Интеллектуальный комплекс преобразования солей жесткости

Изобретение относится к области теплоэнергетики и может быть использовано для защиты и очистки от отложений солей жесткости (накипи) внутренних поверхностей трубопроводов, систем отопления, водонагревательного и отопительного оборудования, а также может быть использовано в стиральных и посудомоечных машинах и холодильной технике. Комплекс преобразования солей жесткости содержит корпус 1, в котором расположен генератор несинусоидальных электромагнитных колебаний качающейся частоты, к противофазным выходам 2 которого подключены провода-излучатели 3, 4 с возможностью их навивки во взаимно противоположном направлении на трубопровод 10. В корпусе 1 дополнительно расположен блок интеллектуального режима оповещения 5, соединенный с генератором несинусоидальных электромагнитных колебаний качающейся частоты и автономным источником питания 6. На корпусе 1 расположен индикатор 7. Датчик сигнализации 8 соединен с корпусом 1. Стяжки 9 выполнены из токонепроводящего материала с возможностью закрепления проводов-излучателей 3, 4 и расположены на трубопроводе 10. Изобретение позволяет повысить надежность работы комплекса и обеспечить его безопасность. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области теплоэнергетики и предназначено для защиты и очистки от отложений солей жесткости (накипи) на внутренних поверхностях трубопроводов, систем отопления, водонагревательного и отопительного оборудования (котлы, бойлеры, радиаторы, теплообменники и т.д.), а также может быть использовано в стиральных и посудомоечных машинах, холодильной технике и т.д.

Известен способ термоумягчения и обезжелезивания воды (патент РФ №2225848, C02F 5/02, 20.03.2004), включающий нагрев и кипячение воды с удалением из нее кислых реагентов и осадка, по которому кипячение воды осуществляют в деаэраторе, при котором происходит растворение металла корпуса и узлов деаэратора с образованием гидроксида металла, выполняющего функцию стабилизатора солей жесткости, при этом деаэратор снабжен устройством для отделения осадка, а нагрев воды в деаэраторе осуществляют паром и продувочной водой из котла с использованием содержащейся в ней щелочи и закисного железа для умягчения и стабилизации воды.

Недостатком аналога является сложность и громоздкость конструкции.

Известен блок управления для водоумягчающего устройства (патент РФ №2493107, C02F 1/42, 20.09.2013), содержащий основную подводящую линию для исходной воды, основную отводящую линию для смешанной воды, датчик для определения жесткости исходной воды WHисход или смешанной воды WHсмешан, вторичную отводящую линию, которая питается исходной водой из основной подводящей линии, вторичную подводящую линию, которая подается на основную отводящую линию, байпасный трубопровод, который проходит параллельно вторичной отводящей линии и вторичной подводящей линии, автоматически регулируемое смешивающее устройство для смешения потока смешанной воды Vсмешан (t) из первого частичного потока V(t)част.1мягк вторичной подводящей линии и второго частичного потока V(t)част.2исход байпасного трубопровода, электронное управляющее устройство, выполненное таким образом, что посредством определенной жесткости воды WHисход или WHсмешан обеспечивает дополнительную регулировку установленного положения смешивающего устройства для установки жесткости воды в потоке смешанной воды V(t)смешан на заданное расчетное значение.

Недостатком аналога является сложность и громоздкость конструкции.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является радиочастотный преобразователь солей жесткости (патент РФ №56891, С02F 1748, 27.09.2006), содержащий магистральный трубопровод обрабатываемой водной системы, генератор несинусоидальных электромагнитных колебаний качающейся частоты, к противофазным выходам которого подключены провода-излучатели, навитые во взаимно противоположном направлении на магистральный трубопровод.

Недостатком аналога является ограниченные функциональные возможности, обусловленные отсутствием непрерывного контроля за состоянием оборудования радиочастотного преобразователя солей жесткости.

Задачей изобретения является расширение функциональных возможностей радиочастотного преобразователя солей жесткости за счет введения непрерывного контроля за состоянием его оборудования.

Техническим результатом изобретения является повышение надежности работы комплекса и обеспечение его безопасности.

Поставленная задача решается, а технический результат достигается тем, что комплекс преобразования солей жесткости, содержащий корпус, в котором расположен генератор несинусоидальных электромагнитных колебаний качающейся частоты, к противофазным выходам которого подключены провода-излучатели с возможностью их навивки во взаимно противоположном направлении на трубопровод, согласно изобретению содержит расположенные в корпусе блок интеллектуального режима оповещения, соединенный с генератором несинусоидальных электромагнитных колебаний качающейся частоты и автономным источником питания, индикатор, расположенный на корпусе, датчик сигнализации и стяжки, выполненные из токонепроводящего материала с возможностью закрепления проводов-излучателей и расположенные на трубопроводе.

Кроме того, согласно изобретению блок интеллектуального режима оповещения может быть выполнен в виде GSM-модуля.

Кроме того, согласно изобретению в качестве автономного источника питания может быть применена аккумуляторная батарея.

Кроме того, согласно изобретению индикатор может быть выполнен светодиодным.

Кроме того, согласно изобретению стяжки могут быть выполнены из пластика.

Существо изобретения поясняется чертежом, на котором изображена схема интеллектуального комплекса преобразования солей жесткости.

Интеллектуальный комплекс преобразования солей жесткости содержит корпус 1, внутри которого расположен генератор несинусоидальных колебаний качающейся частоты с противофазными выходами 2, соединенный с проводами-излучателями 3 и 4. Внутри корпуса 1 расположены блок интеллектуального режима оповещения 5, например GSM-модуль, соединенный с автономным источником питания 6, например аккумуляторной батареей, и генератором несинусоидальных колебаний качающейся частоты с противофазными выходами 2, связанным с индикатором 7. Блок интеллектуального режима оповещения 5 соединен с датчиком сигнализации 8. Для закрепления проводов-излучателей 3 и 4 использованы стяжки 9, выполненные из токонепроводящего материала, например пластика, и установлены на трубопроводе 10.

Интеллектуальный комплекс преобразования солей жесткости работает следующим образом. В основе технологии обработки воды положен принцип изменения формы кристалла карбоната кальция под действием электромагнитных волн звукового диапазона. Эти волны абсолютно безвредны для человека. Под их воздействием меняется структура кристаллов солей жесткости. Преобразованная в хрупкие кристаллы накипь легко смывается с поверхности и уносится потоком. А новые кристаллы не образуются. Вода при этом не меняет свой солевой состав. Через 5…6 дней после прекращения обработки форма кристалла карбоната кальция восстанавливается, свойства умягченной воды утрачиваются. Они восстанавливаются при повторной обработке.

Воду, подвергаемую противонакипной обработке, подают по трубопроводу 10. Генератор несинусоидальных колебаний качающейся частоты с противофазными выходами 2 через провода-излучатели 3 и 4, закрепленные предварительно на трубопроводе 10 стяжками 9, посредством электромагнитного поля воздействует на соли жесткости, растворенные в воде. В результате этого воздействия соли жесткости теряют на некоторое время способность объединяться в кристаллы и оседать на стенках трубопровода в виде накипи, при этом солевой состав воды не изменяется.

Электромагнитное поле попадает внутрь трубопровода, вне зависимости от его материала, следующим образом. На провода-излучатели 3 и 4 подают противофазные импульсы напряжения с частотой, формируемой генератором несинусоидальных колебаний качающейся частоты 2. Благодаря емкостной связи между проводами-излучателями 3 и 4 и трубопроводом 10 (в случае токопроводящего трубопровода) или с водой в трубопроводе 10 (в случае не токопроводящего трубопровода) на участке трубопровода 10 между навитыми во взаимно противоположном направлении проводами-излучателями 3 и 4 (см. фиг.) возникают знакопеременные импульсы тока, порождающие как снаружи, так и внутри трубопровода 10 знакопеременное магнитное поле, которое в свою очередь порождает в проводящей жидкости, например в воде, знакопеременные импульсы тока. Таким образом, в потоке проводящей жидкости, прокачиваемой по трубопроводу 10, создается импульсное знакопеременное электромагнитное поле с постоянно меняющейся во времени частотой.

С генератором несинусоидальных колебаний качающейся частоты с противофазными выходами 2 соединен блок интеллектуального режима оповещения 5, который обеспечивает возможность отображения информации о состоянии интеллектуального комплекса преобразования солей жесткости, о его функциональном сбое, в том числе поломке или искажении генерируемого сигнала. Блок интеллектуального режима оповещения 5 уведомляет, например, путем отправления SMS-уведомления владельцу оборудования, при включении или выключении внешнего источника энергии. При выключении внешнего источника энергии блок интеллектуального режима оповещения 5 работает от автономного источника питания 6, например аккумуляторной батареи. Работа генератора несинусоидальных колебаний качающейся частоты с противофазными выходами 2 отображается на индикаторе 7. Блок интеллектуального режима оповещения 5 оповещает также владельца оборудования или охрану о несанкционированном появлении постороннего объекта в помещении, где установлено данное оборудование, посредством датчика сигнализации 8, выполняя охранные функции. Это позволяет эффективно противостоять попыткам похищения оборудования, совершению террористических актов и других преступлений на объекте с установленным оборудованием.

Особенность интеллектуального комплекса преобразования солей жесткости в том, что помимо выполнения своих основных функций по предотвращению появления накипи оно выполняет целый ряд задач:

1) дистанционное интерактивное информирование владельца оборудования о функциональном сбое самого оборудования, в том числе поломке или искажении генерируемого сигнала;

2) при выключении внешнего источника энергии владельцу оборудования дистанционно интерактивно передается соответствующий сигнал, что позволяет повысить эффективность жизнеобеспечения объекта, в котором установлено данное оборудование, оповещая о возможном сбое в работе всей системы отопления или прекращении подачи электроэнергии;

3) оповещение владельца оборудования о несанкционированном появлении постороннего объекта в помещении, где установлено данное оборудования, выполняя охранные функции.

Таким образом, интеллектуальный комплекс преобразования солей жесткости позволяет тем самым осуществлять круглосуточную непрерывную охрану помещения, в котором установлено данное оборудование, путем уведомления, например SMS-уведомлением. Данное оборудование наиболее полезно для теплогенерирующих компаний, управляющих компаний жилищно-коммунального хозяйства, культурных и социальных объектов, административных помещений и т.д.

Итак, заявляемое изобретение позволяет повысить надежность работы за счет введения стяжек и повысить информативность состояния интеллектуального комплекса преобразования солей жесткости и, соответственно, его безопасность за счет введения блока интеллектуального режима оповещения при сохранении функции обеспечения защиты от накипи.

Кроме того, заявляемое изобретение позволяет расширить функциональные возможности преобразователя солей жесткости за счет введения непрерывного контроля за состоянием его оборудования.

1. Комплекс преобразования солей жесткости, содержащий корпус, в котором расположены генератор несинусоидальных электромагнитных колебаний качающейся частоты, к противофазным выходам которого подключены провода-излучатели с возможностью их навивки во взаимно противоположном направлении на трубопровод, отличающийся тем, что содержит расположенные в корпусе блок интеллектуального режима оповещения, соединенный с генератором несинусоидальных электромагнитных колебаний качающейся частоты и автономным источником питания, индикатор, расположенный на корпусе, датчик сигнализации, соединенный с корпусом, и стяжки, выполненные из токонепроводящего материала с возможностью закрепления проводов-излучателей и расположенные на трубопроводе.

2. Комплекс преобразования солей жесткости по п. 1, отличающийся тем, что блок интеллектуального режима оповещения выполнен в виде GSM-модуля.

3. Комплекс преобразования солей жесткости по п. 1, отличающийся тем, что в качестве автономного источника питания применена аккумуляторная батарея.

4. Комплекс преобразования солей жесткости по п. 1, отличающийся тем, что индикатор выполнен светодиодным.

5. Комплекс преобразования солей жесткости по п. 1, отличающийся тем, что стяжки выполнены из пластика.



 

Похожие патенты:

Изобретение относится к установке и способу управления многоразмерными резервуарами для обработки воды. Установка для умягчения воды содержит первый резервуар 24 для обработки воды, заполненный ионообменной смолой 32, имеющий первую водопропускную способность, второй резервуар 26 для обработки воды, заполненный ионообменной смолой 32 и расположенный параллельно указанному первому резервуару и имеющий вторую водопропускную способность, которая меньше указанной первой водопропускной способности, расходомер, соединенный с указанными первым и вторым резервуарами и выполненный с возможностью измерения количества галлонов воды, проходящих в установку в единицу времени для определения потребляемого расхода воды, поступающей в указанную установку, и контроллер 70, сообщающийся с указанным расходомером, причем указанный контроллер выполнен с возможностью направления воды в указанный первый резервуар, когда потребляемый расход воды превышает первый расчетный расход воды, и направления воды в указанный второй резервуар, когда потребляемый расход воды равен указанному первому расчетному расходу воды или меньше него.

Изобретение относится к электростатической обработке жидкостей и изменению свойств жидкости, формированию центров кристаллизации или коагуляции. Способ обработки жидкости заключается в электростатическом воздействии через центральный электрод 8 сдвоенного конденсатора, имеющий контакт с жидкостью и не имеющий непосредственного подключения к источнику питания.

Изобретение относится к способу работы водоумягчительной установки. Водоумягчительная установка содержит автоматически регулируемое смесительное устройство для смешивания потока V(t)verschnitt смешанной воды из первого умягченного частичного потока V(t)teil1weich и второго содержащего исходную воду частичного потока V(t)teil2roh, и электронное управляющее устройство, которое подстраивает с помощью одной или нескольких определенных экспериментально моментальных измерительных величин положение регулирования смесительного устройства так, что жесткость воды смешанного потока V(t)verschnitt устанавливается на заданное номинальное значение (SW), при этом управляющее устройство в одной или нескольких заданных рабочих ситуациях игнорирует по меньшей мере одно из одной или нескольких моментальных измерительных величин для подстройки положения регулирования смесительного устройства и вместо этого исходит из последней значащей соответствующей измерительной величины перед возникновением заданной рабочей ситуации или находящегося в памяти электронного управляющего устройства стандартного значения для соответствующей измерительной величины.

Изобретение относится к области очистки воды и водных растворов с использованием ультразвуковых колебательных систем. .

Изобретение относится к водоумягчительной установке, предназначенной для работы в режиме мягкой воды, режиме проточной воды, режиме регенерации и режиме регулирования, и может использоваться для обработки водопроводной воды в домах, офисах и т.д.

Изобретение относится к безреагентной очистке воды от нерастворимых твердых веществ, в частности от накипи, и может быть применено в теплоэнергетике. .

Изобретение относится к станциям водоподготовки и может быть использовано для реагентного обесцвечивания, обезжелезивания, деманганации и умягчения маломутных природных вод.

Изобретение относится к дезинфекции флюидов для обработки приствольной зоны с использованием смешанного окислителя, полученного на буровой площадке. Более конкретно, изобретение относится к дезинфекции флюидов для обработки приствольной зоны для снижения биологического загрязнения ствола скважины и пластов горных пород, находящихся в контакте с флюидом для обработки приствольной зоны и водой обратного потока, извлекаемой из скважины.

Изобретение относится к открытым фильтрам с большой рабочей поверхностью и может быть использовано в очистных сооружениях поверхностного стока с территории города.

Изобретение относится к водоподготовке. Способ водоподготовки включает: прохождение воды через систему каналов в направлении потока воды, каждый из которых встроен в поверхность магнитопроницаемой микроканальной пластины 7, 8, изготовленной из сплава редкоземельного металла; и создание магнитного поля расположением системы постоянных магнитов 10 так, чтобы сформировать по крайней мере один слой постоянных магнитов 10, прилегающий к внешней стороне по крайней мере одной магнитопроницаемой микроканальной пластины 7, 8, чтобы магнитное поле имело направление, перпендикулярное направлению указанного потока воды, и разрушить магнитным полем по крайней мере некоторые водородные связи.

Изобретение относится к сельскому хозяйству и предназначено для удаления осадка из прудов-накопителей, используемых для транспортировки ила в животноводческих стоках на поля орошения, в водоохранных мероприятиях, для распределения сточных и животноводческих стоков в системе дождевания из распределительных трубопроводов.

Способ может быть использован в сельском хозяйстве для подготовки жидких отходов свиноводческих комплексов и ферм для орошения и удобрения сельскохозяйственных угодий.

Изобретение относится к очистке дренажных и сбросных вод от загрязнений и может быть использовано в орошаемом земледелии при создании гидромелиоративных систем с замкнутым циклом водооборота.

Изобретение относится к области тепловой и промышленной энергетики и может быть использовано для обеспечения потребителей химически очищенной и химически обессоленной водой.

Группа изобретений относится к сорбентам и их применению. Сорбент анионов сурьмы содержит частицы или гранулы оксида циркония и характеризуется коэффициентом распределения анионов сурьмы, по меньшей мере, 10000 мл/г при рН в диапазоне от 2 до 10, причем указанные частицы имеют средний размер от 10 нм до 100 мкм, для которых скорость потока составляет от 100 до 10000 объемов слоя в час и указанные гранулы имеют средний размер от 0,1 до 2 мм, для которых скорость потока составляет от 10 до 50 объемов слоя в час.

Группа изобретений относится к способу концентрирования сточных вод и системе концентрирования жидкости, используемым при очистке сточных вод. Способ включает комбинирование нагретого газа и жидких сточных вод для образования смеси нагретого газа и переносимых жидких сточных вод и разбивание переносимых сточных вод на капли для увеличения площади граничной поверхности между переносимыми жидкими сточными водами и нагретым газом для обеспечения быстрого массового и теплового переноса между каплями переносимых жидких сточных вод и нагретым газом.

Изобретение относится к способу производства водородсодержащего продукта и одного или нескольких продуктов в виде жидкой воды с использованием каталитического парового реформинга углеводородов.

Изобретение относится к области очистки воды. Предложен способ получения средства для очистки воды на основе хлоралюминийсодержащего коагулянта. Способ включает взаимодействие металлического алюминия с раствором соляной кислоты, последующее введение в смесь добавки и выдержку смеси с получением продукта полимеризации. В качестве добавки в смесь вводят активированный уголь с размером частиц 100-10000 нм в количестве 9-12 кг/тн. Продукт полимеризации содержит полиалюминийгидрохлорид со степенью полимеризации около 70% и показателем основности 5/6. Способ очистки воды полученным средством осуществляют в аппарате, содержащем смеситель, флокулятор и флотатор. 3 н.п. ф-лы, 1 ил.
Наверх