Способ механического испытания металла

Решение относится к механическим испытаниям, предназначенным для определения характеристик металла, проявляемых в технологических операциях холодной обработки давлением. Предложено испытание проводить на специально изготовленном образце в виде круглого диска, который многократно прокатывается в валках лабораторного стана, после каждой прокатки измеряют длину осей полученного эллипса, находят по формулам логарифмические относительные деформации вдоль и поперек направления прокатки, и интенсивность деформации, а также измеряют твердость, в результате аппроксимации графической зависимости между интенсивностью деформации εi и твердостью HV находят выражение H V = N ε i n , в котором численное значение показателя степени при аргументе отражает восприимчивость испытуемого металла к наклепу. Технический результат - определение восприимчивости металла к наклепу в технологических операциях давлением, характеризующихся неограниченно большими деформациями. 2 ил., 2 табл.

 

Решение относится к механическим испытаниям, предназначенным для определения характеристик металла, проявляющихся при пластическом деформировании в технологических операциях холодной обработки металла давлением (ХОМД).

Характерным проявлением ХОМД является наклеп - возрастание прочности и, соответственно, твердости (например, по Виккерсу) обрабатываемого металла, закономерно связанное с возрастанием интенсивности пластической деформации.

Для прогнозирования технологических свойств металла в каждом конкретном процессе ХОМД и служебных качеств его в изделиях, произведенных данной ХОМД, необходимо выявление характерной для данного металла функциональной зависимости

где εi - интенсивность пластической деформации (безразмерная величин), HV - твердость по Виккерсу (в МПа).

Величину εi, характеризующую любой вид пластического деформирования, отличает от других показателей деформирования свойство: для данного металла независимо от вида деформирования, а также его температуры и скорости интенсивность имеет одно и то же численное значение, если на деформацию затрачивается одинаковая механическая работа. Поэтому функциональная зависимость (1), установленная для обрабатываемого конкретного металла, в любом виде пластического деформирования, будет справедлива и для деформирования любым другим способом.

На практике выявление зависимости (1) осуществляется в результате определенного лабораторного испытания, в котором металл нагружается до различных фиксируемых уровней интенсивности, и при этом фиксируется также его твердость.

Известно механическое испытание металла для установления зависимости (1) кручением тонкостенных трубчатых образцов.

[Смирнов-Аляев Г.А. Сопротивление материалов пластическому деформированию / Л.: Машиностроение, 1978, С.320].

Данное испытание является достаточно затратным в изготовлении образцов, усложненным с точки зрения фиксирования интенсивности и обработки результатов испытания в целом, и поэтому не нашло широкого практического применения.

Наиболее простым и наименее затратным в изготовлении образцов представляется механическое испытание металла для установления зависимости (1) широко распространенным стандартным растяжением плоских образцов.

[Глинер Р.Е., Майоров М.А. Применение испытаний твердости для оценки деформированного состояния при листовой штамповке / Кузнечно-штамповочное производство, 1987, №3, С.40].

Поскольку при растяжении численное значение величины е равно происходящему и легко определяемому удлинению, фиксирование интенсивности в данном испытании существенно облегчается.

Однако предельное удлинение металла при растяжении ограничено величинами εi, численные значения которых не превышают 0,5 для самых пластичных металлов, притом что при других испытаниях, например прокаткой, достигают значений 1,0 и более.

Таким образом, данное испытание не позволяет проследить проявление зависимости (1) при численных значениях εi, превышающих 0,5.

Известно механическое испытание металла с выявлением зависимости (1), в котором плоские образцы прямоугольной конфигурации подвергаются деформированию прокаткой. При этом фиксирование интенсивности деформаций выполняется с помощью нанесенной на образцы самоклеющейся измерительной сетки (СИС), рабочие ячейки которой образованы окружностями строго одинакового диаметра (D).

[Глинер Р.Е., Катюхин Е.Б. Применение самоклеющейся измерительной сетки для изучения закономерностей деформирования листового металла при обработке давлением со значительным утонением / Кузнечно-штамповое производство. Обработка металла давлением, 2013, №8, С.44-48]

В результате прокатки окружности СИС превращаются в эллипсы с максимальной и минимальной осью, соответственно L1 и L2.

Величины D, L1 и L2 используются для определения возникающих при прокатке логарифмических относительных деформаций ε1, ε2, и интенсивности деформации εi с расчетами по формулам

Данное испытание, являющееся наиболее близким по технической сущности к заявляемому способу, обладает следующими недостатками:

1) невозможность достоверного выявления восприимчивости к наклепу при деформациях с εi, более высоких, чем 0,8÷0,9, характерных для различных видов технологического деформирования, поскольку при этом границы измерительных ячеек, образующих СИС, теряют четкое очертание, что снижает точность выявления зависимости (1).

2) необходимостью использования дорогостоящей СИС, приобретаемой у зарубежных изготовителей (обладателей Ноу-хау);

Эти недостатки устраняются предлагаемым решением.

Задачей настоящего решения является совершенствование данного механического испытания металла за счет исключения в нем применения СИС.

Технический результат - определение восприимчивости металла к наклепу в технологиях холодной обработки давлением, характеризующихся неограниченно большими деформациями.

Этот технический результат достигается тем, что в способе механического испытания металла путем холодной прокатки образца, при которой окружность диаметра D превращается в эллипс, измеряют длину осей эллипса L1 и L2, по которым находят логарифмические относительные деформации ε1 и ε2 вдоль и поперек направления прокатки, и интенсивность деформации εi, испытания проводят на специально изготовленном образце в виде круглого диска, который многократно прокатывают в валках лабораторного стана, в результате чего диск становится эллипсовидным, после каждой прокатки измеряют длину осей L1 и L2, находят логарифмические относительные деформации ε1 и ε2, интенсивность деформации εi, а также измеряют твердость поверхности HV, в результате аппроксимации графической зависимости между интенсивностью деформации и твердостью находят выражение

в котором численные значения показателя степени при аргументе отражают восприимчивость испытуемого металла к наклепу, коэффициент N определяет собой твердость HV, приобретаемую металлом после деформирования с интенсивностью εi=1.

Следует отметить, что известен образец в форме круглой пластины (патент РФ №2360227, G01N 3/08, опубл. 27.06.2009). Однако этот образец имеет размещенные на нем концентраторы напряжений и нагружается испытательным усилием, прикладываемым перпендикулярно его плоской поверхности.

Таким образом, этот образец не пригоден для испытаний путем холодной прокатки с определением восприимчивости к наклепу.

В предлагаемом решении, благодаря тому что после деформирования прокатными валками окружность с исходным диаметром D, ограничивающая периметр образца, превращается в эллипс с осями L1 и L2, измерение которых позволяет определять величины ε1, ε2, и εi, с расчетами по формулам (2) и (3), отпадает необходимость применения СИС. При этом появляется возможность испытания металла при больших деформациях (εi>1).

На фиг.1 и фиг.2 показано, как выглядит предлагаемый образец соответственно до и после прокатки (вид сверху).

Пример.

Проводили испытания технически чистой меди и стали марок 08Ю и 08ЮПД, используя для этого образец каждого металла диаметром D=38,9 мм, толщиной 1, 98 мм (медь) и 0,91 (сталь обеих марок).

Прокатку выполняли на двухвалковом лабораторном прокатном стане, оборудованном ручным приводом вращении валков. При этом образец несколько раз, последовательно увеличивая обжатие, пропускали между валками и после каждой такой операции производили измерения толщины после прокатки, твердости (HV) испытуемого металла, величин L1 и L2, с последующими компьютерными расчетами по формулам (2) и (3).

Измерения диаметра D и величин L1 и L2 после каждой очередной прокатки выполняли, используя стандартный штангенциркуль.

Измерения твердости выполняли на приборе Виккерса, используя нагрузку 50 Н (HV5).

Результаты геометрических измерений, измерений твердости и расчетов интенсивности деформаций приведены в табл.1.

Данные, содержащиеся в колонках {εi,HV5} табл.1, подвергали компьютерной обработке с выявлением аналитического выражения зависимости (1) в виде степенной функции

в котором численные значения коэффициента n при аргументе количественно отражают восприимчивость данного металла к наклепу при неограниченном пластическом деформировании в любом виде технологического процесса ХОМД.

При этом коэффициент N определяет собой твердость HV5, приобретаемую металлом после деформирования с интенсивностью εi=1, а коэффициент n является показателем, характеризующим темп возрастания твердости и соответственно восприимчивость стали к наклепу.

В табл.2 приведены результаты вычисления этих анализов.

Как видно из табл.2, по восприимчивости к наклепу (величина n) медь значительно превосходит сталь, притом что сталь ограниченной прочности (08Ю) наклепывается несколько сильнее, чем сталь повышенной прочности (08ЮПД).

Проведенный анализ аналогов позволяет сделать вывод о том, что предлагаемое решение соответствует критерию «новизна», достигаемый технический результат в совокупности с новыми существенными признаками свидетельствует об изобретательском уровне, а проведенные испытания подтверждают промышленную применимость.

Способ механического испытания металла путем холодной прокатки образца, при которой окружность диаметра D превращается в эллипс, измеряют длину осей эллипса L1 и L2, по которым находят относительные логарифмические деформации ε1, ε2 вдоль и поперек направления прокатки, и интенсивность деформации εi, отличающийся тем, что испытания проводят на специально изготовленном образце в виде плоского круглого диска, который многократно прокатывают валками лабораторного стана, в результате чего диск становится эллипсовидным, после каждого очередного обжатия измеряют длину осей формирующегося эллипса L1 и L2, рассчитывают деформации ε1, ε2 и интенсивность деформации εi, а также измеряют твердость HV, математической обработкой находят выражение зависимости H V = N ε i n , численные значения коэффициентов n в котором отражают восприимчивость к наклепу испытуемого металла, коэффициент N определяет собой твердость HV, приобретаемую металлом после деформирования с интенсивностью εi=1.



 

Похожие патенты:
Изобретение относится к способу изготовления плоских образцов из высокоэластичных полимеров и других материалов, способных испытывать большие деформации в результате нагрузки, для проведения экспериментов на двухосное растяжение.

Изобретение относится к испытательной технике и может быть использовано для испытания образцов строительных материалов на совместное действие усилий растяжения, среза и изгиба, и позволяет испытывать образцы материалов при различных комбинациях нагружения их усилиями растяжения, среза и изгиба в совокупности с разрывной машиной.

Изобретение относится к испытательной технике, к методам определения механических свойств материалов. Сущность: испытывают одновременно два объекта испытаний, причем на каждый объект действует нагрузка одной и той же величины.

Изобретение относится к испытательной технике, к методам определения механических свойств материалов. Сущность: испытывают одновременно два объекта испытаний.

Изобретение относится к строительству, в частности к способам испытания строительных материалов на прочность, и может быть использовано при определении прочностных характеристик строительных материалов с получением нисходящей ветви диаграммы растяжения.
Изобретение относится к области определения прочностных свойств металлов и их сплавов путем приложения растягивающих нагрузок к стандартным плоским или круглым образцам исследуемых металлов, геометрические размеры которых регламентируются ГОСТ 10006-80.

Изобретение относится к механическим испытаниям на растяжение хрупких образцов из композиционных материалов и предназначено для авиастроения, судостроения, машиностроения, атомной энергетики.

Изобретение относится к области испытания материалов и может быть использовано для определения сопротивления протяженному вязкому разрушению высокопрочных трубных сталей класса прочности К65 и выше с ударной вязкостью более 2,5 МДж/м2.

Изобретение относится к области физики материального (контактного) взаимодействия, а именно к способу определения угла φн внутреннего трения и удельного сцепления - сн материальной связной среды нарушенной структуры, воспринимающей давление свыше гравитационного.

Изобретение относится к испытательной технике для определения механических свойств материалов и изделий. Преимущественная область применения - исследование эксплутационных характеристик антисейсмических гидроамортизаторов атомных реакторов и другого оборудования АЭС.

Изобретение относится к области «Физики контактного взаимодействия» материальной среды в предельном состоянии. Сущность изобретения состоит в том, что предельное состояние исследуемой среды определяют по зависимости τ с р к = p с р к t g φ ° + с ,    где τ с р к и p с р к - значения тангенциального главного напряжения ( τ с р к = σ I = σ I I ) и давления, соответствующего главному напряжению растяжения-сжатия ( σ I I I = p с р к ) среды, в условиях компрессионного сжатия образца среды, а значения нормального давления и нормальных тангенциальных напряжений сдвига среды определяют как: 1) в условиях одноосного деформирования , - при выходе линий сдвига на боковую поверхность образца и - под подошвой штампа; 2) при деформировании поверхности полупространства , - при выходе линий сдвига на поверхность полупространства и - под подошвой штампа; 3) при деформации штампом дна вертикальной выработки , - при выходе линий сдвига из стенок выработки и - под подошвой штампа, где рб=(γстрh-cстр)ctgφстр (кг/см2) - бытовое гравитационное давление; 4) при деформации среды в замкнутом массиве , - при выходе линий сдвига в полость над штампом и - под подошвой штампа. Технический результат - обеспечение возможности определения нормального давления и нормальных тангенциальных напряжений сдвига среды в условиях одноосного деформирования, при деформировании поверхности полупространства, при деформации штампом дна вертикальной выработки, .при деформации штампом дна вертикальной выработки и при деформации штампом дна вертикальной выработки. 4 з.п. ф-лы, 4 ил.

Изобретение предназначено для оценки деформативности соединений в изделиях из импрегнированной ткани, подвергаемых двухосному напряжению неразрушающими нагрузками с целью определения деформативных характеристик пневматической конструкции в целом. Образец для испытания соединений импрегнированной ткани включает соединение двух Т-образных деталей, расположенное по оси образца в одном из двух взаимоперпендикулярных направлений. Способ испытания образца соединений импрегнированной ткани, осуществляемый с возможностью учета соединения при оценке напряженно-деформированного состояния опытного образца, вызванного двухосным растяжением, за счет корректировки прикладываемых к образцу усилий из условия обеспечения идентичности его напряженного состояния состоянию образца без соединения. Изобретение обеспечивает сохранение в последующем заданной формы изделия, подвергаемого испытанию. 2 н.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, а именно к устройствам для испытания образцов материалов на консольный изгиб, кручение, растяжение, сжатие, а также на сложное сопротивление и может быть применено в учебной лаборатории. Устройство содержит основание, закрепленный на нем пассивный захват с испытуемым образцом, вал с активным захватом образца, закрепленный на валу с помощью шпонки шкив с грузом и тягой и рычаг с прикрепленными двумя тягами. На валу установлены радиальный шариковый однорядный подшипник, обхватываемый кольцом, грузы, прикрепленные к кольцу, второй груз, прикрепленный к шкиву, прикрепленный к валу круг с вырезом вдоль диаметра как единое целое с валом и прикрепленный к кругу груз. Рычаг имеет две продольные прорези и обе тяги, прикрепленные к его одному концу с разных сторон, стержень с двумя гайками, соединяющий круг с рычагом, болт, соединяющий стержень с гайкой, и винты, соединяющие эту гайку с рычагом. Пять грузов прикреплены через тяги и блоки. Технический результат: более широкий диапазон исследования прочности образцов материалов, а именно испытание образцов материалов не только на кручение, растяжение, сжатие, на совместное кручение с сжатием, на совместное кручение с растяжением, но и на консольный изгиб и сложное сопротивление. 1 ил.

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций. Сущность: отслеживается разница между деформациями, получаемыми в результате испытания образца на одновременное силовое нагружение и воздействие агрессивной среды, и заранее протарированными данными, полученными испытаниями на длительную прочность образцов в условиях только силового нагружения, осуществляется контроль нагрузки на образец и своевременное ее снижение таким образом, что напряжения в сечении образца остаются постоянными до начала разрушения образца. Устройство содержит резервуар, заполненный агрессивным раствором, раму силовой установки, подвижную и неподвижную траверсы с цилиндрическими шарнирами для реализации сосредоточенного нагружения на железобетонный образец. В качестве нагрузочного устройства использована рычажная система с применением в качестве груза воды, заполняющей резервуар, оборудованный отводной трубкой с вентилем, работа которого регулируется изменением показателей тензометрических приборов на образце. Технический результат: возможность экспериментально определять градиент изменения длительной прочности во времени от начала приложения нагрузки и коррозионного воздействия среды до разрушения опытного образца нагруженного и корродирующего бетона при заданном неизменном значении напряжений в сечении образца с использованием более усовершенствованной по сравнению с прототипом модели испытательного стенда. 2 н.п. ф-лы, 2 ил.

Изобретение относится к средствам измерения относительной продольной деформации на поверхности материальных тел. Экстензометр содержит два референтных тела в виде заостренных инденторов, при этом один индентор жестко связан с корпусом прибора, другой установлен с возможностью перемещения, а также систему передачи этих перемещений. В корпусе прибора дополнительно установлены лазер с оптической системой коллимации излучения, фокусирующая линза, фокус которой совпадает с контролируемой поверхностью, светоделительное зеркало, линза, координатно-чувствительный фотоэлектрический преобразователь и арретир для маятника. Подвижный индентор выполнен с оптическим референтным элементом, центр кривизны которого совмещен с острием индентора и с контролируемой поверхностью, и жестко установлен на шарнирно подвешенном в верхней части корпуса маятнике. Между подвижным и неподвижным инденторами подвешен электромагнит. Сущность: расстояние «А» между острыми кромками двух инденторов измеряют до установки на поверхность. Маятник арретируют, подключают источник света, мнимый фокус луча которого совмещают с острием подвижного индентора, при этом изображение фокальной точки лазерного луча, отраженного от сферического зеркала, с оптическим увеличением «К» фокусируют в положении, соответствующем среднему положению светового пятна на координатно-чувствительном фотоэлектрическом преобразователе, и регистрируют условно нулевую координату «Б» энергетического центра светового пятна. В заарретированном состоянии устанавливают экстензометр на деформируемую поверхность и разарретируют маятник, далее поджимают маятник с подвижным индентором и сферическим зеркалом к деформируемой поверхности посредством электромагнита. Регистрируют координату энергетического центра светового пятна «В», нагружают деформируемую балку и регистрируют координату энергетического центра светового пятна «Г». Относительную продольную деформацию вычисляют по формуле. Технический результат: повышение степени точности определения координат выбранных базовых точек, точности измерения расстояния между острыми кромками инденторов и их взаимных перемещений из-за деформации поверхности, в том числе с учетом структурной неоднородности деформируемого материала. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области механических испытаний металлов и сплавов, а именно к испытаниям на изгиб с растяжением, и может быть использовано при испытании различных конструкций, работающих в сложных условиях нагружения, при расчетах на прочность конструкций, работающих в условиях изгиба с растяжением. Сущность: размещают концы образца из испытуемого металла на опорах, воздействуют деформирующим усилием по середине образца с помощью оправки и обрабатывают результаты. Концы образца закрепляют в опорах при помощи захватов с обеспечением поворота каждого захвата. Деформирование проводят до разрыва образца с обеспечением минимального трения между образцом и оправкой и по диаграмме растяжения определяют механические характеристики. Технический результат: возможность получить достоверные значения механических характеристик и обеспечить повышение точности расчетов на прочность конструкций, работающих в условиях изгиба с растяжением, в том числе труб, эксплуатирующихся в условиях наклонных скважин, а также проволоки, профиля и труб при изготовлении с намоткой на барабан. 1 табл., 4 ил.

Способ относится к горной промышленности, в частности к шахтным подъемным установкам, и предназначен для контроля технического состояния подъемного каната. Способ позволяет определить жесткость подъемного каната на растяжение путем измерения длины подъемного каната от точки схода подъемного каната с барабана подъемной машины до подвесного устройства подъемного сосуда при остановке порожнего подъемного сосуда под загрузку, веса груза, удлинения подъемного каната после загрузки подъемного сосуда и последующего расчета, по величине которой судят о техническом состоянии подъемного каната. Для обеспечения постоянства контроля технического состояния подъемного каната измерения и расчета производят при каждом цикле подъема груженого подъемного сосуда. Технический результат - обеспечение возможности постоянного контроля технического состояния подъемного каната. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано в машиностроительной отрасли при сборке узлов и деталей корпусных изделий и оперативном контроле остаточной прочности крепежных элементов. Устройство состоит из стержня, вставленного в сквозное отверстие, выполненное параллельно оси шпильки или болта, либо в паз, прорезанный вдоль шпильки снаружи на глубину, обеспечивающую заглубление стержня в тело шпильки (болта) дальше внутреннего диаметра резьбы, причем один конец стержня закреплен относительно одного края отверстия или паза (возможен резьбовой конец, закрепленный законтренными гайками), а второй выступающий конец стержня изогнут под углом 90° и в исходном состоянии прилегает к торцу шпильки (болта). Оценка прочности шпильки (болта) выполняется по величине смещения незакрепленного конца стержня, являющегося индикатором растяжения, относительно торца шпильки (болта) на угол α, предельное значение которого устанавливают на основе растяжения шпильки (болта) до разрушения на разрывной машине, прикладывая через гайки шпильки (или головку болта и гайку) нагрузку при расстоянии между гайками на шпильке или расстоянии между головкой болта и гайкой, равном суммарной толщине соединяемых фланцев и величине зазора между ними в изделии. Технический результат: оперативный контроль остаточной прочности шпилек (болтов) во фланцевых соединениях трубопроводов и задвижек, позволяющий уменьшить вероятность возникновения техногенных катастроф и снизить расходы на их предотвращение и ликвидацию. 3 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике для определения контактной жесткости. Сущность: поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую αy части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны. Предварительно измеряют пластическую твердость НД1 и НД2 каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НДпр контактирующих деталей, затем определяют суммарную остаточную часть сближения hΣ в центре контакта деталей, с учетом которой определяют суммарное упругое сближение αy,Σ в центре контакта деталей, с последующим определением суммарного полного сближения αΣ и коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны. Технический результат: создание нового универсального способа определения коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей, который справедлив при произвольном сочетании твердостей материалов контактирующих деталей. 3 табл.

Изобретение относится к области неразрушающих измерений давления на заданном горизонтальном уровне бетонных и кирпичных стен и фундаментов зданий и сооружений на стадии их эксплуатации. Сущность: на поверхность стены или фундамента наклеивают тензорезистор на уровне измеряемого давления вдоль направления главных сжимающих напряжений и измеряют начальное омическое сопротивление тензорезистора. В стене или фундаменте выше и ниже тензорезистора высверливают два отверстия диаметром в 3…4 раза больше ширины тензорезистора, на расстоянии в 3…4 раза больше ширины тензорезистора, глубиной 40…60 мм и измеряют ответное омическое сопротивление тензорезистора. Определяют относительную деформацию стены или фундамента и давление на заданном уровне стены или фундамента по формулам. Для мониторинга давления на стену или фундамент в каждое отверстие закладывают по два стальных полуцилиндра длиной, равной глубине отверстий, диаметром меньше диаметра отверстий на 2…3 мм. Между стальными полуцилиндрами забивают по стальному клину длиной, равной глубине отверстий, и толщиной 1…3 мм с одной стороны и 4…5 мм с другой стороны. Забиванием стальных клиньев доводят омическое сопротивление тензорезистора до величины, равной начальному омическому сопротивлению, затем фиксируют величину текущего омического сопротивления тензорезистора в любой момент времени и вычисляют изменение омического сопротивления тензорезистора, приращение деформации стены или фундамента и давление на стену или фундамент в любой момент времени. Технический результат: сохранение несущей способности стен и фундаментов; уменьшение концентрации напряжений в стенах и фундаментах; отсутствие необходимости нарушения электрической цепи тензорезисторов; возможность непрерывного мониторинга давления на стены и фундаменты; дистанционное управление измерениями. 4 ил.
Наверх