Твердотопливный ракетный двигатель

Изобретение относится к области ракетной техники и может быть использовано при создании ракет различного назначения, в частности космического, в системе аварийного спасения. Твердотопливный ракетный двигатель состоит из двух прочноскрепленных с корпусами зарядов твердого топлива канально-щелевой формы, соединенных переходником с газоходами и соплами. Профилированные щели каналов обоих зарядов повернуты друг относительно друга вокруг продольных осей зарядов на угол, равный половине шага их расположения. Входная часть каждого сопла утоплена в газоход на величину 0,1…0,2 диаметра входа в газоход. Изобретение позволяет снизить потери давления внутри камеры сгорания, а также пассивную массу конструкции ракетного двигателя. 6 ил.

 

Предлагаемое изобретение - твердотопливный ракетный двигатель - относится к ракетной технике и может быть использовано, например, при создании системы аварийного спасения космического корабля.

Известна конструкция РДТТ с двумя торцевыми зарядами и боковыми соплами - маршевый твердотопливный двигатель 293-П ракеты «Аметист» [Широкорад А.Б. Огненный меч Российского флота. - М.: Изд-во Яуза, Изд-во Эксмо, 2004. - 416 с., ил.]. В данном двигателе топливо помещалось в двух шашках спереди и сзади от камеры горения, обе шашки имели «бронирование», которое позволяло им гореть только с торца. Двигатель имел три сопла, расположенных под углом 120° друг к другу. Схема такого двигателя показана в книге Фахрутдинов И.Х., Котельников А.В. Конструкция и проектирование ракетных двигателей твердого топлива: Учебник для машиностроительных вузов. - М.: Машиностроение, 1987. - 328 с.: ил. страница 28, рис.1.15 л. Недостатками данной конструкции являются большая масса конструкции за счет бронирования заряда и увеличенного ТЗП стенок камеры сгорания, а также невозможность обеспечения требуемой диаграммы тяги.

Известна также схема прочноскрепленного с корпусом канально-щелевого заряда РДТТ, в котором поверхность горения образована центральным каналом с щелями-прорезями [Абугов Д.И., Бобылев В.М. Теория и расчет ракетных двигателей твердого топлива. Учебник для машиностроительных вузов. - М.: Машиностроение, 1987. - 272 с.: ил. страницы 80-84]. Аналогичную конструкцию заряда можно использовать в указанной выше конструкции РДТТ с целью исключения отмеченных недостатков. В случае если число щелей в заряде не кратно числу сопел, появляется неравномерное истечение продуктов сгорания через сопла и как следствие разнотяговость сопел двигателя.

Известна также конструктивная схема РДТТ с двумя полузарядами, например, щелевой формы и боковыми соплами Лаваля, вмонтированными в газоходы. Схема принята за прототип [Абугов Д.И., Бобылев В.М. Теория и расчет ракетных двигателей твердого топлива. Учебник для машиностроительных вузов. - М.: Машиностроение, 1987. - 272 с.: ил. страница 86, рис.5.7]. Недостатком данной конструкции также являются повышенные потери давления при столкновении двух газовых потоков от зарядов в камере горения.

Целью настоящего изобретения является уменьшение потерь давления в камере горения, снижение уровня возможных резонансных колебаний при столкновении потоков продуктов сгорания зарядов и снижение за счет этого потерь энергии при работе РДТТ.

Указанная цель достигается тем, что в твердотопливном ракетном двигателе, состоящем из двух прочноскрепленных с корпусами зарядов твердого топлива канально-щелевой формы, соединенных переходником с газоходами и соплами, профилированные щели каналов обоих зарядов повернуты друг относительно друга вокруг центральных продольных осей зарядов на угол, равный половине шага их расположения, а входная часть каждого сопла утоплена в газоход на величину 0,1…0,2 Dвх - диаметра входа в газоход.

Изобретение поясняется следующим графическим материалом:

- на фиг.1 показан продольный разрез РДТТ;

- на фиг.2 показано частично утопленное в газоход сопло;

- на фиг.3 показана зависимость потерь давления от степени утопленности сопла;

- на фиг.4 показано эффективное взаимное расположение центральных профилированных каналов зарядов, при котором обеспечивается минимальный уровень резонансных колебаний потоков продуктов сгорания зарядов;

- на фиг.5 показано распределение давления внутри камеры сгорания и в сопле при повороте зарядов друг относительно друга вокруг продольных осей на угол, равный половине шага расположения профилированных щелей их каналов, при степени утопленности сопла в газоход, равной 0,1 Dвх;

- на фиг.6 показано распределение давления внутри камеры сгорания и в сопле при расположении щелей каналов зарядов друг напротив друга и степени утопленности сопла в газоход, равной 0,25 Dвх.

Твердотопливный ракетный двигатель состоит из двух (верхнего (1) и нижнего (2)) зарядов твердого топлива, прочноскрепленных с корпусами (3) и (4), соединенных между собой переходником (5) с газоходами (6) и соплами (7), входная часть которых утоплена в газоход. На днищах корпусов (3, 4) закреплены крышки (8), в которые вмонтированы воспламенители (9) с пиропатронами (10). В качестве топлива используется смесевое твердое топливо, имеющее высокие энергетические характеристики. Заряды (1, 2) выполнены с центральными щелевыми каналами (11, 12), профилированные щели каналов обоих зарядов повернуты друг относительно друга вокруг продольных осей зарядов на угол, равный половине шага их расположения.

Двигатель функционирует следующим образом. После подачи команды на включение двигателя подается электрический ток на пиропатроны (10), от которых одновременно задействуются смонтированные на крышках (8) корпусов (3, 4) два воспламенителя (9), продукты сгорания которых инициируют горение двух зарядов (1, 2), создавая заданный уровень тяги. При этом продукты сгорания во время горения зарядов смешиваются, снижая потери давления и возможные резонансные колебания в камере сгорания за счет смещения центральных профилированных каналов (11, 12) зарядов (1, 2) друг относительно друга вокруг продольной оси РДТТ на угол, равный половине шага расположения этих каналов, а вдвинутые в газоходы (6) сопла (7) снижают скорости обтекания продуктами сгорания у стенок газоходов, обеспечивая снижение потерь давления и эрозионного уноса материалов газоходов.

Технический результат достигается смещением центральных профилированных каналов зарядов друг относительно друга вокруг продольных осей зарядов на угол, равный половине шага расположения характерных элементов этих каналов, что обеспечивает снижение потерь давления и возможных резонансных колебаний конструкции РДТТ, вызванных столкновением двух потоков продуктов сгорания зарядов в зоне переходника. Потоки продуктов сгорания при таком взаимном расположении каналов зарядов оптимально смешиваются, тем самым обеспечивая наилучшую полноту сгорания и равномерный расход через все сопла, а следовательно, потери энергии при работе РДТТ минимальны. Уменьшение потерь давления и соответственно потерь тяги РДТТ также достигается при сохранении массы и габаритов за счет частично вдвинутых в газоходы сопел, что приводит к снижению температурного воздействия на стенки газоходов путем уменьшения скоростей обтекания продуктами сгорания топлива их стенок. Уменьшение массы внутреннего ТЗП корпусов достигается применением прочноскрепленных с корпусами зарядов твердого топлива.

В результате проработок с использованием современных средств численного компьютерного моделирования получены представленные на фиг.3 и 4 зависимости для потерь давления и выбраны оптимальный угол взаимного разворота зарядов и диапазон утопленности сопел в газоходы, что поясняется иллюстрациями на фиг.5 и 6.

Технико-экономическая эффективность предлагаемого изобретения по сравнению с прототипом заключается в снижении потерь давления и тяги РДТТ, а также уровня возможных резонансных колебаний при столкновении потоков продуктов сгорания зарядов.

Твердотопливный ракетный двигатель, состоящий из двух прочноскрепленных с корпусами зарядов твердого топлива канально-щелевой формы, соединенных переходником с газоходами и соплами, отличающийся тем, что профилированные щели каналов обоих зарядов повернуты друг относительно друга вокруг продольных осей зарядов на угол, равный половине шага их расположения, а входная часть каждого сопла утоплена в газоход на величину 0,1…0,2 диаметра входа в газоход.



 

Похожие патенты:
Ракетный двигатель содержит камеру сгорания, в которую подают боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь.

Конический ракетный двигатель бессоплового бескорпусного типа содержит шашку твердого топлива с одним или несколькими каналами на всю длину шашки, заполненными более быстро горящим топливом, чем основное топливо, или же шашка имеет несколько параллельных каналов, причем часть из них обрываются от поверхности шашки на расстоянии, равном или большем половине расстояния между соседними каналами.

Ракетный двигатель включает жидкое или твердое ракетное топливо, в котором окислитель и/или горючее содержит связанный азот, а также мелкодисперсный или связанный бор, причем количество атомов бора и азота 1:1 с отклонением ±20%.

Ракетный двигатель содержит камеру сгорания, реактивное сопло, а также пиротехнические газогенераторные шашки. Одна часть пиротехнических шашек вырабатывает газообразное, парообразное или в виде взвеси горючее вещество, а другая - вещество-окислитель.

Изобретение относится к области создания реактивных двигателей для ракетной техники. Реактивный двигатель включает камеру с твердым зарядом, состоящим из, не менее одного, бризантного взрывчатого вещества и имеет кумулятивную выемку для создания области имитации сопла.

Твердотопливный газогенератор катанультного устройства ракеты включает корпус с передней крышкой, опорной решеткой, ниронатроном и центральной трубкой-запальником с перфорированным участком со стороны опорной решетки и форсажный заряд из твердого топлива.
Изобретение относится к горючему жидкому ракетному топливу, представляющему собой раствор диацетилена в форамиде в соотношении 83,135% - 30% диацетилена и 16,865% - 70% формамида.
Изобретение относится к ракетным двигателям жидкого и твердого топлива. .

Изобретение относится к области ракетно-космической техники и может применяться в конструкции твердотопливных газогенераторов либо ракетных двигателей твердого топлива.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива системы аварийного спасения космического корабля.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива летательного аппарата. Ракетный двигатель содержит корпус, заряд, сопло и переднюю крышку. Передняя крышка выполнена в виде стакана, с внутренней цилиндрической поверхностью которого контактирует поршень, установленный с возможностью продольного перемещения, а на открытом торце стакана установлен упорный буртик. На поршне посредством узлов фиксации закреплен полезный груз, а между поршнем и дном стакана установлен аккумулятор давления, рассчитанный на создание давления в стакане, превышающего давление, на которое рассчитан корпус. Изобретение позволяет снизить массу ракетного двигателя твердого топлива и сократить в исходном состоянии габариты летательного аппарата с указанным двигателем. 2 ил.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и гидразина, или раствор или эмульсия борана в жидком гидразине. Компоненты подаются в следующем соотношении: диборан 46,33±10%, гидразин 53,67±10%. В камеру сгорания дополнительно подается 0,0001-1% от массы реагирующих веществ мелкодисперсного угля и/или сажи, и/или графита, и/или метана. В другом варианте ракетный двигатель содержит камеру сгорания или корпус с соплом, работающий на жидком или твердом топливе. В камеру сгорания или в корпус дополнительно подается выхлоп двигателя, работающего на диборане или тетраборане и гидразине. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 2 з.п. ф-лы.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и аммиака, или раствор или эмульсия борана в жидком аммиаке. Компоненты подаются в следующем соотношении: диборан 44,8±10%, аммиак 55,2±10%. В камеру сгорания дополнительно подается 0,0001-1% от массы реагирующих веществ мелкодисперсного угля и/или сажи, и/или графита, и/или метана. В другом варианте ракетный двигатель содержит камеру сгорания или корпус с соплом, работающий на жидком или твердом топливе. В камеру сгорания или в корпус дополнительно подается выхлоп двигателя, работающего на диборане или тетраборане и аммиаке. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 2 з.п. ф-лы.
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подается расплавленного гидрида бериллия 40,81±20% и 59,19±20% кислорода или компоненты в следующем соотношении: диборана 10,10%, гидрида бериллия 24,16%, азотной кислоты 23,0% и метана 42,74%. В другом варианте ракетный двигатель содержит корпус с реактивным соплом. В корпусе находится гидрид или смесь гидридов, и вещества или смесь веществ, содержащие кислород в связанном состоянии, причем кислород имеется в таком количестве, чтобы в результате реакции выделялся водород. При этом ракетный двигатель используется в качестве водородовыделяющей шашки для жидкостного или твердотопливного ракетного двигателя. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 9 з.п. ф-лы.
Изобретение описывает топливо для гиперзвукового прямоточного воздушно-реактивного двигателя на основе смеси углеводородного горючего Т-10 и 1,7-диметилдикарба-клозо-октокарборана, при этом в смесь дополнительно введен промотор горения изопропилнитрат, при следующем соотношении (% масс.): 1,7-диметилдикарба-клозо-октокарборан - 70; горючее Т-10 - 29-29,5; изопропилнитрат - 0,5-1. Технический результат заключается в создании топлива для гиперзвукового прямоточного воздушно-реактивного двигателя с повышенной энергоемкостью, с улучшенными условиями его сжигания в камере сгорания. 1 пр.
Ракетный двигатель содержит камеру сгорания с соплом, в которую под давлением подается газообразный, или жидкий, или расплавленный гидрид и вода или антифриз на основе воды, или водяной пар. В камеру сгорания подается расплавленного гидрида бериллия 37,93±20% и воды 62,07±20%. В другом варианте ракетный двигатель содержит корпус с реактивным соплом. В корпусе находится гидрид или смесь гидридов и вещества или смесь веществ, содержащие воду в связанном состоянии. В качестве веществ, содержащих воду в связанном состоянии, используют квасцы, или силикагель, или буру, или сульфат магния, или хлорид кальция. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 3 з.п. ф-лы.
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подают жидкий металл и воду. В камеру сгорания подают расплавленного бериллия 33,3±20% и воды 66,7±20%. В другом варианте ракетный двигатель содержит корпус с реактивным соплом. В корпусе находится бериллия 20,38% и кристаллогидрата сульфата магния 79,62%. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 5 з.п. ф-лы.
Ракетный двигатель содержит камеру сгорания, причем в камеру сгорания подается боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь при температуре, обеспечивающей самоподдерживающийся характер реакции термического разложения указанных веществ за счет тепла экзотермической реакции. В другом варианте ракетный двигатель содержит камеру сгорания или корпус с соплом, работающий на жидком или твердом ракетном топливе. При этом в камеру сгорания или в корпус твердотопливного ракетного двигателя кроме окислительно-восстановительного топлива дополнительно подается диборан, тетраборан или метан в количестве 1:1 к топливу, или же в состав твердого ракетного топлива дополнительно входит боргидрид бериллия, в количестве, превышающем окислительные возможности окислителя на 10%. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 4 з.п. ф-лы.

Изобретение относится к ракетным двигательным установкам на твердом топливе. Способ ускорения летающего устройства, включающего в себя самодвижущийся твердотопливный элемент (бескорпусной ракетный двигатель) со стабилизатором полета, причем при старте летающего устройства обеспечивают полное сгорание бескорпусного ракетного двигателя, при этом в качестве двигателя используют полую цилиндрическую шашку с глухой передней крышкой, изготовленные из твердого топлива со скоростью горения не менее 30 мм/с, причем при запуске устройства на одном стабилизаторе размещают несколько бескорпусных ракетных двигателей параллельно друг другу и обеспечивают их синхронное сгорание на разгонном участке полета. Изобретение обеспечивает увеличение максимальной скорости и дальности полета самодвижущихся твердотопливных элементов, используемых для активного влияния на атмосферные процессы. 1 табл., 6 ил.

Изобретение относится к области ракетной техники и может быть использовано при проектировании твердотопливных микродвигателей. Твердотопливный заряд для микродвигателей представляет собой шашку твердого топлива со скоростью горения в пределах 0,10-0,20 м/с при давлениях 3,04-6,08 МПа на основе инициирующего взрывчатого вещества или быстрогорящей пиротехнической смеси. Шашка имеет форму цилиндра с плоскими торцами, перпендикулярными образующей цилиндра, и имеет бронепокрытие на боковой поверхности цилиндра и одном из торцов, а на открытой поверхности шашки размещен электровоспламенитель. Шашка твердого топлива на основе инициирующего взрывчатого вещества сформирована из состава, содержащего 75-95% стифната свинца или калия, 0-10% перхлората аммония, 5-15% полимерного связующего. Шашка твердого топлива на основе быстрогорящей пиротехнической смеси сформирована из состава, содержащего перхлорат калия, красную кровяную соль и полимерное связующее. Изобретение позволяет обеспечить минимальный разброс импульса и времени работы микродвигателей с твердотопливным зарядом. 2 табл., 1 ил.
Наверх