Зонд гидролого-оптико-химический

Заявленное изобретение относится к измерительной технике и может быть использовано при проектировании и изготовлении океанологических многоканальных информационно-измерительных комплексов и разработке новых измерительных океанологических каналов. Гидролого-оптико-химический комплекс содержит блок гидрофизических измерительных каналов, центральный контроллер, первый и второй модемы электрической линии связи, кабель-трос с электрической и волоконно-оптической линиями связи, вращающийся электрический переход, электрическую лебедку, рабочее место оператора, блок оптических измерительных каналов, при этом в него введён блок нормализующих контроллеров, причем каждый гидрофизический измерительный канал через соответствующий нормализующий контроллер соединен с центральным контроллером, кроме того, введены первый и второй многовходовые оптические модемы и вращающийся оптический переход, причем каждый оптический измерительный канал соединен с соответствующим входом первого многовходового оптического модема, подключенного через оптико-волоконную линию связи кабель-троса к вращающемуся оптическому переходу, соединённому со вторым многовходовым оптическим модемом, подключенным к рабочему месту оператора. Технический результат заключается в интегрировании в составе гидролого-оптико-химического комплекса всех имеющихся измерительных каналов океанологических параметров, посредством того, что информация от измерительных каналов гидрофизического модуля обрабатывается нормализующими контроллерами и компактно центральным контроллером через многовходовый модем передается в бортовое устройство зонда, а также в создании условий для разработки, изготовления, лабораторных и натурных испытаний новых оптических измерительных каналов для идентификации и регистрации количества минеральной взвеси и взвешенного органического вещества в морской воде, интеграции в своем составе существующих на данный момент измерительных океанологических каналов, создании совмещенного канала электрической и волоконно-оптической линии связи между погружаемым и бортовым устройствами. 1 ил.

 

Область техники.

Предлагаемое изобретение относится к измерительной технике и может быть использовано при проектировании и изготовлении океанологических многоканальных информационно-измерительных комплексов и разработке новых измерительных каналов.

Уровень техники

Анализируя уровень автоматизации океанологических экспериментальных исследований в нашей стране, отметим период 60 - 70-х годов, когда наибольший интерес представляли системы сбора и обработки данных, построенные аналогично информационно-измерительным системам стандарта САМАС, созданного под руководством академика Нестерихина Ю.Е. Они находили широкое применение в различных областях автоматизации экспериментальных исследований в связи с тем, что имели гибкую легко меняющуюся структуру, хорошо разработанное программное обеспечение и оперативно могли быть перестроены на новую программу экспериментальных исследований. Широкое применение информационно-измерительные системы на основе стандарта САМАС нашли в биологии и медицине.

В 70х - 80-х годах в Специальном Конструкторско-Технологическом Бюро Морского Гидрофизического Института АН УССР (СКТБ МГИ АН УССР) на основе анализа экспериментальных задач современной океанологии с учетом уровня имеющейся измерительной техники, средств и методов проведения экспериментальных исследований в других областях знаний, комплексно решена задача автоматизации сбора и обработки экспериментальных данных для всего спектра пространственно-временной изменчивости параметров физических полей океана. Была создана система проектирования океанологических измерительных комплексов, построенных по модульному принципу, разработана базовая структурная схема для построения на её основе модульных измерительных комплексов океанологических параметров. Все основные направления работ выполнены на принципиально новом техническом уровне и защищены 8 авторскими и 17 патентами на изобретения.

Созданы зондирующие, буксируемые, автономные и специальные информационно-измерительные комплексы, проведены их Государственные испытания, все приборы сертифицированы, выпускались серийно и были внедрены в практику океанологических исследований учреждений различных министерств и ведомств нашей страны.

Особое место в создании модульных информационно-измерительных систем океанологических параметров занимало метрологическое обеспечение всего цикла их разработки и аттестации. Работы по сертификации всех измерительных каналов, разрабатывавшихся в СКТБ МГИ, выполнялись совместно с институтами Госстандарта СССР.

Известен «Зондирующий комплекс профиля скорости течений, содержащий измерители, коммутаторы, АЦП, модемы блоки сопряжения и управления, оперативное и программируемое запоминающие устройства, и другие элементы цифровой техники» [1].

Известное устройство имеет низкую скорость передачи информации, сложности в эксплуатации и низкую надёжность.

Известно устройство для морских исследований, содержащее два блока измерительных каналов с датчиками параметров, соединённых через модемы с электрическим каналом в виде кабеля-троса с корабельным регистратором [2]. В данном устройстве хотя и устранено большинство недостатков предыдущего, но оно также несовершенно.

Сущность изобретения

Внедрение в практику экспериментальных исследований океана спутниковых измерительных систем, свободно-дрейфующих поверхностных буев, свободно- дрейфующих буев для вертикального зондирования профилей гидрофизических параметров и измерения скорости течений на заданных горизонтах создали предпосылку к пониманию возможности осуществления мониторинга окраинных морей и больших акваторий Мирового океана. Актуальным стал вопрос о необходимости разработки принципиально новых оптических измерительных каналов и приборов, которые позволяют производить контактные измерения in situ на подспутниковых полигонах и осуществлять определение концентрации взвеси и взвешенного органического вещества в морской воде.

Такие оптические измерительные каналы имеют в своем составе телевизионные или IP-камеры, которые требуют использования высокоскоростных каналов передачи данных (10-1000 Мбит/сек).

В предлагаемом изобретении решается задача создания условий для разработки, изготовления, лабораторных и натурных испытаний новых оптических измерительных каналов in situ для идентификации и регистрации количества взвеси и взвешенного органического вещества в морской воде.

Проведение лабораторных и натурных испытания этих измерительных каналов требует использования высокоскоростных каналов передачи данных (10-1000 Мбит/сек). Проведение испытаний на глубинах до нескольких тысяч метров требует использования высокоскоростных каналов передачи данных соответствующей длины, что обеспечивается использованием волоконно-оптической линий связи.

Основным элементом создаваемого гидролого-оптико-химического комплекса является его функциональная схема, которая должна:

обеспечить интеграцию в своем составе существующих на данный момент гидрофизических измерительных каналов;

обеспечить лабораторные и натурные испытания вновь создаваемых оптических измерительных каналов совместно с другими гидрофизическими измерительными каналами, с целью исследования влияния изменчивости граничных гидрофизических условий в районе проведения экспериментов, на их метрологические характеристики;

содержать в своем составе совмещенные в кабель-тросе линии электрической и волоконно-оптической связи.

Поставленная цель достигается тем, что в известном устройстве для морских исследований, содержащим блок гидрофизических измерительных каналов, центральный контроллер, первый и второй модемы электрической линии связи, кабель-трос с электрической и волоконно-оптической линиями связи, вращающийся электрический переход, электрическую лебедку, рабочее место оператора, блок оптических измерительных каналов, введён блок нормализующих контроллеров, причем каждый гидрофизический измерительный канал через соответствующий нормализующий контроллер соединен с центральным контроллером, кроме того, введены первый и второй многовходовые оптические модемы и вращающийся оптический переход, причем каждый оптический измерительный канал соединен с соответствующим входом первого многовходового оптического модема, подключенного через оптико-волоконную линию связи кабель-троса к вращающемуся оптическому переходу, соединённому со вторым многовходовым оптическим модемом, подключенным к рабочему месту оператора.

Возможность осуществления

Структурная схема созданного авторами гидролого-оптико-химического комплекса представлена на Фиг. 1.

В состав комплекса входят:

1 - блок гидрофизических измерительных каналов

2 - блок нормализующих контроллеров

3 - центральный контроллер

4 - первый модем электрической линии связи

5 - кабель-трос (содержит электрическую и волоконно-оптическую линии связи)

6 - вращающийся электрический переход

7 - электрическая лебедка

8 - второй модем электрической связи

9 - рабочее место оператора

10 - блок оптических измерительных каналов

11 - первый многовходовый оптический модем

12 - вращающийся оптический переход

13 - второй многовходовый оптический модем.

Блок гидрофизических измерительных каналов 1 содержит гидрофизические измерительные каналы с порядковыми номерами 1-6(температуры и электропроводности воды, гидростатического давления, скорости звука в морской воде, показателя ослабления направленного света, растворенного в воде кислорода) и резервные гидрофизические каналы.

Блок нормализующих контроллеров 2 содержит нормализующие контроллеры для гидрофизических измерительных каналов с номерами 1- 6 и для резервных гидрофизических каналов.

Подключение гидрофизических измерительных каналов осуществляется с помощью нормализующих контроллеров. Каждый нормализующий контроллер осуществляет прием измерительной информации от соответствующего измерительного канала по его протоколу передачи данных и её переработку в унифицированное слово данных, считываемое центральным контроллером 3.

Центральный контроллер 3 считывает унифицированные слова данных с нормализующих контроллеров и формирует из них пакеты данных измерений, которые через первый модем электрической линии связи 4, электрическую линию связи кабель- троса 5, вращающийся электрический переход 6, второй модем электрической линии связи 8 направляются на рабочее место оператора 9.

Блок оптических измерительных каналов 10 содержит оптические измерительные каналы (с порядковыми номерами 1 - 2 и резервные каналы), требующие использования высокоскоростной передачи данных (10-1000 Мбит/сек).

Информация от оптических измерительных каналов через первый многовходовый оптический модем 11 и по волоконно-оптической линии связи кабель-троса 5, через вращающийся оптический переход 12 поступает на второй многовходовый оптический модем 13 и далее направляется на рабочее место оператора 9.

Вращающийся электрический переход 6 и вращающийся оптический переход 12 вращаются электрической лебедкой 7.

Характеристики блока нормализующих контроллеров:

Интерфейсы подключаемых измерительных каналов: RS232, 0-5В 16 бит
Количество нормализующих контроллеров: до 32
Формат данных встроенных часов: год, месяц, день, час, минуты, секунды, миллисекунды
Время опроса одного
нормализующего контроллера: не более 1 мсек
Выходное слово данных нормализующего контроллера: 8 байт

Представленная структура гидролого-оптико-химического комплекса позволяет:

обеспечить интеграцию в своем составе любых существующих измерительных каналов;

обеспечить функционирование в своем составе новых оптических измерительных каналов;

проводить лабораторные и натурные испытания новых оптических измерительных каналов;

создавать методики измерений новыми оптическими измерительными каналами в комплексе с другими гидрофизическими измерительными каналами;

исследовать влияние изменчивости граничных гидрофизических условий в месте проведения испытаний на метрологические характеристики новых оптических измерительных каналов.

Литература

1. Б.А. Нелепо, Г.В. Смирнов, А.Б. Шадрин и др. Интегрированные системы для гидрофизических исследований. Гидрометеоиздат, Ленинград, 1990 г., 240 стр.

2. Смирнов Г.В., Еремеев В.Н., Агеев М.Д., Коротаев Г.К., Ястребов B.C., Мотыжев С.В. «Океанология. Средства и методы океанологических исследований». Наука, Москва, 2005, 795 стр.

3. А.с. 1070484 СССР, МКИ3 G01P5/11. Зондирующий комплекс профиля скоростей течения / Г.В. Смирнов, В.М. Кушнир, А.Б. Шадрин, Б.В. Шамрай. № 3502837/18-10. Заявл. 22.10.82; опубл.30.02.83; бюл. №4

4. А.с. 1163272 СССР, МКИ3 G01P5/00. Комплекс автономных измерителей течения/ Г.В. Смирнов, В.М. Кушнир, А.Б. Шадрин и др. № 3689340/214/10. Заявл. 05. 11. 83; опубл.23.06.85; бюл. № 23.

Гидролого-оптико-химический комплекс, содержащий блок гидрофизических измерительных каналов, центральный контроллер, первый и второй модемы электрической линии связи, кабель-трос с электрической и волоконно-оптической линиями связи, вращающийся электрический переход, электрическую лебедку, рабочее место оператора, блок оптических измерительных каналов, отличающийся тем, что в него введён блок нормализующих контроллеров, причем каждый гидрофизический измерительный канал через соответствующий нормализующий контроллер соединен с центральным контроллером, кроме того, введены первый и второй многовходовые оптические модемы и вращающийся оптический переход, причем каждый оптический измерительный канал соединен с соответствующим входом первого многовходового оптического модема, подключенного через оптико-волоконную линию связи кабель-троса к вращающемуся оптическому переходу, соединённому со вторым многовходовым оптическим модемом, подключенным к рабочему месту оператора.



 

Похожие патенты:

Изобретение относится к гидроакустической технике и касается создания устройств постановки и выборки (УПВ) гибких протяженных буксируемых антенн (ГПБА) на подводных лодках и надводных кораблях.

Изобретение относится к устройствам для измерения геофизических параметров в придонной зоне морей и океанов. Сущность: сейсмический модуль состоит из герметичного корпуса (1), внутри которого размещены накопитель (5) на жестком диске, блок (7) гидроакустического канала связи, размыкатель (8) балласта (2), таймер (9) размыкателя (8) балласта (2), проблесковый маяк (10), разъем (11) внешней связи, источник (12) питания, гидрофизический модуль (13), радиомаяк (14), сейсмический датчик (15), блок (20) пространственной ориентации.

Изобретение относится к области судостроения, в частности к надводным научно-исследовательским судам. Предложено научно-исследовательское ледокольное судно для проведения сейсморазведки по 3D технологии вне зависимости от ледовых условий, имеющее корпус, в котором размещается сейсмическое оборудование, а также шахту для выпуска и укладки на дно донной сейсмокосы.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Заявлена подводная сейсмическая система для снижения шума в сейсмических сигналах, вызванного отраженными волнами-спутниками или движением сквозь толщу воды.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Предложена методика морской сейсмической разведки с использованием одного или более морских сейсмических вибраторов.

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве донной кабельной антенны для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне.

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для профилирующего носителя, содержащего комплект измерительных датчиков, модуль центрального микроконтроллера, электропривод, и передвигающегося по ходовому тросу; системы цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос, поверхностного буя-вехи с модемами передачи данных и телеметрической информации по радиоканалу, гидроакустического размыкателя якорного балласта.

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне.

Изобретение относится к области геофизики и может быть использовано для сейсмоакустических исследований на шельфе при выполнении разведочных работ нефтегазоносных месторождений.
Изобретение относится к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на акваториях Арктики и других морей.

Изобретение относится к области гидроакустики и может быть использовано для оценки концентрации растворенного метана в областях его пузырьковой разгрузки. Сущность: излучают в направлении морского дна акустический сигнал. Принимают сигнал обратного рассеяния звука от водной толщи. По принятому сигналу выделяют газовые факелы. Оценивают по наклону газовых факелов профиль скорости и направление течения. Рассчитывают плотность источников газовых факелов на морском дне и профиль потока метана в воду для каждого факела. По полученным данным определяют концентрации метана в водной толще в областях его пузырьковой разгрузки. Технический результат: повышение эффективности и надежности оценки концентрации метана в водной толще. 1 ил.

Изобретение относится к области геофизики и может быть использовано при оперативной оценке сейсмического состояния районов и геолого-геофизических исследованиях морских углеводородных месторождений. Заявлен малогабаритный донный сейсмический модуль, соединенный гидроакустическим каналом связи с диспетчерской станцией и состоящий из герметичного корпуса, гидрофизического модуля, устройства регистрации геофизических сигналов, включающего донный сейсмометр, средство хранения информации, датчик пространственной ориентации, радиобуй, балласт, размыкатель балласта, таймер размыкателя, проблесковый маяк, радиомаяк, разъем внешней связи, источник питания. Герметичный корпус выполнен в виде полусферы, сочлененной с основанием герметичного корпуса, выполненным в виде тарелки, по верхнему диаметру которой установлены механические элементы размыкателя балласта, выполненные в виде строп, которые сочленены с балластом, плотно прилегающим к основанию герметичного корпуса по его нижнему диаметру. Средство связи с диспетчерской станцией выполнено в виде однорелейного гидроакустического канала связи. Датчик пространственной ориентации состоит из электронного 3D компаса, трех акселерометров и трех измерителей угловых скоростей, жестко сочлененных с донным сейсмометром, а донный сейсмометр выполнен в виде широкополосного молекулярно-электронного датчика. Технический результат - повышение достоверности регистрируемых сейсмических сигналов. 3 ил.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Заявлена система сейсмоприемной косы и связанные способы оценки формы управляемой в поперечном направлении сейсмоприемной косы. Сейсмоприемная коса разделена на ряд смежных секций сейсмоприемной косы устройствами управления в поперечном направлении. Датчики курса, размещенные в передней и кормовой частях каждой секции, генерируют данные о курсе. Каждую секцию моделируют как имеющую прямолинейную форму в передней части и изогнутую форму в кормовой части. Форму секции оценивают согласно данной модели по данным о курсе на секции. Технический результат - повышение точности разведочных данных за счет повышения точности оценки формы сейсмоприемной косы. 3 н. и 16 з.п. ф-лы, 2 ил.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ для обнаружения месторождений нефти и газа. Предложены способ и устройство для морской сейсмической разведки с использованием одного или более перемещающихся морских сейсмических вибраторов. При этом функция свипирования для вибратора основывается на критерии допустимого размытия и является нелинейной функцией, осуществляющей свипирование по частоте сверху вниз. Полученные данные могут использоваться непосредственно без очистки или могут быть легко и просто очищены. Технический результат - повышение точности разведочных данных. 3 н. и 18 з.п. ф-лы, 11 ил.

Изобретение относится к области геофизики и может быть использовано для проведения морских сейсморазведочных работ. При сейсмической разведке в покрытой льдом воде буксируемые косы буксируют позади судна ниже поверхности воды, чтобы избежать столкновения со льдом. Отсчеты по сигналам глобальной системы местоопределения нельзя получать систематически, поскольку при наличии льда исключается следование на поверхности от буксируемой косы хвостового буя с приемником глобальной системы местоопределения. Вместо этого устройство буксируют на буксируемой косе ниже поверхности воды. Абсолютное положение буксируемой косы отслеживают при периодическом приведении буксируемого устройства к поверхности, чтобы можно было получать отсчеты по сигналам глобальной системы местоопределения. Абсолютное положение буксируемой косы затем можно использовать в сочетании с отсчетами по компасам и можно сопоставлять сигналы различных сейсмических датчиков, получаемые вдоль буксируемой косы в продолжение разведки. Отсчеты по компасам можно корректировать за влияние склонения при использовании отсчетов деклинометра, которые можно корректировать за влияние эффектов железа от судна или другого устройства, несущего деклинометр. Технический результат - повышение точности разведочных данных. 5 н. и 26 з.п. ф-лы, 33 ил.

Изобретение относится к области морской геофизической разведки и может быть использовано для поиска полезных ископаемых на шельфе морей арктического региона. Согласно заявленному предложению морское дно облучают при помощи гидроакустического излучателя или системы излучателей, формирующих направленное в дно излучение звука (1), установленного на неавтономном подводном аппарате, выпускаемом с помощью несущего троса из шахты в днище судна-носителя (4), или установленного на выдвигаемой из шахты в днище судна-носителя разборной ферме (9). Основание шахты защищают от возможного контакта с обломками льда, затягиваемыми под судно, с помощью специально предусмотренной корпусной конструкции - обвода (8). Прием и регистрацию отраженного излучения осуществляют посредством сейсмоакустических кос (5), выпускаемых из днища или кормовой части судна ниже нижней границы ледового покрытия с помощью телескопически раскладывающегося трубного канала (6), имеющего электрический привод и позволяющего регулировать глубину погружения косы. Горизонтальную и вертикальную ориентацию приемной косы в толще воды регулируют с помощью неавтономных подводных аппаратов (7). Обработку принятых сигналов проводят с привлечением корреляционных методов. Технический результат - повышение качества и точности получаемых данных о структуре донных слоев. 5 з.п. ф-лы, 7 ил.

Изобретение относится к геофизике и может быть использовано при краткосрочном прогнозировании землетрясений. Сущность изобретения заключается в том, что для выявления активизации региональных деформационных процессов, которая вызвана, в том числе, подготовкой сильных землетрясений, применена система регистрации геоакустической эмиссии в диапазоне частот от 0.1 Гц до 10-20 кГц, включающая пьезокерамический гидрофон, установленный у дна естественных и искусственных водоемов. Высокочастотным геоакустическим предвестником, опережающим землетрясение на время от нескольких суток до нескольких часов, считается аномалия сигнала в частотных поддиапазонах: 600-2000 Гц, 2000-6500 Гц, более 6500 Гц; превышающая среднесуточные значения не менее чем в 4 раза с продолжительностью не менее 15 минут. 1 ил.

Изобретение относится к области гидроакустики и может быть использовано в системах радиогидрологических буев для измерения пеленга на источник звука или в гибких буксируемых антеннах. Сущность решения состоит в том, что чувствительные элементы в виде круглых преобразователей установлены ортогонально друг за другом на оси цилиндрического корпуса из звукоотражающего материала и сообщаются с его поверхностью полыми каналами, сечение которых плавно меняется от круглого у чувствительно элемента к прямоугольному у поверхности корпуса без уменьшения поперечной площади сечения. Оси каналов соответствующих чувствительных элементов направлены навстречу друг другу так, что выходы каналов на поверхность корпуса лежат в ортогональных плоскостях относительно оси корпуса и точки на его оси, лежащей посредине между центрами обоих чувствительных элементов. Технический результат - повышение защищенности от помех обтекания, что позволяет снизить погрешности пеленгования и уменьшить помехи обтекания. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области геофизики и может быть использовано для проведения морских сейсморазведочных работ в районах, покрытых льдом. Скег установлен от кормы буксирующего судна и продолжается ниже ватерлинии. Канал в скеге защищает кабели для буксируемых кос и источника сейсмической системы, выпускаемой с судна. Буксировочные точки на скеге лежат ниже поверхности воды и соединены с буксирными тросами для поддержания буксируемых кос и источника. Плавучее устройство поддерживает источник и буксируется ниже поверхности воды для исключения столкновения с обломками ледяного поля. Буксируемые косы могут иметь аппараты, спускаемые на них, для регулирования положения буксируемых кос. Для облегчения определения местоположения буксируемых кос эти аппараты на буксируемых косах могут приводиться к поверхности, свободной от обломков ледяного поля, так что отсчеты глобальной системы позиционирования могут быть получены и переданы на управляющую систему. После получения отсчетов аппараты могут быть погружены обратно под поверхность. Технический результат - повышение качества разведочных данных. 4 н. и 45 з.п. ф-лы, 68 ил.
Изобретение относится к донным станциям для проведения сейсмических исследований. Сущность: донная станция выполнена в виде установленного на дне акватории глубоководного самовсплывающего носителя геофизической аппаратуры, соединенного с бортовым вычислительным модулем, установленным на борту судна. Носитель геофизической аппаратуры включает размещенные в герметическом сферическом контейнере, состоящем из двух полусфер, блок регистрации, блок определения ориентации, блок синхронизации, блок гидроакустического приемопередатчика, устройство управления размыкателем, блок питания, геофоны, блок фильтров геофонов, устройство хронирования информации. Блок регистрации включает трехкомпонентный сейсмоприемный модуль и накопитель измерительной информации. Блок определения ориентации выполнен в виде датчиков наклона и азимута и установлен в карданном подвесе. Снаружи герметического контейнера установлены гидрофон, гидроакустическая антенна, якорь-балласт, проблесковый маяк. Бортовой вычислительный модуль содержит блок съема цифровой информации с накопителя измерительной информации, блок управления, блок гидроакустической связи с носителем геофизической аппаратуры, устройство синхронизации времени, устройство отображения. Карданный подвес выполнен на подшипниках с нелинейным коэффициентом трения. Датчики наклона и азимута дополнительно содержат два градиентометра, установленные на косвенно стабилизированной в горизонте платформе. На данной платформе также установлены датчики углов крена, дифферента, датчики углов атаки и скольжения, датчики линейных ускорений и угловых скоростей, вычислитель, выполненный с возможностью совместной обработки всех датчиков. Косвенно стабилизированная в горизонте платформа снабжена тремя кардановыми рамками, на которых установлены три моментных электродвигателя с сервоприводом, два трехкомпонентных акселерометра с механизмом их перемещения относительно друг друга, измеритель линейной скорости перемещения трехкомпонентных акселерометров. Дополнительно в устройство введена вторая косвенно стабилизированная в горизонте платформа, на которой установлены три моментных электродвигателя с сервоприводом, четыре акселерометра с вертикальной осью чувствительности и с механизмом их перемещения, измеритель линейной скорости перемещения акселерометров относительно донной станции, регистратор моментов встречи двух акселерометров на траверзе первой и второй пар. При этом все устройства функционально связаны через блок управления с вычислителем, в котором вычисляют искомые значения составляющих уклонения отвесной линии в меридиане и в первом вертикале, скорость перемещения, направление перемещения, широту, угол сноса, радиус кривизны траектории перемещения и расстояния по вертикали от гравиметров до поверхности геоида. Технический результат: повышение надежности получаемой информации за счет повышения помехоустойчивости донной станции.
Наверх