа изобретений относится к области лабораторной диагностики и может быть использована для определения наличия аналита и его количества в биологических жидкостях.

Изобретение относится к методам неразрушающего контроля и может быть использовано на трубопроводах нефти и газа на химических и нефтехимических предприятиях, тепловых и атомных энергоустановках.

Изобретение относится к области разработки способов локального измерения магнитных свойств ферромагнитных объектов различных размеров и форм, в частности для целей неразрушающего контроля.

Изобретение относится к технике испытаний труб для магистральных газопроводов. .

Изобретение относится к измерительной технике, представляет собой магнитошумовой способ контроля состояния прочности силовых конструкций из ферромагнитных материалов и может найти применение при проведении технического освидетельствования силовых (несущих) конструкций. При реализации способа на диагностируемую конструкцию воздействуют переменным электромагнитным полем, в результате чего в измерительной катушке, находящейся на поверхности диагностируемой конструкции, индуцируется электродвижущая сила, суммарный отклик которой, называемый магнитным шумом, регистрируется измерительной аппаратурой. Полученный сигнал преобразуется к численному значению и сравнивается с базовыми сигналами. Базовые значения сигналов, определяемые на аналогичных образцах конструкций при воздействии всех возможных видов нагрузок до разрушения, формируют базу данных, в которой каждому значению на основе экспериментально установленной взаимосвязи «состояние прочности - значение сигнала» присваивается состояние прочности, которое может быть количественно выражено в требуемых для диагностируемой конструкции показателях. Техническим результатом является оценка текущего состояния прочности силовых конструкций из ферромагнитных материалов. 2 ил.

Изобретение относится к измерительной технике, а именно к способу и системе для определения магнитной массы железнодорожных вагонов. Способ заключается в том, что для определения магнитной массы железнодорожных вагонов сначала производят калибровку с учетом окружающей температуры, а также насыпной плотности груза в вагонах. Определяют последовательность подачи вагонов и их количество, начальный момент подачи в область измерений и выход из зоны измерений. Затем определяют изменения параметров тока катушки, мгновенные значения напряжения и тока в катушке, скорость движения вагонов, высоту вагона, уровень загрузки, температуру и вычисляют мгновенные величины добротности и индуктивности катушки. Затем по этим данным определяют интегральные индуктивность и добротность вагона и магнитную массу вагона. Для осуществления способа предложена система, включающая средства определения добротности и индуктивности 1, средства для измерения температуры 2, ультразвуковой датчик уровня вагона 4, фотоэлектрические датчики положения вагона 5, оптические датчики скорости 6, видеокамеру 7, датчики объемной плотности 8, а также блок обработки и управления 9. Технический результат заключается в повышении точности определения магнитной массы железнодорожных вагонов и других контейнеров. 2 н.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике, представляет собой устройство для определения содержания феррита в материале и может быть использовано для определения содержания феррита, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов магнитных материалов. Устройство содержит два постоянных магнита, первые два противоположных полюса которых ориентированы навстречу друг другу и разделены воздушным промежутком, а другие два противоположных полюса соединены С-образным магнитопроводом, на который намотана катушка индуктивности, подключенная к первому регистратору ЭДС индукции. В воздушном промежутке между полюсами магнитов установлена тепловая камера, соединенная с источником тока. Через боковое отверстие в корпусе камеры вставлен шток для размещения испытуемого материала, закрепленный на оси электродвигателя для вращения испытуемого материала с постоянной угловой скоростью в вертикальной плоскости относительно магнитных силовых линий постоянных магнитов, соединяющих их полюса. Также внутри тепловой камеры находится измерительный спай термопары, подключенной ко второму регистратору ЭДС. Техническим результатом является расширение функциональных возможностей. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области судостроения и касается способа определения места нахождения герметизированного отверстия при обрастании, заносе илом или обмерзании подводной части корпуса судна. Сущность заключается в размещении постоянных магнитов по периметру герметизированного отверстия, что повышает надежность определения размера вскрываемого отверстия и позволяет производить вскрытие отверстия без повреждения корпуса судна. 2 ил.

Использование: для неразрушающего контроля технического состояния нефте- газопроводов. Сущность изобретения заключается в том, что магнитный дефектоскоп, на котором установлены на магнитах два пояса щеток из ферромагнитного материала, контактирующие с внутренней поверхностью трубопровода, между поясами щеток из ферромагнитного материала в виде кольца на износоустойчивых основаниях установлены блоки датчиков, состоящие из вихретоковых датчиков и датчика градиента постоянного магнитного поля, который в свою очередь состоит из двух магниточувствительных элементов, являющихся полупроводниковыми преобразователями магнитного поля, смещенных на некоторое расстояние друг относительно друга в направлении нормали к контролируемой поверхности, при этом расстояние значительно меньше протяженности помех, при этом применяется система из двух вихретоковых датчиков, плоскости которых перпендикулярны друг другу и направляющей контролируемого трубопровода, при этом применяется амплитудно-фазовая обработка диагностических данных. Технический результат: обеспечение возможности улучшения обнаружения и образмеривания малоразмерных дефектов и дефектов в сварных швах. 2 ил.

Изобретение относится к области диагностики технического состояния металлоконструкций, находящихся в рабочем состоянии. Сущность: на контролируемом участке образца (аналога) элемента (или на действующем элементе) при отсутствии внешней изгибающей силы и при приложении внешней изгибающей силы (в пределах упругих свойств элемента) каждый раз осуществляется намагничивание в целях создания симметричного магнитного поля относительно оси(осей) симметрии геометрической фигуры поперечного сечения элемента. Измеряется величина индукции магнитного поля в характерных точках на границах поперечных сечений элемента, симметричных друг другу относительно оси(осей) симметрии сечений элемента. Определяется средняя разность абсолютных величин магнитной индукции в характерных точках на контролируемом участке. По экспериментальной зависимости изгибающей силы (или средней напряженности в материале) от средней разности абсолютных значений магнитной индукции в характерных точках на контролируемом участке образца (аналога) элемента (или на действующем элементе) находится аналитическая зависимость. На контролируемом участке элемента конструкции, находящейся в рабочем состоянии, создается симметричное магнитное поле относительно геометрической фигуры сечения элемента, измеряется величина индукции магнитного поля в характерных точках сечений, определяется средняя разность абсолютных значений магнитной индукции в аналогичных характерных точках и, по полученной ранее аналитической зависимости, находится среднее оценочное значение напряженности в материале на контролируемом участке элемента действующей конструкции. Технический результат: возможность обеспечения оперативной оценки изгибных напряжений в материале элементов конструкций, находящихся в рабочем состоянии, с помощью простых мобильных технических средств. 10 ил., 1 табл.

Использование: для контроля стального листа. Сущность изобретения заключается в том, что устройство для контроля стального листа содержит магнитооптический элемент, способный определять в качестве оптической характеристики структуру магнитных доменов стального листа, световой источник для облучения магнитооптического элемента линейно поляризованным светом, детектор для обнаружения линейно поляризованного света с плоскостью поляризации, вращающейся в соответствии со структурой магнитных доменов стального листа, которая передается магнитооптическому элементу, и механизм привода для приведения в действие по меньшей мере магнитооптического элемента таким образом, чтобы приводить в контакт стальной лист и магнитооптический элемент, а также отделять их друг от друга. Технический результат: обеспечение возможности повышения выхода продукции посредством осуществления визуального наблюдения и проверки структуры магнитного домена стального листа непосредственно после выполнения процесса измельчения магнитного домена. 3 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля микроструктуры металлической мишени. Варианты реализации настоящего изобретения предоставляют электромагнитный датчик (400) для детектирования микроструктуры металлической мишени, содержащий магнитное устройство (410, 420) для предоставления возбуждающего магнитного поля, магнитометр (430) для детектирования результирующего магнитного поля, индуцированного в металлической мишени; и схему (450) калибровки для создания калибровочного магнитного поля для калибровки электромагнитного датчика. Причем калибровочное магнитное поле создается электрическим током, индуцированным в схеме калибровки возбуждающим магнитным полем. Технический результат - повышение чувствительности датчика за счет исключения искажений его показаний, обусловленных помехами различной природы. 2 н. и 24 з.п. ф-лы, 10 ил.

Изобретение может быть использовано при контроле электропроводимости и коррелирующего с ней значения температуры внутренних слоев листа, например, из рафинированной меди - медной рубашки кристаллизатора путем измерения электропроводимости внутренних слоев меди. Согласно изобретению способ контроля изменений электропроводимости внутренних слоев немагнитного металла заключается в использовании накладного вихретокового преобразователя, по возбуждающей катушке которого циркулирует создаваемый генератором ток, а сигнал его измерительной катушки обрабатывают в блоке обработки, к выходу которого подключен индикатор электропроводимости, при этом в возбуждающей катушке циркулирует периодический импульсный ток в форме меандра с периодом, выбираемым таким, чтобы за время половины периода заканчивались электромагнитные переходные процессы, определяют максимальное значение ΔФмакс разностного по отношению к объекту с постоянным значением электропроводимости магнитного потока и значение интервала времени tмакс достижения этого максимума, по этим значениям, используя градуировочные кривые на плоскости состояния с осями ΔФмакс - tмакс, определяют величину изменения электропроводимости и координаты области, где имеют место эти изменения, при этом градуировочные кривые на плоскости состояния строят предварительно путем моделирования для предполагаемых законов изменения электропроводимости и хранят в памяти блока обработки. Предлагаемые способ и устройство позволяют определять электропроводимость внутри металлического листа и определять координаты изменения электропроводимости. Изобретение обеспечивает возможность контроля за параметрами металла при промышленном производстве - плавке металла и процессе его остывания, возможность определения электропроводимости (температуры) в области удаленных слоев металла (т.е. стенки кристаллизатора, контактирующей с жидким металлом), определение области изменения электропроводимости, т.е. распределения электропроводимости (температуры) по стенке металла (рубашки кристаллизатора). 2 н.п. ф-лы, 6 ил.

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к методам контроля фазового состава, и может быть использовано в металлургии, металлообработке, машиностроении, авиастроении для контроля качества продукции и стабильности технологических процессов. Прибор контроля фазового состава стали включает в себя датчик (Д), который состоит из корпуса, выполненного из немагнитного материала, и вторичный прибор (ВП) со средством алфавитно-цифровой индикации для отображения выходной информации. При этом в корпусе размещены соединенные между собой измерительный трансформатор (1), состоящий из первичной обмотки возбуждения (ОВ) и вторичной обмотки измерительной (ОИ), генератор синусоидальных колебаний (2), датчик-преобразователь тока (3), цифроаналоговый преобразователь (5), аналого-цифровой преобразователь (4). Вторичный прибор дополнительно содержит микропроцессорный модуль (7), связанный с измерительным трансформатором (1) через приемопередатчик (10) вторичного прибора, связанного с приемопередатчиком (6) датчика посредством радиосигнала, и управляющий амплитудой выходного напряжения генератора синусоидальных колебаний. Техническим результатом настоящего изобретения является повышение надежности и достоверности автоматического измерения содержания ферритной фазы в образце или пробе. 2 з.п. ф-лы, 2 ил.
Наверх