Способ изготовления толстопленочных резисторов

Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности. В способе изготовления толстопленочных резисторов, включающем последовательное нанесение методом трафаретной печати на изолирующую подложку проводникового и резистивного слоев с последующими сушкой и вжиганием в воздушной атмосфере, на резистивный слой дополнительно наносят основной защитный слой методом трафаретной печати с последующим вжиганием, затем после лазерной подгонки сопротивления резисторов наносят дополнительный защитный слой методом трафаретной печати, затем формируют охватывающие контакты посредством напыления слоя никеля с подслоем титана с последующим горячим лужением припоем. Технический результат от использования изобретения заключается в повышении выхода годных резисторов с одновременным повышением технических характеристик резисторов. 1 з.п. ф-лы, 1 ил., 2 табл.

 

Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности.

По толстопленочной технологии изготовления резисторов - проводниковый и резистивный слои наносятся методом трафаретной печати с последующей сушкой и вжиганием.

Известен способ изготовления толстопленочных резисторов, защищенный патентом РФ 2086027, кл. H01C 17/06, опубл. 27.07.1997.

Резистор изготавливается традиционными методами толстопленочной технологии, включающими последовательное нанесение методом трафаретной печати на изолирующую подложку проводниковых и резистивного слоев, их сушку и вжигание в воздушной атмосфере, причем сначала наносят первый проводниковый слой, поверх него наносят резистивный слой, а затем поверх резистивного слоя - второй проводниковый слой, при этом для формирования проводниковых слоев используют проводниковую пасту, включающую агент-восстановитель (бор, алюминий и др.) или вещество, разлагающееся при вжигании с образованием такого восстановителя (борид никеля и др.), а для формирования резистивного слоя пасту, содержащую порошок стекла или стеклокерамической композиции и органическое связующее.

В процессе вжигания содержащийся в противолежащих проводниковых слоях восстановитель создает восстановительную среду в локальном объеме, включающем как проводниковые слои, так и находящийся между ними резистивный слой.

Стекло или стеклокерамическая композиция, содержащиеся в резистивном слое, имеют в своем составе вещества, способные к восстановлению (оксиды переходных металлов в высшей степени окисления или их соединения). В результате их восстановления при вжигании в резистивном слое образуется электропроводящая фаза.

Недостатком известной технологии изготовления резисторов является недостаточно высокий выход годных резисторов.

Известен способ изготовления прецизионных чип-резисторов по гибридной технологии, защищенный патентом РФ №2402088, МПК H01C 17/06, H01C 17/28, опубл. 20.10.2010 г.

Способ содержит следующие технологические операции: 1) нанесение на шлифованную (тыльную) поверхность изоляционной подложки методом трафаретной печати слоя серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки; 2) напыление на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии резистивного слоя; 3) формирование методом фотолитографии и ионного травления топологии резистивного слоя на подложке; 4) нанесение методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне; 5) лазерную подгонку величины сопротивления резисторов в номинал; 6) нанесение методом трафаретной печати на резистивный слой с последующим вжиганием слоя низкотемпературной защитной пасты, образуя защитный слой; 7) скрайбирование и ломку пластины изоляционной подложки на полосы; 8) напыление методом вакуумной (тонкопленочной) технологии из сплава никеля с хромом на торцы, соединяя тем самым между собой электродные контакты лицевой и тыльной сторон подложки; 9) ломку рядов пластины на чипы; 10) нанесение гальваническим методом поверх электродных контактов - торцевого, на лицевой и на тыльной сторонах - слоя никеля; 11) нанесение поверх слоя никеля гальваническим методом слоя припоя в виде сплава олова со свинцом.

К недостаткам упомянутого способа можно отнести использование дополнительной операции по формированию электродных контактов на тыльной стороне подложки, усложняющей технологический процесс производства чип-резисторов.

Наиболее близким к заявляемому по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ изготовления толстопленочных резистивных элементов, защищенный патентом РФ №2497217, МПК H01C 17/06, опубл. 27.10.2013 г.

Способ изготовления толстопленочных резистивных элементов включает последовательное нанесение методом трафаретной печати на изолирующую подложку проводникового и резистивного слоев с последующим вжиганием его в воздушной атмосфере. В известном способе чередуют нанесение проводникового слоя с вжиганием его на отдельные участки изолирующей подложки, при температуре (840-860)°C в течение 55±5 минут, затем осуществляют нанесение резистивного слоя и вжигание его при температуре (805±2)°C в течение 70±5 минут поэтапно, с последующим контролем номинала резистивных элементов, причем при завышенном номинале подгонку производят при температуре (820±10)°C в течение 5-10 минут, а при заниженном номинале - при температуре (690±10)°C в течение 5-10 минут, после (690±10)°C в течение 5-10 минут, далее производят лужение в расплавленном припое окунанием при температуре (250±10)°C.

К недостаткам упомянутого способа можно отнести невысокий выход годных резисторов.

Задача, решаемая предлагаемым изобретением, - усовершенствование способа изготовления толстопленочных резисторов.

Технический результат от использования изобретения заключается в повышении выхода годных резисторов с одновременным повышением технических характеристик резисторов, таких как стабильность и температурный коэффициент сопротивления (ТКС), за счет использования защитных слоев, пассивирующих резистивный слой, более точного, локализованного метода подгонки (лазерного).

Указанный результат достигается тем, что в способе изготовления толстопленочных резисторов, включающем последовательное нанесение методом трафаретной печати на изолирующую подложку проводникового и резистивного слоев с последующими сушкой и вжиганием в воздушной атмосфере, на резистивный слой дополнительно наносят основной защитный слой методом трафаретной печати с последующим вжиганием, затем после лазерной подгонки сопротивления резисторов наносят дополнительный защитный слой методом трафаретной печати, затем формируют охватывающие контакты посредством напыления слоя никеля с подслоем титана с последующим горячим лужением припоем.

Для формирования основного защитного слоя используют высокотемпературную защитную пасту на основе стекла, что позволяет защитить область подгоночного лазерного реза за счет оплавления стекла.

Для формирования дополнительного защитного слоя используют высокотемпературную или низкотемпературную защитную пасту.

В качестве припоя используют, например, сплав олово-свинец или олово-висмут.

На фиг. изображена изолирующая подложка с проводниковыми и резистивными слоями.

Изолирующая подложка 1 с планарными контактами (проводниковый слой) 2 содержит резистивный слой 3, основной защитный слой 4, дополнительный защитный слой 5 и охватывающие контакты 6.

Изготовление толстопленочных резисторов по предлагаемому способу производят следующим образом.

В качестве основы изготавливаемых резисторов используются изолирующие подложки (например, керамические пластины). Вначале на изолирующей подложке 1 формируют планарные контакты 2 посредством нанесения высокотемпературной проводниковой пасты методом трафаретной печати на лицевую сторону подложки (на которой формируется резистивный слой) с последующим вжиганием. Затем формируют резистивный слой 3 посредством нанесения высокотемпературной резистивной пасты методом трафаретной печати на лицевую сторону керамической подложки с последующим вжиганием. Формируют основной защитный слой 4 посредством нанесения высокотемпературной защитной пасты на резистивный слой методом трафаретной печати с последующим вжиганием. Осуществляют подгонку сопротивления резисторов в подложке методом удаления части резистивного слоя сфокусированным лучом лазера. Далее формируют дополнительный защитный слой 5 посредством нанесения либо высокотемпературной, либо низкотемпературной защитной пасты методом трафаретной печати с последующими сушкой и вжиганием. Производят маркировку посредством нанесения маркировочной пасты методом трафаретной печати с последующими сушкой и вжиганием и разделение подложек на полосы (плата-ряды). Формируют охватывающие контакты 6 посредством напыления слоя никеля с подслоем титана с последующим горячим лужением припоем.

Пример конкретного выполнения способа.

Пример 1

В качестве основы резистора использовалась изолирующая подложка (алюмооксидная пластина). Вначале на лицевую сторону изолирующей подложки наносили методом трафаретной печати слой высокотемпературной проводниковой пасты ПП-8 (ЕТ0.035.367 ТУ) с последующей сушкой в ИК-печи при 150°C и вжиганием в конвейерной мультизонной печи с профилем температуры до 850°C, для формирования верхних планарных контактов. После чего сформировали резистивный слой посредством нанесения высокотемпературной резистивной пасты серии 33xx (ТУ 011-00387275-13) методом трафаретной печати на лицевую сторону изолирующей подложки с последующей сушкой в ИК-печи при 150°C и вжиганием в конвейерной мультизонной печи с профилем температуры до 850°C. Далее сформировали защитный слой посредством нанесения высокотемпературной защитной пасты 6550 (ТУ 011-00387275-13) на резистивный слой методом трафаретной печати с последующей сушкой в ИК-печи при 150°C и вжиганием в конвейерной мультизонной печи с профилем температуры до 610°C. После чего производили лазерную подгонку сопротивления резисторов с последующим формированием дополнительного защитного слоя посредством нанесения высокотемпературной защитной пасты ПЗХ-2 (ЕТО.035.464 ТУ) методом трафаретной печати с последующей сушкой в ИК печи при 150°C и вжиганием в конвейерной мультизонной печи с профилем температуры до 620°C. Далее проводили маркировку посредством нанесения маркировочной пасты 4082 (031-00387275-09 ТУ) методом трафаретной печати с последующей сушкой в ИК-печи при 150°C и вжиганием в конвейерной мультизонной печи при температуре (180-200)°C. Далее производили разлом подложек на полосы, после чего формировали охватывающие контакты посредством напыления слоя никеля с подслоем титана с последующим горячим лужением припоем (сплавом олово-свинец).

Сопротивление резисторов измеряли по ГОСТ 21342.20-78 «Резисторы. Метод измерения сопротивления». Температурный коэффициент сопротивления (ТКС) измеряли согласно ГОСТ 21342.15-78 «Резисторы. Метод определения температурной зависимости сопротивления». Наработку оценивали по ГОСТ 25359-82 «Изделия электронной техники. Общие требования по надежности и методы испытаний». Прочность охватывающего контакта резисторов к воздействию отрывающей силы проверялась путем припаивания к контактным поверхностям (охватывающим контактам) резисторов проволоки диаметром 0,3 мм с применением припоя ПОС-61. При испытаниях воздействующее перпендикулярно торцевым контактным поверхностям (охватывающим контактам) резистора усилие для резисторов типоразмеров 0402, 0603, 0805, 1206 значительно превысило 0,15 кгс.

Табл. 1
Полученные резисторы имели следующие технические характеристики.
Параметр Значение (лучшее)
ТКС×10-6 1/°C в диапазоне температур от 20 до 155°C (от 293 до 398) К ±50
Гарантированная стабильность в течение 1000 ч при Р=Рномин и Т=85°C, не более ±3%
Допускаемое отклонение от номинального сопротивления ±0,5%
Минимальная наработка 25000 час

Пример 2:

В качестве основы резистора использовалась изолирующая подложка (алюмооксидная пластина). Вначале на лицевую сторону изолирующей подложки наносили методом трафаретной печати слой высокотемпературной проводниковой пасты ПП-8 (ЕТО.035.367 ТУ) с последующей сушкой в ИК-печи при 150°C и вжиганием в конвейерной мультизонной печи с профилем температуры до 850°C, для формирования верхних планарных контактов. После чего сформировали резистивный слой посредством нанесения высокотемпературной резистивной пасты серии 33xx (ТУ 011-00387275-13) методом трафаретной печати на лицевую сторону изолирующей подложки с последующей сушкой в ИК-печи при 150°C и вжиганием в конвейерной мультизонной печи с профилем температуры до 850°C. Далее сформировали защитный слой посредством нанесения высокотемпературной защитной пасты 6550 (ТУ 011-00387275-13) на резистивный слой методом трафаретной печати с последующей сушкой в ИК печи при 150°C и вжиганием в конвейерной мультизонной печи с профилем температуры до 610°C. После чего производили лазерную подгонку сопротивления резисторов с последующим формированием дополнительного защитного слоя посредством нанесения низкотемпературной защитной пасты 4081 (ТУ 031-00387275-09) методом трафаретной печати с последующей сушкой в ИК-печи при 150°C и вжиганием в конвейерной мультизонной печи при температуре (200±20)°C. Далее проводили маркировку посредством нанесения маркировочной пасты 4082 (031-00387275-09 ТУ) методом трафаретной печати с последующей сушкой в ИК-печи при 150°C и вжиганием в конвейерной мультизонной печи при температуре (180-200)°C. Далее производили разлом подложек на полосы, после чего формировали охватывающие контакты посредством напыления слоя никеля с подслоем титана с последующим горячим лужением припоем (сплавом олово-свинец).

Табл. 2
Полученные резисторы имели следующие технические характеристики.
Параметр Значение (лучшее)
ТКС×10-6 1/°C в диапазоне температур от 20 до 155°C (от 293 до 398) К ±50
Гарантированная стабильность в течение 1000 ч при Р=Рномин и Т=85°C, не более ±3%
Допускаемое отклонение от номинального сопротивления ±0,5%
Минимальная наработка 25000 час

Надежность резисторов подтверждена испытаниями. Интенсивность отказов (λ) в предельно допустимых режимах эксплуатации (Р=Рном, t=85°C) не более 2×10-7 1/ч в течение наработки tλ=25000 в пределах срока службы (Тсл) 25 лет.

Таким образом, использование предлагаемого изобретения позволяет увеличить выход годных резисторов (от 10% по прототипу до 70% в предлагаемом способе) с одновременным повышением технических характеристик резисторов, таких как стабильность и температурный коэффициент сопротивления (ТКС), за счет использования защитных слоев, пассивирующих резистивный слой, более точного, локализованного метода подгонки (лазерного).

1. Способ изготовления резисторов, включающий последовательное нанесение методом трафаретной печати на изолирующую подложку проводникового и резистивного слоев с последующими сушкой и вжиганием в воздушной атмосфере, отличающийся тем, что на резистивный слой дополнительно наносят основной защитный слой методом трафаретной печати с последующим вжиганием, затем после лазерной подгонки сопротивления резисторов наносят дополнительный защитный слой методом трафаретной печати, затем формируют охватывающие контакты посредством напыления слоя никеля с подслоем титана с последующим горячим лужением припоем.

2. Способ по п. 1, отличающийся тем, что для формирования дополнительного защитного слоя используют высокотемпературную или низкотемпературную защитную пасту.



 

Похожие патенты:

Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности.
Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности.

Изобретение относится к изготовлению прецизионных пленочных резисторов. Устройство содержит источник опорного напряжения (1), устройство сравнения (2), измеритель сопротивления (3), аналого-цифровой преобразователь (АЦП) (4), мультивибратор (5), регистр сдвига (6), первую группу элементов И (7-1…7-n), блока хранения данных (8), вторую группу элементов И (9-1…9-n), цифроаналоговый преобразователь (ЦАП) (10), генератор факельного разряда (11), рабочий электрод (12), подгоняемый резистор (13), подложкодержатель (14), элемент ИЛИ (15).

Изобретение относится к измерительной технике, и может быть использовано в прецизионных стабилизаторах тока, преобразователях код-ток, ток-частота и т.д. .

Изобретение относится к электроэнергетике и касается технологии изготовления объемных композиционных резисторов. .

Изобретение относится к области электротехники и может быть использовано при создании резистивных слоев, снимающих заряды и выравнивающих градиенты потенциала на поверхности нитридокерамических и оксидокерамических изоляторов.

Изобретение относится к области электронной техники, а именно к средствам измерения, в конструкции которых применен тензорезистивный элемент на металлической подложке, изготовленный с использованием тонкопленочной технологии. Способ изготовления тонкопленочных резисторов включает последовательное напыление на диэлектрическую подложку резистивной и проводящей пленок, формирование микрорисунка резисторов методом фотолитографии с последующей термообработкой инфракрасным излучением при температуре рекристаллизации резистивной пленки. Термообработку осуществляют кратковременно в вакууме в течение 15-30 минут и после чего проводят термостабилизацию на воздухе при температуре 220±30°C в течение 15-35 минут. Термообработку в вакууме осуществляют при давлении P=(1·10-5-5·10-6) мм рт.ст. Технический результат заключается в повышении стабильности резистивного элемента, расширении рабочих температур датчиков при эксплуатации и обеспечении высокой точности измерения давления в течение длительного времени их работы. 1 з.п. ф-лы, 1 табл.

Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности, в том числе мощных высокочастотных цепях. В способе изготовления тонкопленочного резистора, включающем напыление резистивного слоя и формирование многослойной проводящей структуры, после напыления резистивного слоя и формирования многослойной проводящей структуры формируют пассивирующую пленку на основе исходного компонента резистивного слоя. Технический результат от использования изобретения заключается в улучшении температурного коэффициента сопротивления за счет формирования пассивирующей пленки на основе исходного компонента резистивного слоя. 1 ил.

Изобретение относится к электронной технике, в частности к технологическим процессам изготовления толстопленочных резисторов, и может быть использовано при корректировке сопротивления резистора до необходимого номинала или получения нестандартного значения сопротивления без разрушения резистивного слоя, а также при корректировке функциональной характеристики резистивной пленки. Техническим результатом изобретения является повышение эффективности и качества корректировки функциональной характеристики и подгонки сопротивления переменных и постоянных толстопленочных резисторов за счет программного управления процессами подгонки и сканирования толстопленочных резисторов. 6 ил.

Изобретение относится к радиоэлектронике, а точнее к тонкопленочной технологии. Сущность способа изготовления резистора на кристаллической или поликристаллической подложке заключается в том, что кристаллическую или поликристаллическую подложку шлифуют, располагают ее в импланторе, направляют сфокусированный поток ионов на подложку и рисуют им резистор. Техническим результатом изобретения является расширение арсенала способов изготовления резистора на кристаллической или поликристаллической подложке. 1 ил.

Изобретение относится к электронной технике, а именно к производству низкоомных чип-резисторов, которые могут быть использованы в электронной, радиотехнической и других смежных отраслях промышленности, в частности для применения в качестве датчиков тока. Технический результат предложенного способа заключается в возможности изготовления чип-резисторов со значением ТКС, которое не превышает целевого значения при заданном значении сопротивления. Способ изготовления низкоомного чип-резистора включает резистивное формирование на концах резистивной пластины контактов и подгонку ее сопротивления, между контактами на резистивной пластине формируют покрытие из изолирующего материала, на контакты наносят гальваническое покрытие с образованием выводов чип-резистора, каждый из которых состоит из контакта с гальваническим покрытием и смежной с контактом части резистивной пластины, при формировании контактов проводят процедуру минимизации переходных сопротивлений между контактами и резистивной пластиной путем снятия окисных пленок с поверхности резистивной пластины, а контакты формируют такой конфигурации, при которой общее сопротивление выводов выбрано из математической зависимости. 1 ил.

Изобретение относится к электронной технике, а именно к производству низкоомных чип-резисторов, которые могут быть использованы в электронной, радиотехнической и других смежных отраслях промышленности, в частности для применения в качестве датчиков тока. Технический результат предложенного устройства заключается в создании низкоомного чип-резистора со значением ТКС, которое не превышает целевого значения при заданном значении сопротивления. Технический результат достигается за счет того, что предложен низкоомный чип-резистор, включающий резистивную пластину с контактами на концах, с покрытием из изолирующего материала между контактами и гальваническим покрытием на контактах, при этом участок низкоомного чип-резистора, состоящий из контакта с гальваническим покрытием и смежной с контактом части резистивной пластины, образует вывод чип-резистора, а контакты имеют конфигурацию, при которой общее сопротивление выводов удовлетворяет математической зависимости. 1 ил., 1 табл.
Наверх