Способ и устройство преобразования тепловой энергии в электрическую

Изобретение относится к преобразованию тепловой энергии в электрическую и может применяться в качестве автономного источника электрической энергии, используя для нагрева, например, солнечную тепловую энергию или любой другой источник тепла. Устройство для реализации способа содержит нагреватель-испаритель 1 с теплообменными ребрами 2, аэролифт 3, конденсатор 4, эжектор 5, преобразователь энергии 6, патрубок 7. Внутри устройства циркулирует жидкость 8. Технический результат состоит в упрощении реализации способа, конструкции, повышении надежности, долговечности, экологичности и экономичности, расширении области применения. 2 н. и 12 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к способам и устройствам для преобразования тепловой энергии в электрическую и может применяться в качестве автономного источника электрической энергии, используя для нагрева, например, солнечную тепловую энергию или любой другой источник тепла.

Уровень техники

Из уровня техники известны средства и методы для преобразования тепловой энергии в электрическую (см. US 4381463 A, 26.04.1983; US 4454865 A, 19.06.1984), использующие для нагрева рабочего тела солнечную энергию. Принцип работы известных способов и устройств основан на конвекционной циркуляции электропроводящего рабочего тела и прохождении его через магнитогидродинамический генератор для получения электрической энергии. Недостатками известных способов и устройств являются: сложность реализации, экономическая неэффективность, неэкологичность, обусловленные использованием в качестве рабочего тела жидких металлов, в частности, ртути.

Известно устройство электростанции (см. JPS 62272860 A, 27.11.1987), использующее в качестве электропроводящей среды ионизированную жидкость, проходящую через магнитогидродинамический генератор. Недостатками известного устройства являются, в частности: сложность изготовления, низкая надежность, обусловленные работой устройства при больших давлениях.

Известно устройство преобразования солнечной энергии в электрическую (см. US 4191901 A, 04.03.1980), использующее в качестве рабочей среды органическую жидкость. Недостатками известного устройства, в частности, являются: сложность конструкции и низкая надежность, обусловленные необходимостью его работы при больших давлениях для обеспечения прохождения рабочей среды через магнитогидродинамический генератор.

В качестве наиболее близкого аналога приняты способ и устройство преобразования тепловой энергии, известные из RU 2013743 C1, 30.05.1994. Известный способ включает циклические нагрев и испарение жидкости, транспортирование ее паров, дальнейшую их конденсацию, в зоне, расположенной выше зоны испарения, и направление жидкости из зоны конденсации в устройство преобразования энергии. Известное устройство содержит жидкость в замкнутом контуре, включающем последовательно соединенные нагреватель-испаритель, конденсатор и преобразователь энергии. Конденсатор установлен выше относительно нагревателя-испарителя, а все элементы устройства соединены теплоизолированным трубопроводом. Недостатками известного устройства и способа, как и у вышеупомянутых средств и методов, являются: сложность реализации, низкая надежность, обусловленные необходимостью обеспечить усиленные герметичные соединения элементов для работы при больших давлениях.

Раскрытие изобретения

Задачей изобретения является разработка решения для преобразования тепловой энергии в электрическую, лишенного недостатков известных средств и методов данного назначения.

Техническим результатом предложенного изобретения является упрощение реализации способа, конструкции устройства, повышение надежности, долговечности, экологичности и экономичности, расширение области применения.

Технический результат достигается в способе преобразования тепловой энергии в электрическую, включающем циклические нагрев и испарение жидкости, транспортирование ее паров, дальнейшую их конденсацию, в зоне, расположенной выше зоны испарения, и направление жидкости из зоны конденсации в устройство преобразования энергии. При этом часть нагретой жидкости направляют непосредственно в устройство преобразования энергии, формируя конвекционный контур, в зону конденсации, совместно с парами, посредством аэролифта, транспортируют другую часть жидкости и используют жидкость из зоны конденсации для ускорения жидкости в конвекционном контуре, причем в зоне конденсации обеспечивают атмосферное давление.

В качестве преобразователя энергии может быть использован магнитогидродинамический генератор или турбина с генератором.

Жидкость может содержать в себе соль и/или антифриз и углеродные нанотрубки. А в качестве самой жидкости может быть использована вода.

Нагрев и испарение жидкости можно осуществлять при помощи солнечной энергии.

Технический результат достигается в устройстве преобразования тепловой энергии в электрическую, содержащем жидкость в замкнутом контуре, включающем последовательно соединенные, при помощи теплоизолированного трубопровода, нагреватель-испаритель, конденсатор и преобразователь энергии. При этом в нем сформирован дополнительный конвекционный контур для жидкости посредством дополнительной связи выхода нагревателя-испарителя с преобразователем энергии, между нагревателем-испарителем и конденсатором установлен аэролифт, а связь конденсатора с преобразователем энергии выполнена через конвекционный контур с возможностью ускорения потока жидкости по контуру, причем конденсатор выполнен с возможностью обеспечения в нем атмосферного давления.

В качестве преобразователя энергии может быть использован магнитогидродинамический генератор или турбина с генератором.

Жидкость может содержать в себе соль и/или антифриз и углеродные нанотрубки. А в качестве самой жидкости может быть использована вода.

Нагреватель-испаритель может быть выполнен с возможностью получения тепловой энергии от солнца. При этом в случае непрозрачной жидкости нагреватель-испаритель выполняется прозрачным, а в случае прозрачной жидкости нагреватель-испаритель выполняется непрозрачным. Нагреватель-испаритель может содержать теплообменные ребра. В прозрачном нагревателе-испарителе теплообменные ребра находятся внутри него, а в непрозрачном нагревателе-испарителе теплообменные ребра выполнены на нагреваемой его стороне и обращены внутрь. Теплообменные ребра выполнены из темного или черного пластика, или из черненой меди.

Краткое описание чертежей

Фиг.1 - схематичный вид устройства преобразования тепловой энергии в электрическую с использованием прозрачной жидкости.

Фиг.2 - схематичный вид устройства преобразования тепловой энергии в электрическую с использованием непрозрачной или полупрозрачной жидкости.

Осуществление изобретения

Предложенное изобретение предназначено для преобразования тепловой энергии в электрическую и может применяться в качестве автономного источника электрической энергии, как индивидуального бытового пользования, так и промышленного. В качестве источников тепла можно использовать топливные источники, радиоизотопные, атомные (тепло атомного реактора), солнечные, утилизационные, а также тепло из любых источников, выделяющих сбросное тепло (выхлопные, печные газы и др.). Предложенное решение может работать в системе, например, путем его объединения с устройствами отопления и горячего водоснабжения, работающими на солнечной энергии, такими как солнечные коллекторы.

Сущность предложенного способа состоит в обеспечении двухконтурной системы движения потоков жидкости, один из которых использует конвекцию в качестве движущий силы, а в другом применяется аэролифт с последующим использованием потенциальной энергии гравитационного поля для ускорения потока жидкости в конвекционном контуре. Вариант реализации предложенного способа приведен ниже в описании устройства, работающего на его основе.

Устройство для реализации способа преобразования тепловой энергии в электрическую (Фиг.1) содержит последовательно соединенные в замкнутый контур нагреватель-испаритель 1 с теплообменными ребрами 2, аэролифт 3, конденсатор 4, эжектор 5 и преобразователь энергии 6. Выход нагревателя-испарителя 1 дополнительно соединен с входом забора эжектируемой среды эжектора 5, сопло которого соединено с конденсатором 4. Соединения между элементами устройства выполняются при помощи теплоизолированных труб. Конденсатор 4 располагается выше относительно нагревателя 1, и в нем выполнен патрубок 7, служащий для выравнивания внутреннего давления паро-жидкостной среды с атмосферным и работы аэролифта 3. Через патрубок 7 возможно осуществлять долив жидкости, в случае ее испарения и понижения уровня, в остальное время он закрыт противопыльным фильтром или мембраной.

Все элементы устройства, за исключением преобразователя энергии 6, могут быть выполнены из пластика, такого как поликарбонат. Теплообменные ребра 2 могут быть выполнены как из темного или черного пластика, так и из черненой меди. Преобразователем энергии 6 может служить магнитогидродинамический генератор (МГД-генератор) или жидкостная турбина с генератором.

Жидкость 8 может содержать в себе соль и/или антифриз и углеродные нанотрубки, а в качестве самой жидкости может быть использована вода. Процентный состав компонентов жидкости выбирается из необходимых эксплутационно-технических и экономических требований. Так, например, добавление в жидкость антифриза позволяет работать устройству при пониженных температурах, добавление соли также влияет на понижение температуры замерзания жидкости и повышает ее электропроводность. Добавление в состав жидкости углеродных нанотрубок влияет на интенсивность теплообмена и электропроводность. Дополнительно в состав жидкости могут быть введены красители, влияющие на ее прозрачность для различных вариантов выполнения устройства, которые будут показаны ниже.

Один из вариантов выполнения устройства использует прозрачную жидкость (Фиг.1). Работает устройство преобразования тепловой энергии в электрическую следующим образом. Для примера, в качестве источника тепла используется солнечная энергия, которая может быть как прямой, так и отраженной с помощью рефлектора. При попадании тепловой (солнечной) энергии на нагреватель-испаритель 1, происходит нагрев жидкости 8, которая начинает конвекционное движение по контуру (конвекционный контур), включающему нагреватель-испаритель 1, эжектор 5, преобразователь энергии 6. Для улучшения теплообмена, повышения интенсивности нагрева и парообразования жидкости 8, при слабой облученности, возможно использование теплообменных ребер 2. При использовании прозрачной жидкости нагреватель-испаритель 1 выполняется непрозрачным, а теплообменные ребра 2 выполнены на его нагреваемой стороне и обращены внутрь. При повышении температуры жидкости 8 начинается процесс кипения и ее часть переходит в газообразное состояние (пар), образуя смесь жидкости и пара. За счет разницы между давлением пара и атмосферным давлением, обеспечиваемым патрубком 7 в конденсаторе 4, жидкость 8 начинает подниматься по аэролифту 3 в конденсатор 4. По мере накопления жидкости 8 в конденсаторе 4 она направляется в сопло эжектора 5. За счет разницы высот между конденсатором 4 и эжектором 5, жидкость 8 на выходе конденсатора 4 обладает потенциальной энергией, которая в эжекторе 5 переходит в кинетическую и передается потоку жидкости 8 в конвекционном контуре, ускоряя ее движение по контуру.

При использовании в качестве преобразователя энергии 6 МГД - генератора, электрическая энергия образуется за счет прохождения через него электропроводящей жидкости 8. В случае использования турбины с генератором происходит преобразование энергии потока жидкости 8 в механическую энергию вращения турбины и далее в электрическую. Полученная на преобразователе 6 электрическая энергия направляется потребителю.

Устройство может работать при слабом потоке тепла и при сильно отрицательных температурах, когда испарение жидкости 8 не представляется возможным. В данном случае преобразование энергии в устройстве происходит за счет работы конвекционного контура.

Второй вариант устройства, представленный на Фиг.2, работает по аналогии с первым вариантом. Отличием является применение прозрачного нагревателя-испарителя 1. Для поглощения в нем солнечной энергии используется непрозрачная или полупрозрачная жидкость 8. В случае использования полупрозрачной жидкости 8 возможна установка теплообменных ребер 2 внутри прозрачного нагревателя-испарителя 1, а в случае использования непрозрачной жидкости 8 необходимость в них полностью отпадает.

Предложенный способ и конструкция устройства для преобразования тепловой энергии в электрическую не требуют обеспечения герметичных швов и материалов, предназначенных для работы при больших давлениях, что позволяет упростить и удешевить реализацию способа и конструкцию устройства, повысить их надежность и долговечность при эксплуатации. Возможность использования различных преобразователей энергии и работа в широком температурном диапазоне расширяет область применения изобретения. Кроме того, за счет особенностей конструкции и принципа работы, устройство может изготавливаться из пластика и использовать экологически чистые жидкости, что повышает его экологичность и экономичность, в отличие от аналогичных устройств, использующих в качестве жидкости фреон, ртуть и т.д.

Таким образом, предложенное решение обеспечивает получение указанного выше, технического результата.

Следует отметить, что описание изобретения и чертежи приведены только в качестве примера и не ограничивают возможные модификации технического решения в рамках предложенной формулы.

1. Способ преобразования тепловой энергии в электрическую, включающий циклические нагрев и испарение жидкости, транспортирование ее паров, дальнейшую их конденсацию, в зоне, расположенной выше зоны испарения, и направление жидкости из зоны конденсации в устройство преобразования энергии, отличающийся тем, что часть нагретой жидкости направляют непосредственно в устройство преобразования энергии, формируя конвекционный контур, в зону конденсации, совместно с парами, посредством аэролифта, транспортируют другую часть жидкости и используют жидкость из зоны конденсации для ускорения жидкости в конвекционном контуре, причем в зоне конденсации обеспечивают атмосферное давление.

2. Способ по п.1, отличающийся тем, что в качестве преобразователя энергии используют магнитогидродинамический генератор или турбину с генератором.

3. Способ по п.1, отличающийся тем, что жидкость содержит в себе соль и/или антифриз и углеродные нанотрубки.

4. Способ по п.1, отличающийся тем, что в качестве жидкости используется вода.

5. Способ по п.1, отличающийся тем, что нагрев и испарение жидкости осуществляют при помощи солнечной энергии.

6. Устройство преобразования тепловой энергии в электрическую, содержащее жидкость в замкнутом контуре, включающем последовательно соединенные, при помощи теплоизолированного трубопровода, нагреватель-испаритель, конденсатор и преобразователь энергии, отличающееся тем, что в нем сформирован дополнительный конвекционный контур для жидкости посредством дополнительной связи выхода нагревателя-испарителя с преобразователем энергии, между нагревателем-испарителем и конденсатором установлен аэролифт, а связь конденсатора с преобразователем энергии выполнена через конвекционный контур с возможностью ускорения потока жидкости по контуру, причем конденсатор выполнен с возможностью обеспечения в нем атмосферного давления.

7. Устройство по п.6, отличающееся тем, что в качестве преобразователя энергии используется магнитогидродинамический генератор или турбина с генератором.

8. Устройство по п.6, отличающееся тем, что жидкость содержит в себе соль и/или антифриз и углеродные нанотрубки.

9. Устройство по п.6, отличающееся тем, что в качестве жидкости используется вода.

10. Устройство по п.6, отличающееся тем, что нагреватель-испаритель выполнен с возможностью получения тепловой энергии от солнца.

11. Устройство по п.10, отличающееся тем, что в случае непрозрачной жидкости нагреватель-испаритель выполняется прозрачным, а в случае прозрачной жидкости нагреватель-испаритель выполняется непрозрачным.

12. Устройство по п.11, отличающееся тем, что нагреватель-испаритель содержит теплообменные ребра.

13. Устройство по п.12, отличающееся тем, что в прозрачном нагревателе-испарителе теплообменные ребра находятся внутри него, а в непрозрачном нагревателе-испарителе теплообменные ребра выполнены на нагреваемой его стороне и обращены внутрь.

14. Устройство по п.12, отличающееся тем, что теплообменные ребра выполнены из темного или черного пластика, или из черненой меди.



 

Похожие патенты:

Вертикальный ветровой электрогенератор содержит опорную колонну (1), по крайней мере один генераторный блок (2), по крайней мере две лопасти (3), устройство контроля возбуждения, выпрямительное устройство, реверсивный частотный преобразователь, фланцы, опоры, систему охлаждения, подъемный механизм (80) и подъемную систему.

Изобретение относится к области электротехники и физико-химических технологий и касается устройств, используемых для электролиза воды. .

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения электрических машин, в частности - к синхронным электрическим машинам с возбуждением от постоянных магнитов, которые наряду с известными достоинствами обладают и некоторыми недостатками, в частности - довольно сложными пусковыми и регулировочными характеристиками и относительно низким КПД.

Изобретение относится к электротехнике и энергетике, а более конкретно к "малой" энергетике - автономным источникам питания на базе силовых агрегатов небольшой мощности, способных работать в полевых условиях в автоматическом режиме не менее 1 - 2 лет.

Изобретение относится к области охлаждения микроэлектронного оборудования с высокой интегральной плотностью комплектующих компонентов. .

Изобретение относится к системам охлаждения аппаратуры летательного аппарата. .

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения и качественного воздухообмена в зданиях содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным воздухопроводом, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, а теплообменный воздухопровод снабжен всасывающим фильтром, который установлен в помещении и выполнен в виде узла очистки внутреннего воздуха, состоит из диффузора с винтообразными продольно размещенными канавками, входящими в круговую канавку, соединенную со сборником загрязнений, в котором размещено осушивающее устройство в виде емкости с адсорбирующим веществом.

Изобретение относится к способу производства электроэнергии из биотоплива и солнечной энергии. Заявляется система производства электроэнергии из солнечной энергии с использованием котла на биотопливе (6) в качестве дополнительного источника теплоты, которая включает концентрирующий солнечный коллектор, котел на биотопливе (6), турбогенератор, при этом в концентрирующем солнечном коллекторе в качестве рабочего тела используется вода и применяются трубки солнечного коллектора (13) среднего давления, скомбинированные в последовательно-параллельную матрицу, выход концентрирующего солнечного коллектора соединен с основанием барабана (6а) котла на биотопливе (6) через второй клапан управления (22), а выход пара из барабана котла на биотопливе (6а) соединен с цилиндром (3) турбогенератора (1).

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, отличающаяся тем, что грунтовой воздухопровод выполнен из композиционного материала, который включает металлическое основание, теплоизоляционный и теплоаккумулирующий тонковолокнистый базальт и гидроизоляцию, причем тонковолокнистый базальт продольно расположен в растянутом положении по длине грунтового воздухопровода и закреплен в виде слоя между металлическим основанием и гидроизоляцией.

Изобретение относится к возобновляемым источникам энергии и предназначено для выработки электроэнергии с целью электрической зарядки гибридных и электрических автомобилей, а также автомобилей, имеющих маховичные накопители энергии.

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, холодным каналом - с помещением, а горячим - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к холодному каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, при этом система снабжена термоэлектрическим генератором, выполненным в виде корпуса и комплекта дифференциальных термопар, причем в корпусе расположен проходной канал для горячего теплоносителя и проходной канал для холодного теплоносителя, кроме того, входной патрубок проходного канала для горячего теплоносителя соединен каналом горячего потока вихревой трубы, а выходным своим патрубком - с грунтовым воздухопроводом, при этом входной патрубок проходного канала для холодного теплоносителя соединен с каналом холодного потока вихревой трубы, выходным своим патрубком - с помещением.

Изобретение относится к сельскому хозяйству, в частности к способам и устройствам обеспечения энергией удаленных сельскохозяйственных объектов, не обеспеченных стационарным энергообеспечением.

Изобретение относится к теплотехнике, в частности к устройствам для опреснения соленой воды с использованием солнечной и ветровой энергий. Солнечно-ветровой опреснитель содержит емкость для опреснения воды, установленный над ней прозрачный конденсатор с патрубком для выхода паровоздушной смеси в верхней части с установленной в нем крылаткой, закрепленной на валу ветродвигателя.

Изобретение относится к области гелиотехники и предназначено для энергоснабжения объектов сельскохозяйственного и индивидуального назначения. Фотоэлектрическая тепловая система содержит, по меньшей мере, один солнечный тепловой коллектор, трубопровод подачи жидкости в солнечный тепловой коллектор, трубопровод отвода жидкости из солнечного теплового коллектора в бак-аккумулятор (термос), при этом трубопровод подачи жидкости в солнечный тепловой коллектор соединен, по меньшей мере, с одним фотоэлектрическим тепловым модулем, расположенным уровнем ниже солнечного теплового коллектора и соединенным последовательно с ним, при этом подача жидкости в фотоэлектрический тепловой модуль осуществляется через трубопровод из напорного бака, установленного выше уровня солнечного теплового коллектора, по меньшей мере, в один из трубопроводов вмонтирован соленоидный клапан, имеется, по меньшей мере, одно термореле с индивидуальным для фотоэлектрического теплового модуля или солнечного теплового коллектора датчиком, причем управляющие контакты соленоидного клапана подключены и коммутируются с помощью термореле, при этом солнечный тепловой коллектор и фотоэлектрический тепловой модуль выполнены в виде приемников солнечного излучения, представляющих собой резервуары, которые имеют форму прямоугольного параллелепипеда, а на рабочей поверхности резервуара фотоэлектрического теплового модуля расположена батарея солнечных элементов, внутри резервуаров фотоэлектрического теплового модуля и солнечного теплового коллектора параллельно рабочей поверхности с зазором относительно ее расположена перегородка, не достигающая верхней и нижней стенки резервуара.

Изобретение относится к гелиотехнике и может быть использовано для проведения химических реакций. Гелиоустановка для химических реакций включает патрубки, нагреватель.

Многофункциональная солнечноэнергетическая установка (далее МСЭУ) относится к возобновляемым источникам энергии, в частности к использованию солнечного излучения для получения электрической энергии, обеспечения горячего водоснабжения и естественного освещения помещений различного назначения, содержащая оптически активный прозрачный купол, представляющий собой двояковыпуклую прямоугольную линзу, фотоэлектрическую панель, солнечный коллектор, круглые плоские горизонтальные заслонки полых световодов, полые световодные трубы, теплоприемную медную пластину солнечного коллектора, рассеиватель солнечного света, микродвигатели круглых плоских горизонтальных заслонок полых световодных труб, круговые светодиодные лампы, аккумуляторные батареи, датчики света и температуры, электронный блок управления, пульт управления, бак-аккумулятор, теплообменник, насос, обратный клапан, шестигранные медные трубопроводы, инвертор и опору с опорными стойками для поддержания конструкции МСЭУ.
Наверх