Система напольного отопления (охлаждения)

Изобретение относится к системам напольного отопления и/или охлаждения помещений и может быть использовано для создания оптимальных параметров микроклимата в жилых и офисных зданиях и сооружениях. Система напольного отопления (охлаждения), содержащая теплоизоляционный слой, слой бетона с размещенным в нем малоинерционным теплообменным змеевиком для циркуляции теплоносителя или охлаждающей среды, расположенный вблизи поверхности пола, теплопроводный металлический материал, дополнительно содержит аккумуляционный теплообменный змеевик, расположенный в глубине слоя бетона, при этом малоинерционный и аккумуляционный теплообменные змеевики объединены байпасными линиями, снабженными задвижками и циркуляционным насосом, а в качестве теплопроводного материала содержит металлическую сетку, контактирующую с малоинерционным теплообменным змеевиком. Это позволяет повысить эффективность использования саккумулированного в массиве перекрытия холода (теплоты) и регулирования холодоотдачи (теплоотдачи) для поддержания наиболее оптимальных параметров микроклимата в помещении. 2 ил.

 

Изобретение относится к системам напольного отопления и/или охлаждения помещений и может быть использовано для создания оптимальных параметров микроклимата в жилых и офисных зданиях и сооружениях.

Известно техническое решение (RU №2341627 C1, кл. E04F 15/00, опубл. 2008), относящееся к подогреваемому полу, содержащему установленное на грунт железобетонное основание, уложенный на железобетонное основание гидроизоляционный материал и последовательно уложенные теплоизоляцию, металлическую сетку, трубчатые нагревательные элементы, расположенные зигзагообразно и прикрепленные к металлической сетке, армированную стяжку и элементы отделки пола, что он снабжен слоем песка толщиной 25-30 мм, насыпанным на гидроизоляционный материал, и установленными поверх песка пенобетонными блоками, расположенными с зазорами относительно друг друга, засыпанными песком, при этом плотность теплоизоляции, уложенной на пенобетонные блоки, составляет 50-200 кг/м3, а толщина не более 50 мм в ненагруженном состоянии, стяжка выполнена раствором из крупнозернистого песка толщиной, определяемой по формуле a≥3b, где a - толщина стяжки, b - диаметр труб нагревательных элементов.

Указанное изобретение предназначено только для нагрева полов, кроме того, в нем не отражена возможность управления системой нагрева.

Известна теплообменная конструкция пола для регулирования температуры в помещениях (FR 2790819 A1, кл. F24D 3/16, опубл. 2001), которая содержит металлическую теплорассеивающую решетку с уложенным на нее контуром для циркуляции теплоносителя и покрытие с высоким коэффициентом теплопроводности.

Известны устройства теплых полов (JP 2895424, F24D 3/16, опубл. 2000; JP 3045135, F24D 3/16, опубл. 2001), содержащие теплоизоляционный слой с канавками для укладки трубок с циркулирующим теплоносителем, а также теплоизлучающий листовой материал.

Недостатком аналогов является сложность управления системой конвективного теплообмена, в которой происходит обмен тепловой энергией между жидкостью и средой.

Наиболее близким к заявленному является устройство для отопления и/или охлаждения помещений, например жилых и служебных помещений (RU №2178122 C2, кл. F24D 3/14, E04B 5/10, опубл. 2002), содержащее несущую плиту, на которой уложены трубы, по которым проходит теплоноситель или охлаждающая среда, уложенные в теплопроводящий слой, при этом несущая плита на обращенной к помещению стороне для поддержания равномерной температуры имеет профиль, который в поперечном сечении имеет волнообразную форму, то есть имеет выступы и впадины, переходящие друг в друга под плоским углом, причем трубы на участке впадин несущей плиты, уложенные в теплопроводящий слой, проходят с зазором от края и дна впадины.

Основным недостатком данного технического решения является тепловая инерционность и слабая регулируемость системы напольного отопления (охлаждения), особенно в режиме охлаждения, поскольку тепловые потоки из середины массивного слоя перекрытия распространяются значительно медленнее, чем меняется тепловая обстановка в помещении из-за изменения наружной температуры и солнечной радиации.

Технической задачей предлагаемого изобретения является создание регулируемой системы водяного напольного отопления (охлаждения), повышение эффективности использования саккумулированного в массиве перекрытия холода (теплоты) и регулирования холодоотдачи (теплоотдачи) для поддержания наиболее оптимальных параметров микроклимата в помещении.

Главная трудность в реализации комбинированной системы напольного отопления и охлаждения состоит в том, что режим отопления обладает существенно большим температурным потенциалом, чем режим охлаждения, и для его реализации необходима в 2-3 раза меньшая поверхность теплообмена, так для режима отопления разность температуры теплоносителя и поверхности теплого пола составляет 15-20°C, в то время как при стандартном холодоносителе (14/16°C) эта разность температуры всего 5-6°C.

Поставленная задача решена тем, что система напольного отопления (охлаждения), содержащая теплоизоляционный слой, слой бетона с размещенным в нем малоинерционным теплообменным змеевиком для циркуляции теплоносителя или охлаждающей среды, расположенный вблизи поверхности пола, теплопроводный металлический материал, дополнительно содержит аккумуляционный теплообменный змеевик, расположенный в глубине слоя бетона, при этом малоинерционный и аккумуляционный теплообменные змеевики объединены байпасными линиями, снабженными задвижками и циркуляционным насосом, а в качестве теплопроводного материала содержит металлическую сетку, контактирующую с малоинерционным теплообменным змеевиком.

Сущность изобретения поясняется подробнее чертежами и описанием к ним.

На фиг.1 представлен поперечный разрез бетонного перекрытия; на фиг.2 - система напольного отопления (охлаждения).

Система напольного отопления (охлаждения) содержит теплоизоляционный слой 1, слой бетона 2, в котором размещены малоинерционный теплообменный змеевик 3 для циркуляции теплоносителя или охлаждающей среды, контактирующий с теплопроводным материалом - металлической сеткой 4 и расположенный вблизи поверхности пола, и аккумуляционный теплообменный змеевик 5, расположенный в глубине слоя бетона, при этом малоинерционный теплообменный змеевик 3 и аккумуляционный теплообменный змеевик 5 объединены байпасными линиями 6, снабженными задвижками 7 и циркуляционным насосом 8, также малоинерционный теплообменный змеевик 3 снабжен задвижками 9, а аккумуляционный теплообменный змеевик 5 - задвижками 10. Металлическая сетка 4, контактирующая с малоинерционным теплообменным змеевиком 3, улучшает равномерность распределения теплоты по всей поверхности пола.

Система напольного отопления (охлаждения) работает следующим образом.

В режиме зарядки холодом (теплотой) конструкции перекрытия (фиг.1) холодоноситель (теплоноситель) поступает в малоинерционный теплообменный змеевик 3 (фиг.2) при открытых задвижках 9 и в аккумуляционный теплообменный змеевик 5 при открытых задвижках 10, причем задвижки 7 байпасных линий 6 закрыты, а циркуляционный насос 8 выключен. В режиме разрядки холод (теплота) от аккумуляционного теплообменного змеевика 5 переносится к малоинерционному теплообменному змеевику 3 с помощью циркуляционного насоса 8 при открытых задвижках 7 байпасных линий 6 и закрытых задвижках теплообменных змеевиков 9 и 10.

Соединение аккумуляционного 5 и малоинерционного 3 теплообменных контуров байпасными линиями 6 с циркуляционным насосом 8 позволяет достаточно быстро перенести холод (теплоту) из середины массива конструкции перекрытия к поверхности пола. При этом в дневное время не требуется использовать холодильную машину для выработки холода (электрокотел для отопления), а достаточно использовать в регулируемом режиме саккумулированную энергию. Регулирование холодоотдачи (теплоотдачи) пола осуществляется по датчикам результирующей температуры, установленным в помещении, за счет изменения производительности циркуляционного насоса. Зимой работает только один змеевик, а в летний период - оба змеевика. Комфортная температура поверхности пола в холодный период года +25-26°C, в теплый +20-21°C. Поддержание таких температур обеспечивает компенсацию теплопотерь в холодный период года и теплопоступлений в теплый период года.

Значительным экономическим преимуществом комбинированной напольной системы охлаждения (отопления) является возможность зарядки холодом (теплотой) в ночное время по льготному тарифу на электроэнергию (в большинстве регионов он в 2-4 раза меньше дневного тарифа).

Заявленная система отопления (охлаждения) обладает рядом преимуществ перед традиционными (радиаторы, конвекторы, фан-койлы, сплит-системы): бесшумна; не создает нежелательных градиентов температуры и скорости движения воздуха в помещении; экономит энергию; не занимает полезного объема помещений; позволяет аккумулировать холод (теплоту) в ночное время. Устройство системы напольного отопления (охлаждения) с двухуровневыми теплообменными змеевиками, расположенными один (малоинерционный теплообменный змеевик) вблизи поверхности пола, другой (аккумуляционный теплообменный змеевик) - в середине массива перекрытия, решает задачу управления системой напольного отопления (охлаждения), в которой происходит обмен тепловой энергией между жидкостью и средой.

Система напольного отопления (охлаждения), содержащая теплоизоляционный слой, слой бетона с размещенным в нем теплообменным змеевиком для циркуляции теплоносителя или охлаждающей среды, расположенный вблизи поверхности пола, теплопроводный металлический материал, отличающаяся тем, что дополнительно содержит аккумуляционный теплообменный змеевик, расположенный в глубине слоя бетона, при этом теплообменный змеевик для циркуляции теплоносителя или охлаждающей среды и аккумуляционный теплообменный змеевик объединены байпасными линиями, снабженными задвижками и циркуляционным насосом, а в качестве теплопроводного материала содержит металлическую сетку, контактирующую с теплообменным змеевиком для циркуляции теплоносителя или охлаждающей среды.



 

Похожие патенты:

Изобретение относится к области строительства, в частности создания нагревательных приборов для подогрева полов, стен, потолков и т.д. .

Изобретение относится к области строительства, в частности к конструкции для поддержания равномерной температуры поверхности. .

Изобретение относится к гидронным или панельно-лучистым системам нагрева или охлаждения, применяемым при отоплении жилых и производственных помещений, и может быть использовано в системе подогрева или охлаждения пола как в автономных системах обеспечения теплового режима различными источниками тепла, так и в системе центрального отопления.

Изобретение относится к плитообразной нагревательной панели, содержащей образованный в ней внутренний проход для текучей среды, и, в частности, к нагревательной панели, которая имеет соединительные элементы, скрепленные друг с другом с помощью болтов и гаек, что повышает сопротивление давлению.

Изобретение относится к области строительства, в частности к напольному элементу для системы отопления или охлаждения и способу его изготовления. .

Изобретение относится к системам отопления и/или охлаждения помещений, например жилых или служебных помещений. .

Изобретение относится к шипованной плите для укладки труб, встроенных в полы или стены нагревающих или охлаждающих устройств. .

Изобретение относится к отоплению. .

Изобретение относится к отопительной технике и предназначено для отопления преимущественно жилых помещений. .

Изобретение относится к теплоэнергетике, в частности к теплообменным аппаратам. Система отопления пола жилых и производственных помещений, заполненная теплоносителем, включает подающий и обратный трубопроводы и средства передачи тепловой энергии в виде набора труб, уложенных равноудаленно друг от друга. Набор труб одним концом соединен с одним обратным клапаном, а вторым концом - со вторым обратным клапаном, расположенными в гидравлическом насосе. В корпусе гидравлического насоса расположена гофрированная металлическая труба с тонкой стенкой, один конец которой соединен с подающим трубопроводом, а другой заглушен, при этом источник тепловой энергии через подающий трубопровод соединен с преобразователем потока, соединенным через обратный трубопровод с циркуляционным насосом и источником тепловой энергии. Это позволяет повысить коэффициент теплопередачи поверхностей теплообмена и соответственно повысить мощность системы отопления, а также обеспечить надежную циркуляцию теплоносителя в контуре труб. 1 ил.

Изобретение относится к области строительства, а именно к разработке проектных решений по созданию энергоэффективных, экологичных зданий и сооружений, в которых поддерживают заданную температуру воздуха, и может быть использовано при строительстве сооружений для отопления и/или охлаждения помещений в жилых и производственных, складских помещениях, в животноводческих фермах, в теплицах для подогрева грунта при выращивании ранних овощей, с помощью труб с проходящими в них теплоносителем или хладагента. Технической задачей изобретения является разработка проекта здания и сооружения, в котором поддерживалась бы заданная равномерная температура, для чего должна быть разработана система для поддержания заданной температуры в помещении, в том числе для этой цели должно быть разработано нагревательное устройство, поддерживающее заданную температуру. Поставленная задача решается тем, что способ строительства энергоэффективных сооружений, по которому возводят в технологической последовательности фундамент, на возведенный фундамент монтируют основание, после этого возводят стены, затем монтируют перекрытие, элементы крыши и кровлю, монтируют систему вентиляции и отопления, посредством которого поддерживают заданную температуру в помещениях, в системе отопления для передачи полу тепла заданной температуры используют нагревательные маты, которые выполняют модульными в виде многослойных панелей, которые укладывают на подготовленное основание с гидроизоляционным теплоотражающим слоем и подключают их к системе энергообеспечения сооружения. При этом каждый нагревательный мат снабжают тепловым элементом и выполняют его с теплоизоляционным и теплоаккумулирующим слоями, которые изготавливают из рассева на фракции 3-16 мм капсулированного пористого заполнителя, преимущественно керамзита, пористый заполнитель связывают между собой цементно-клеевым составом только в местах соприкосновения капсул, при этом укладку слоев заполнителя производят послойно и непрерывно по фракциям, теплоизоляционный слой укладывают из заполнителя фракций 5-16 мм, теплоаккумулирующий слой укладывают из заполнителя фракций 3-10 мм, причем теплоизоляционный слой укладывают толщиной не менее 20 мм, а теплоаккумулирующий слой - толщиной не менее 30 мм и не менее 3,5 диаметров теплового элемента. Кроме того, система поддержания температуры в сооружении, содержащая устройство для отопления, в котором установлены тепловые элементы для нагрева и передачи тепла полу. При этом устройство для отопления выполнено в виде нагревательного мата с теплоизоляционным слоем и теплоаккумулирующим слоем, а тепловой элемент выполнен в виде гофрированной тонкостенной трубки и размещен в теплоаккумулирующем слое между двумя металлическими сетками, которые установлены на дистанцерах, внутри теплового элемента размещен нагревательный элемент в виде проволоки или спирали, который выполнен из жаропрочного и химически стойкого легированного редкоземельными металлами сплава, а свободное внутреннее пространство теплового элемента заполнено смесью из непроводящих электричество тугоплавких, огнеупорных материалов. 2 н. и 5 з.п. ф-лы, 3 ил.
Наверх