Способ количественного определения флавоноидов в желчегонном сборе № 3

Изобретение относится к химико-фармацевтической промышленности и может быть использовано в контрольно-аналитических лабораториях при проведении анализа флавоноидов в лекарственном растительном сборе «Желчегонный сбор №3». Способ основан на количественном определении суммы флавоноидов методом дифференциальной спектрофотометрии, в пересчете на цинарозид, при длине волны 400 нм, водно-спиртового извлечения и использованием в качестве экстрагента 70% этилового спирта, при этом содержание суммы флавоноидов в пересчете на цинарозид и абсолютно сухое сырье в процентах (X) вычисляют по формуле. Способ позволяет оценить содержание суммы флавоноидов как биологически активных компонентов, оказывающих основное терапевтическое действие - желчегонный эффект. 3 пр., 14 ил., 2 табл.

 

Изобретение относится к химико-фармацевтической промышленности и может быть использовано в центрах контроля качества лекарственных средств и контрольно-аналитических лабораториях при проведении анализа флавоноидов в «Желчегонном сборе №3» («Фитогепатол №3»).

Действующая система контроля качества требует постоянного усовершенствования подходов к стандартизации биологически активных соединений с использованием современных методов анализа и актуальных данных об их свойствах, позволяющих дифференцированно определять конкретные группы биологически активных соединений.

«Желчегонный сбор №3» широко применяется в современной медицине в комплексной терапии заболеваний печени и желчевыводящих путей (2, 5, 6). Фармакологическое действие данного лекарственного сбора обусловлено различными группами биологически активных соединений. Состав сбора представлен цветками ромашки, листьями мяты перечной, цветками ноготков, травой тысячелистника, цветками пижмы. Обозначение в ромашке аптечной, мяте перечной, тысячелистнике обыкновенном и пижме обыкновенной двух важнейших групп действующих веществ - эфирного масла и флавоноидов позволяет говорить о прогнозировании (8). Известно, что спазмолитическое и противовоспалительное действие препарата проявляется за счет наличия эфирного масла, при этом желчегонный эффект обусловлен второй группой биологически активных соединений флавоноидами. Наличие в сборе цветков календулы усиливает противовоспалительное действие лекарственного сбора (5, 6, 8). Согласно нормативной документации на «Желчегонный сбор №3» определение качества ведется по содержанию эфирного масла (1). Принимая во внимание тот факт, что компоненты эфирного масла практически нерастворимы в воде при получении настоя, уровень содержания эфирного масла в «Желчегонном сборе №3» не позволяет оценивать степень эффективности данного препарата. На наш взгляд, в указанном сборе целесообразно определять содержание водорастворимых действующих веществ - флавоноидов, поскольку именно они определяют основное фармакологическое действие, а именно желчегонный эффект сбора (9, 10).

Таким образом, целью изобретения является разработка метода анализа флавоноидов в «Желчегонном сборе №3».

Техническим результатом предлагаемого способа является улучшение метода количественного анализа «Желчегонного сбора №3», путем определения флавоноидов как биологически активных соединений, определяющих основные фармакологические свойства сбора.

Технический результат достигается тем, что проводят количественное определение суммы флавоноидов методом дифференциальной спектрофотометрии, в пересчете на цинарозид, при длине волны 400 нм, водно-спиртового извлечения и использования в качестве экстрагента 70% этилового спирта, при этом содержание суммы флавоноидов в пересчете на цинарозид и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

X = D m 0 30 10 25 100 100 D 0 m 25 1 25 ( 100 W ) ,

где D - оптическая плотность испытуемого раствора;

D0 - оптическая плотность раствора государственного стандартного образца цинарозида;

m - масса сырья, г;

m0 - масса государственного стандартного образца цинарозида, г;

W - потеря в массе при высушивании в процентах;

в случае отсутствия стандартного образца цинарозида используют теоретическое значение удельного показателя поглощения его спиртового раствора - 350, и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

X = D 30 25 100 m 350 ( 100 W )

где D - оптическая плотность испытуемого раствора;

m - масса сырья, г;

350 - удельный показатель поглощения ( E 1 с м % ) спиртового раствора государственного стандартного образца цинарозида при 400 нм;

W - потеря в массе сырья при высушивании, в процентах.

При проведении анализа измеряют оптическую плотность комплекса флавоноидов с алюминием хлоридом анализируемого раствора на фоне исходного раствора. В этом случае наблюдался батохромный сдвиг длинноволновой полосы флавоноидов, который обнаруживается в УФ-спектре в виде максимума поглощения при длине волны 406 нм. Это находит подтверждение в условиях дифференциальной спектрофотометрии: максимум поглощения при 406 нм (рис. 1). Изучение УФ-спектров государственного стандартного образца цинарозида показало (рис. 2), что раствор данного стандарта в присутствии алюминия хлорида имеет близкий максимум поглощения (400 нм). Следовательно, цинарозид может быть использован в методике анализа в качестве стандартного образца.

Нами изучены спектральные характеристики водно-спиртовых извлечений из сырья растений, составляющих «Желчегонный сбор №3» (рис. 3), для определения содержания суммы флавоноидов в каждом из компонентов сбора (рис. 4).

Исходя из спектральных характеристик компонентов сбора и модельной смеси (рис. 1, 3), определив оптимальные условия экстракции «Желчегонного сбора №3» разработали методику определения суммы флавоноидов в «Желчегонном сборе №3» методом дифференциальной спектрофотометрии в пересчете на цинарозид.

Способ реализуется следующим образом.

Аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 1 мм. Около 1 г измельченного сырья (точная навеска) помещают в колбу со шлифом вместимостью 50 мл, прибавляют 30 мл 70% этилового спирта. Колбу закрывают пробкой и взвешивают на тарирных весах с точностью до ±0,01 г. Колбу присоединяют к обратному холодильнику и нагревают на кипящей водяной бане (умеренное кипение) в течение 90 мин. Затем колбу закрывают той же пробкой, снова взвешивают и восполняют недостающий экстрагент до первоначальной массы. Извлечение фильтруют через бумажный фильтр и охлаждают в течение 30 мин. Испытуемый раствор готовят следующим образом: 1 мл полученного извлечения помещают в мерную колбу - вместимостью 25 мл, прибавляют 1 мл 3% спиртового раствора алюминия хлорида и доводят объем раствора до метки 95% этиловым спиртом (испытуемый раствор А). В качестве раствора сравнения используют раствор, приготовленный при тех же условиях, но без добавления алюминия хлорида (раствор сравнения А). Измерение оптической плотности проводят на спектрофотометре при длине волны 400 нм. Параллельно измеряют оптическую плотность раствора государственного стандартного образца цинарозида при длине волны 400 нм, приготовленного по аналогии с испытуемым раствором (см. примечание).

Примечание. Приготовление раствора цинарозида-стандартного образца. Около 0,02 (точная навеска) цинарозида помещают в мерную колбу вместимостью 25 мл, растворяют в 15-20 мл 70% этилового спирта при нагревании на водяной бане. После охлаждения содержимого колбы до комнатной температуры доводят объем раствора 70% этиловым спиртом до метки (раствор А). 1 мл раствора A цинарозида помещают в мерную колбу на 25 мл, прибавляют 1 мл 3% спиртового раствора алюминия хлорида и доводят объем раствора 95% этиловым спиртом до метки (испытуемый раствор Б). В качестве раствора сравнения используют раствор, который готовят следующим образом: 10 мл раствора А цинарозида помещают в мерную колбу на 25 мл и доводят объем раствора до метки 95% этиловым спиртом (раствор сравнения Б).

Содержание суммы флавоноидов в пересчете на цинарозид и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

X = D m 0 30 10 25 100 100 D 0 m 25 1 25 ( 100 W ) ,

где D - оптическая плотность испытуемого раствора;

D0 - оптическая плотность раствора государственного стандартного образца цинарозида;

m - масса сырья, г;

m0 - масса государственного стандартного образца цинарозида, г;

W - потеря в массе при высушивании в процентах;

в случае отсутствия стандартного образца цинарозида используют теоретическое значение удельного показателя поглощения его спиртового раствора - 350, и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

X = D 30 25 100 m 350 ( 100 W )

где D - оптическая плотность испытуемого раствора;

m - масса сырья, г;

350 - удельный показатель поглощения ( E 1 с м % ) спиртового раствора государственного стандартного образца цинарозида при 400 нм;

W - потеря в массе сырья при высушивании, в процентах.

Предлагаемый способ поясняется следующими примерами.

Пример 1.

Аналитическую пробу сырья (сбор «Фитогепатол №3» («Желчегонный сбор №3»), ОАО «Красногорсклексредства», серия 60912) измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 1 мм. Около 1 г измельченного сырья (точная навеска) помещают в колбу со шлифом вместимостью 50 мл, прибавляют 30 мл 70% этилового спирта. Колбу закрывают пробкой и взвешивают на тарирных весах с точностью до ±0,01 г. Колбу присоединяют к обратному холодильнику и нагревают на кипящей водяной бане (умеренное кипение) в течение 90 мин. Затем колбу закрывают той же пробкой, снова взвешивают и восполняют недостающий экстрагент до первоначальной массы. Извлечение фильтруют через бумажный фильтр и охлаждают в течение 30 мин. Испытуемый раствор готовят следующим образом: 1 мл полученного извлечения помещают в мерную колбу вместимостью 25 мл, прибавляют 1 мл 3% спиртового раствора алюминия хлорида и доводят объем раствора до метки 95% этиловым спиртом (испытуемый раствор А). В качестве раствора сравнения используют раствор, приготовленный при тех же условиях, но без добавления алюминия хлорида (раствор сравнения А). Измерение оптической плотности проводят на спектрофотометре при длине волны 400 нм. Параллельно измеряют оптическую плотность раствора стандартного образца цинарозида при длине волны 400 нм, приготовленного по аналогии с испытуемым раствором (см. примечание).

Содержание суммы флавоноидов в пересчете на цинарозид и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

X = 0,413569 0,0014 30 1 25 100 100 0,9562 0,9973 25 1 25 ( 100 10 )

Оптическая плотность D=0,413569, масса сырья m=0,9973.

Содержание суммы флавоноидов = 1,05%.

Все результаты были статистически обработаны. Единичная ошибка количественного определения составила ±3,12%.

Пример 2.

Вскрывают 10 фильтр-пакетов (сбор «Фитогепатол №3» («Желчегонный сбор №3»), ОАО «Красногорсклексредства», фильтр-пакеты, серия 30213). Около 1 г измельченного сырья (точная навеска) помещают в колбу со шлифом вместимостью 50 мл. Далее процесс проводят в соответствии с примером 1.

Содержание суммы флавоноидов в пересчете на цинарозид и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

X = 0,597248 0,0014 30 1 25 100 100 0,9562 1,0016 25 1 25 ( 100 10 )

Оптическая плотность D=0,597248, масса сырья m=1,0016.

Содержание суммы флавоноидов = 1,16%.

Все результаты были статистически обработаны. Единичная ошибка количественного определения составила ±3,28%.

Пример 3.

Аналитическую пробу модельной смеси, составом представленным на рис. 5, измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 1 мм. Около 1 г измельченного сырья (точная навеска) помещают в колбу со шлифом вместимостью 50 мл. Далее процесс проводят в соответствии с примером 1.

Содержание суммы флавоноидов в пересчете на цинарозид и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

X = 0,526487 0,0014 30 1 25 100 100 0,9562 0,9963 25 1 25 ( 100 10 )

Оптическая плотность D=0,526487, масса сырья m=0,9963.

Содержание суммы флавоноидов = 1,03%.

Все результаты были статистически обработаны. Единичная ошибка количественного определения составила ±3,19%.

Таким образом, предлагаемый способ количественного определения суммы флавоноидов в «Желчегонном сборе №3» разработан впервые для анализа данной группы биологически активных соединений сбора и обладает следующими преимуществами перед методикой, представленной в Фармакопейной статье:

1. Определение идет по содержанию водорастворимых веществ - флавоноидов, вместо эфирного масла, компоненты которого практически нерастворимы в воде.

2. Указанный способ позволяет оценить содержание суммы флавоноидов как биологически активных компонентов, оказывающих основное терапевтическое действие - желчегонный эффект.

3. Разработанный метод является специфичным, поскольку позволяет исключить вклад других соединений (учитывается способность флавоноидов образовывать комплексы с алюминием хлоридом).

ИСТОЧНИКИ ИНФОРМАЦИИ:

1. ВФС 42-2558-95. Желчегонный сбор №3 / Фармакопейный государственный комитет. Введ. 09.07.1996. - М., 1996. - 12 с.

2. Государственный реестр лекарственных средств. Официальное издание по состоянию на 1 апреля 2009 года: в 2-х т. Т. 1. - М.: Издательство «Медицинский совет», 2009. - 1359 с.

3. Государственная Фармакопея СССР. - Одиннадцатое издание. - Вып. 1. - М.: Медицина, 1987. - 336 с.

4. Государственная Фармакопея СССР. - Одиннадцатое издание. - Вып. 2. - М.: Медицина, 1990. - 400 с.

5. Куркин В.А. Основы фитотерапии: Учебное пособие для студентов фармацевтических вузов. - Самара: ООО «Офорт», ГОУ ВПО «СамГМУ Росздрава», 2009. - 963 с.

6. Куркин В.А. Фармакогнозия: Учебник для студентов фармацевтических вузов / Изд. 2-е, перераб. и доп. - Самара: ООО «Офорт», ГОУ ВПО «СамГМУ», 2007. - 1239 с.

7. Куркин В.А. Перспективы создания и внедрения импортозамещающих лекарственных растительных средств / В.А. Куркин, Е.В. Авдеева, В.Б. Браславский, О.Е. Правдивцева, А.В. Куркина и др. // XVIII Российский национальный конгресс «Человек и лекарство»: тезисы докладов. - Москва, 2011. - С. 507.

8. Куркина А.В. Актуальные аспекты стандартизации лекарственных растений, содержащих флавоноиды / А.В. Куркина // Материалы Межрегиональной научной конференции с международным участием, посвященной 70-летию фармацевтического факультета Сибирского государственного медицинского университета. - Томск, 2011. - С. 86-90.

9. Куркина А.В. Новые подходы к стандартизации лекарственного растительного сырья, содержащего флавоноиды. 1. Пижма обыкновенная / А.В. Куркина // 65-ая Межрегиональная конференция по фармации и фармакологии «Разработка, исследование и маркетинг новой фармацевтической продукции»: сборник научных трудов. - Пятигорск, 2011. - Вып. 66. - С. 134-137.

10. Куркина А.В. Флавоноиды как источник лекарственных препаратов на основе сырья фармакопейных растений / А.В. Куркина // 3-й Международный съезд фитотерапевтов и травников «Современные проблемы фитотерапии и травничества»: материалы научных трудов. - М., 2013. - С. 111-114.

Способ количественного определения флавоноидов в «Желчегонном сборе №3» проводят методом дифференциальной спектрофотометрии, в пересчете на цинарозид, при длине волны 400 нм, водно-спиртового извлечения и использованием в качестве экстрагента 70% этилового спирта, при этом содержание суммы флавоноидов в пересчете на цинарозид и абсолютно сухое сырье в процентах (X) вычисляют по формуле:
,
где D - оптическая плотность испытуемого раствора;
Do - оптическая плотность раствора государственного стандартного образца цинарозида;
m - масса сырья, г;
mo - масса государственного стандартного образца цинарозида, г;
W - потеря в массе при высушивании в процентах;
в случае отсутствия стандартного образца цинарозида используют теоретическое значение удельного показателя поглощения его спиртового раствора - 350, и абсолютно сухое сырье в процентах (X) вычисляют по формуле:

где D - оптическая плотность испытуемого раствора;
m - масса сырья, г;
350 - удельный показатель поглощения спиртового раствора государственного стандартного образца цинарозида при 400 нм;
W - потеря в массе сырья при высушивании, в процентах.



 

Похожие патенты:

Изобретение относится к аналитической химии и фармацевтике и может быть использовано при анализе остаточного содержания новокаина в водных средах. Способ извлечения новокаина из водных растворов включает приготовление водно-солевого раствора новокаина путем его растворения в насыщенном растворе высаливателя, экстракцию и анализ равновесной водной фазы, при этом в качестве экстрагента применяют раствор сольвотропного реагента в хлороформе с концентрацией 10 мас.%, для чего готовят водно-солевой раствор новокаина с pH 8,0±0,5 вследствие применения в качестве высаливателя насыщенного раствора сульфата аммония и добавления аммонийного буферного раствора, экстрагируют новокаин в течение 5-7 мин раствором сольвотропного реагента в хлороформе при соотношении объемов водно-солевого раствора новокаина и экстрагента 5:1, далее отделяют водно-солевую фазу от органической и анализируют методом УФ-спектрофотометрии при длине волны 291 нм, по градуировочному графику находят концентрацию новокаина в водном растворе; рассчитывают коэффициент распределения (D) и степень извлечения (R, %) новокаина по формулам.

Изобретение относится к аналитической химии и может быть использовано в системе контроля за содержанием тиосульфата натрия в растворах. Способ определения тиосульфата натрия в растворах характеризуется введением анализируемой пробы в реакционный сосуд, содержащий соответствующее количество фотогенерированного йода, полученного путем продувания 1-2 минуты воздухом и облучения стабилизированным источником света реакционной смеси, состоящей из 0,5 М раствора йодида калия, ацетатного буферного раствора с pH 5,6 и сенсибилизатора эозината натрия, фиксированием изменения тока в ячейке и по достижении его постоянства повторным продуванием реакционной смеси воздухом в течение 2-3 минут и повторным ее облучением стабилизированным источником света до достижения исходного количества йода в сосуде, фиксированием времени генерации йода, затраченного на восполнение его убыли, определением количества тиосульфата натрия по градуировочному графику по изменению силы тока и времени генерации.

Изобретение относится к медицине и описывает способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии, включающий перевод вещества из пробы в раствор и вольтамперометрическое определение, при этом проводят катодную вольтамперометрию на ртутно-пленочном электроде при потенциале -0.373 В относительно насыщенного хлорид-серебряного электрода на фоне боратного буферного раствора pH 9,18 при постоянно токовой форме развертки потенциала со скоростью 0,06 В/с с областью определяемых содержаний липоевой кислоты от 4.5·106 до 1.1·10-3 моль/л.

Изобретение относится к области сельского хозяйства и может быть использовано при определении фунгицидной активности химических препаратов в отношении грибов рода Fusarium - возбудителей болезней растений.

Изобретение относится к экспериментальной фармакологии и представляет собой способ доклинических исследований кардиотропных антиаритмических средств, включающий определение биоэлектрических параметров в изолированных многоклеточных перфузируемых препаратах и оценку изменения длительности потенциалов действия, отличающийся тем, что в качестве изолированных многоклеточных перфузируемых препаратов используют миокард легочных вен крысы, причем изменения параметров получают в трех режимах работы многоклеточных препаратов, дополнительно оценивают потенциал покоя и по изменениям ДПД 90%, отношения ДПД 50%/ДПД 90%, скорости спонтанного сдвига потенциала покоя, наиболее положительного значения мембранного потенциала в покоящемся препарате, частоты следования пачек спонтанной активности, частоты и вариабельности следования спонтанных ПД в пачке, количества и интенсивности постдеполяризаций, а также по смещению мембранного потенциала, соответствующего началу пачечной активности, оценивают признаки антиаритмического или аритмогенного действия.

Изобретение относится к способу определения резистентности тромбоцитов к ацетилсалициловой кислоте (АСК) путем импедансного исследования агрегационной функции тромбоцитов in vitro, при котором исследуют агрегационную активность после инкубации образца биологического материала с АСК с использованием индуктора агрегации, причем агрегацию тромбоцитов индуцируют коллагеном в оптимальной концентрации 2 мг/мл и одновременно с измерением импеданса проводят определение динамики освобождения гранул тромбоцитов люминесцентным методом, где перед проведением агрегации пробы калибруются с помощью стандарта аденозинтрифосфата (АТФ), по полученным агрегатограммам определяют значения амплитуды агрегации в Омах и присваивают полученным значениям баллы: значения ≤6 соответствуют 0 баллов, значения 7-9 соответствуют 1 баллу, значения 10-12 соответствуют 2 баллам, значения >12 соответствуют 3 баллам; затем определяют интенсивность высвобождения АТФ из гранул тромбоцитов в нмолях и присваивают полученным значениям баллы: значения <0,5 соответствуют 0 баллам, значения 0,5-1,0 соответствуют 1 баллу, значения 1,0-1,5 соответствуют 2 баллам, значения >1,5 соответствуют 3 баллам, и далее рассчитывают индекс резистентности (ИР) по формуле, при этом значение показателя ИР более 4 указывает на наличие аспиринорезистентности тромбоцитов.

Изобретение относится к медицине, а именно к фармацевтической химии и фармакологии. Заявлено применение жировой эмульсии для парентерального питания в качестве растворителя для малорастворимых в воде соединений.

Изобретение относится к биологии, токсикологической и аналитической химии, а именно к способам определения прокаина в плазме крови. В плазму крови, содержащую прокаин, вводят фторид натрия для создания концентрации 10 мг/мл, полученную смесь обрабатывают ацетоном, извлечение отделяют от выпавшего осадка путем фильтрования, ацетон из фильтрата испаряют в токе воздуха при комнатной температуре, водный остаток разбавляют путем прибавления воды, образующийся раствор насыщают сульфатом аммония, подщелачивают аммонийным буферным раствором до pH 9,0-9,5, экстрагируют двукратно порциями органического экстрагента, в качестве которого используется 30% раствор камфоры в метилацетате, при соотношении водной и органической фаз 1:1 по объему, органические экстракты отделяют, объединяют, растворитель из объединенного экстракта испаряют в токе воздуха при комнатной температуре, остаток хроматографируют в тонком слое силикагеля СТХ-1А на пластинах «Сорбфил» ПТСХ-АФ-А-УФ, применяя подвижную фазу дихлорметан-этанол в соотношении 6:4 по объему, хроматограмму проявляют в УФ-свете, анализируемое вещество элюируют из сорбента смесью ацетонитрил-метанол-0,025 М раствор дигидрофосфата калия с pH 3,0 в соотношении 10:10:90 по объему, хроматографируют методом ВЭЖХ с применением обращеннофазового сорбента «Nucleosil C18», полярной подвижной фазы ацетонитрил-метанол-0,025 М раствор дигидрофосфата калия с pH 3,0 в соотношении 10:10:90 по объему и УФ-детектора, регистрируют оптическую плотность при длине волны 298 нм и вычисляют количество анализируемого соединения по площади хроматографического пика.

Изобретение относится к области аналитической химии. Способ характеризуется тем, что электрохимически концентрируют бензойную кислоту на поверхности графитового электрода в течение 90 с при потенциале электролиза (-0,500) В на фоне 0,1 моль/л натрия гидрофосфата, затем регистрируют поляризационные кривые при линейной скорости развертки потенциала 25 мВ/с и по высоте пика в диапазоне потенциалов 0,5-1,6 В относительно хлорсеребряного электрода определяют концентрацию бензойной кислоты.
Изобретение относится к медицине, в частности к лабораторным методам исследования, и заключается в проведении хроматографического анализа образца биопробы. Для этого образец наносят на бумажный фильтр и на этот же фильтр наносят радиально стандартные калибровочные растворы метронидазола в интервале концентраций 10-100 мкл.
Изобретение относится к способу и системе для анализа или проверки людей или других объектов на наличие несвойственных или присущих материалов. Способ использует метод спектроскопии в параллельном режиме, согласно которому формируют зондирующий сигнал, одновременно содержащий электромагнитное излучение с шириной полосы пропускания в диапазоне от 10 ГГц до 25 ТГц.

Изобретение относится к измерительной технике и может найти применение в атомной энергетике, охране окружающей среды для высокочувствительного контроля долгоживущего глобального радионуклида 14C в газовой фазе технологического процесса переработки отработавшего ядерного топлива в режиме реального времени.

Изобретение относится к экологии, а именно мониторингу состояния окружающей среды методом биоиндикации. Способ определения аммонийных соединений в атмосфере животноводческих комплексов включает сбор образцов лишайника с деревьев, растущих в фоновой зоне, не имеющей выбросов поллютантов в атмосферу.

Изобретение относится к микроскопии отдельных биологических организмов в жидком образце. Изображения, на которых могут быть идентифицированы отдельные биологические организмы, объединяют для создания наборов оптических срезов биологических организмов, и наборы оптических срезов анализируют для определения значения по меньшей мере одного параметра, описывающего микробную активность указанного отдельного биологического организма в каждом контейнере для образца.

Изобретение относится к области мониторинга радиационной обстановки и установления факта появления в атмосфере облака радиоактивных веществ. С помощью спектрорадиометра инфракрасного излучения определение присутствия в воздухе радиоактивных газов и аэрозолей осуществляется путем установления повышения в воздухе содержания озона, образующегося из кислорода под действием ионизирующих излучений радионуклидов.

Изобретение относится к способу измерения заполняющей способности измельченного табака. Для осуществления способа облучают образец табака лучом в ближнем инфракрасном диапазоне и измеряют спектр пропускания и поглощения или спектр диффузного отражения.

Изобретение относится к волоконно-оптическим сенсорам распределения деформации для систем мониторинга различных объектов на основе регистрации параметров тонкой структуры рассеянного излучения, в частности к сенсорам растяжения на основе регистрации параметров вынужденного рассеяния Мандельштама-Бриллюэна.

Изобретение относится к горной промышленности и может быть использовано для отработки рациональных параметров кусковой люминесцентной сортировки для различных типов руд (например, шеелитсодержащих).
Изобретение относится к способу изготовления сенсора для получения спектров гигантского комбинационного рассеяния света (ГКР), который представляет собой стеклянный капилляр, на внутреннюю сторону которого нанесены наночастицы серебра.

Изобретение относится к области исследования состава и свойств многокомпонентных углеводородных систем в процессе разработки нефтегазоконденсатных месторождений, а именно к фотометрическим способам определения концентрации диэтиленгликоля в насыщенном (после поглощения влаги из газа) диэтиленгликоле (нДЭГ) и регенерированном диэтиленгликоле (рДЭГ).

Предложена система наблюдения. Система включает одно полое оптическое волокно, проходящее через зону с людьми. Волокно по всей длине снабжено множеством отверстий, которые образуют внутренний канал, сообщающийся с пространством снаружи волокна. Оптический источник обеспечивает подачу оптического сигнала в первый конец полого оптического волокна. Датчик предназначен для обнаружения на одном конце оптического волокна оптического сигнала. Блок обработки обеспечивает проверку спектра оптического сигнала, полученного датчиками, и обеспечивает обнаружение присутствия токсичных веществ, которые есть в зоне и всасываются в канал волокна. Технический результат - повышение эффективности обнаружения, повышение чувствительности и избирательности, обеспечение непрерывного во времени наблюдения. 3 з.п. ф-лы, 2 ил.
Наверх