Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла



Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла
Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла
Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла
Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла
Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла
Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла

Владельцы патента RU 2555030:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) (RU)

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота. Носитель модифицируют кремнийорганическим соединением, содержащим группу -SH или -NH2, обрабатывают коллоидным раствором золота. Затем ковалентно закрепляют серосодержащее органическое соединение на поверхности наночастиц золота. 2 н. и 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к области материаловедения, а также к аналитической химии. Изобретение может быть использовано для получения материалов как для разделения рацематов оптически активных соединений в хроматографии, так и для выделения индивидуальных изомеров и контроля энантиомерной чистоты (например, аминокислот, пестицидов и других биологически активных соединений).

Известны функциональные сепарационные материалы для разделения рацемических смесей, получаемые иммобилизацией путем адсорбции гидрофобных производных оптически активных аминокислот на минеральном носителе (патент США №4851382 от 25.07.1989). В качестве носителя используют SiO2. Модифицирование проводят в динамическом режиме производным аминокислоты с последующей координацией ионов металла (меди) на поверхности носителя. Максимальный коэффициент селективности α наблюдался при разделении смеси энантиомеров глутаминовой кислоты и составил 1,64. Такие сорбенты нестабильны в водно-органических и органических подвижных фазах, а способы их получения достаточно сложны.

Известен наногибридный функциональный сепарационный материал (патент США №6824776 от 30.11.2004) на основе силикагеля и наночастиц золота, модифицированных белковыми молекулами. Способ получения наногибридного материала включает предварительную модификацию наночастиц золота цитохромом С, который является органическим лигандом и содержит полипептидную цепь, и последующее закрепление наночастиц на поверхности силикагеля. Тем не менее, такой материал может быть использован только для определения узкого класса биомолекул.

Известен наногибридный функциональный сепарационный материал на основе модифицированных наночастиц металлов (патент РФ №2366502 от 10.09.2009), который по совокупности существенных признаков является прототипом заявляемого изобретения. В соответствии с патентом РФ №2366502 наногибридный сорбент для разделения органических веществ содержит носитель с адсорбированными наночастицами металла и ковалентно присоединенные к наночастицам серосодержащие лиганды. Основными недостатками наногибридного функционального сепарационного материала, раскрытого в патенте РФ №2366502, являются недостаточная стабильность и недостаточная эффективность сорбента, что связано с небольшой прочностью связи между носителем и наночастицами металла.

Задачами, на решение которых направлено заявленное изобретение, являются увеличение срока службы и увеличение эффективности сепарационного материала.

При решении поставленной задачи достигаются следующие технические результаты - увеличение стабильности сепарационного материала (в процессе работы материал длительно сохраняет свои сорбционные свойства); увеличение содержания наночастиц золота на поверхности носителя.

Указанные технические результаты достигаются при использовании наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц золота, включающего носитель с ковалентно закрепленными на нем наночастицами золота и серосодержащие органические лиганды, ковалентно закрепленные на поверхности наночастиц золота.

Наиболее стабильные сорбционные свойства наногибридный функциональный сепарационный материал проявляет в том случае, когда в качестве серосодержащих соединений используют серосодержащие аминокислоты, например L-цистеин, их производные и высокомолекулярные соединения - белки.

В качестве носителя могут быть использованы неорганические носители - оксиды кремния.

Наногибридный функциональный сепарационный материал может быть получен с использованием следующего способа: наночастицы золота ковалентно закрепляют на носителе, затем ковалентно закрепляют серосодержащие органические лиганды (например, серосодержащие аминокислоты, производные серосодержащих аминокислот) на поверхности наночастиц металла.

Для обеспечения ковалентного закрепления наночастиц золота носитель предварительно модифицируют кремнийорганическим соединением, например кремнийорганическим соединением, включающим группу -SH или -NH2.

Наночастицы золота закрепляют на носителе при обработке модифицированного носителя коллоидным раствором наночастиц.

Осуществление вышеописанной последовательности операций приводит к образованию ковалентных связей между носителем и наночастицами золота, а также между органическими серосодержащими лигандами и наночастицами золота, что значительно увеличивает стабильность получаемых материалов, эффективность их в качестве сорбентов, а также содержание лигандов в получаемом сепарационном материале. При этом наночастицы металла, предварительно ковалентно закрепленные на поверхности носителя, являются центрами взаимодействия с энантиомерами, что усиливает взаимодействие определяемого вещества с наногибридным функциональным сепарационным материалом.

Сущность изобретения поясняется иллюстративными материалами.

На фиг.1 показана общая схема получения наногибридного функционального сепарационного материала.

На фиг.2 показана хроматограмма разделения смеси аминопиридинов на колонке, заполненной наногибридным функциональным материалом на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином. Цифрами обозначены: 1-2-аминопиридин, 2-3-аминопиридин, 3-4-аминопиридин.

На фиг.3 показана хроматограмма разделения надолола на колонке, заполненной наногибридным функциональным материалом на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком.

На фиг.4 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу-прототипу с использованием оксида кремния, наночастиц золота и L-цистеина, микрофотографии получены методом сканирующей электронной микроскопии (СЭМ).

На фиг.5 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу, описанному в примере 1, микрофотографии получены методом СЭМ.

На фиг.6 показаны микрофотографии поверхности наногибридного функционального сепарационного материала, полученного по способу, описанному в примере 2, микрофотографии получены методом СЭМ.

Изобретение иллюстрируется примерами альтернативных вариантов его выполнения.

Пример 1. Получение наногибридного функционального материала на основе тиолированного оксида кремния и наночастиц золота, модифицированных L-цистеином

Получение носителя - модифицированного оксида кремния - проводят по схеме, представленной на фиг.1. Навеску оксида кремния (2 г) с диаметром частиц 5 мкм суспензируют в 300 мл свежеперегнанного толуола, доводят до кипения, добавляют 3-меркаптопропилтриэтоксисилан (МПТС) и кипятят в течение 4-х часов в атмосфере аргона, затем фильтруют. Полученный тиолированный силикагель суспензируют в 200 мл коллоидного раствора наночастиц золота со средним размером 10 нм (концентрация раствора 1011 частиц в одном миллилитре) при тщательном перемешивании с помощью механической верхнеприводной мешалки при комнатной температуре. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно водой и этиловым спиртом, получая тиолированный оксид кремния с ковалентно закрепленными на нем наночастицами золота. Полученный оксид кремния суспензируют в 0,01 М растворе органического серосодержащего лиганда - L цистеина. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно водой и этиловым спиртом. В результате получают оксид кремния, модифицированный наночастицами золота, стабилизированными функциональным серосодержащим органическим лигандом.

Пример 2. Получение наногибридного функционального материала на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином

Получение наногибридного функционального материала проводят аналогично примеру 1, но вместо 3-меркаптопропилтриэтоксисилана используют 3-амино-пропилтриэтоксисилан (АПТС).

Пример 3. Получение наногибридного функционального материала на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком

Получение тиолированного оксида кремния с ковалентно закрепленными на нем наночастицами золота проводят аналогично примеру 1. Затем полученный модифицированный оксид кремния суспензируют в 0,1 М буферном растворе, содержащем органический высокомолекулярный серосодержащий лиганд - бычий сывороточный белок. Смесь перемешивают в течение одного часа, фильтруют и промывают последовательно буферным раствором и водой. В результате получают оксид кремния, модифицированный наночастицами золота, стабилизированными функциональным высокомолекулярным органическим лигандом.

Пример 4. Получение наногибридного функционального материала на основе аминированного оксида кремния и наночастиц золота, стабилизированных бычьим сывороточным белком.

Получение наногибридного функционального материала проводят аналогично примеру 3, но вместо 3-меркаптопропилтриэтоксисилана используют 3-амино-пропилтриэтоксисилан (АПТС).

Наногибридные функциональные сепарационные материалы могут быть использованы следующим образом: материалом набивают хроматографическую колонку размером 4,6×100 мм под давлением 200-300 бар. Разделение на колонках, заполненных сорбентом, содержащим низкомолекулярные лиганды, осуществляют с использованием как водных, так и неводных подвижных фаз - в обращенно-фазовом, нормально-фазовом или полярно-органическом вариантах хроматографии. Разделение на колонках, заполненных сорбентом, содержащим высокомолекулярные лиганды, осуществляют с использованием водных подвижных фаз - в обращенно-фазовом варианте хроматографии.

Смесь производных аминопиридина разделяли на колонке (4,6×100 мм) с наногибридным функциональным материалом на основе аминированного оксида кремния и наночастиц золота, модифицированных L-цистеином, в нормально-фазовом варианте ВЭЖХ с использованием подвижной фазы гексан/изопропанол (90/10 об.%) при скорости потока 1 мл/мин. Детектирование проводили спектрофотометрическим детектором при длине волны 230 нм. Эффективность применения предложенного наногибридного функционального материала в качестве сорбента подтверждается хроматограммой, показанной на фиг.2. При многократном повторении анализа (более 2000 раз) сорбент не терял своих хроматографических свойств. При тестировании в аналогичных условиях эффективность хроматографического разделения с использованием материала, изготовленного по способу-прототипу, существенно ухудшалась после 1000-кратного повторения анализа в связи с вымыванием модифицированных наночастиц золота.

Энантиомеры β-блокатора надолола разделяли на колонке (4,6×100 мм) с наногибридным функциональным материалом на основе тиолированного оксида кремния и наночастиц золота, модифицированных бычьим сывороточным белком, в обращенно-фазовом варианте ВЭЖХ с использованием подвижной фазы фосфатный буферный раствор (рН 7,5; 20 мМ) / изопропанол (96/4 об.%) при скорости потока 1 мл/мин. Детектирование проводили спектрофотометрическим детектором при длине волны 275 нм. Эффективность применения предложенного наногибридного функционального материала в качестве сорбента подтверждается хроматограммой, показанной на фиг.3. При многократном повторении анализа (более 2000 раз) сорбент не терял своих хроматографических свойств. При тестировании в аналогичных условиях эффективность хроматографического разделения с использованием материала, изготовленного по способу-прототипу, существенно ухудшалась после 1000-кратного повторения анализа в связи с вымыванием модифицированных наночастиц золота.

Таким образом, во всех случаях был достигнут технический результат, заключающийся в увеличении стабильности сепарационного материала, который в процессе работы сохраняет свои сорбционные свойства не менее 1 года.

Использование полученных по заявленному способу стабильных наногибридных функциональных сепарационных материалов позволяет проводить разделение широкого круга соединений, в том числе разделение изомеров оптически активных соединений, в частности, относящихся к классам N-гидроксипропиламинов (β-блокаторов) и профенов, широко использующимся в фармакологии и медицине.

Предварительная модификация силикагеля 3-аминопропилтриэтоксисиланом или 3-меркаптопропилтриэтоксисиланом приводит к значительному увеличению степени покрытия силикагеля наночастицами золота за счет образования прочных ковалентных связей Au-S или ковалентных донорно-акцепторных связей Au-N. Данные СЭМ показали значительное увеличение степени покрытия поверхности силикагеля наночастицами золота, при этом максимальное покрытие наблюдалось в случае обработки силикагеля МПТС (фиг.4-6). По данным атомно-абсорбционной спектроскопии на модифицированной поверхности силикагеля при описанных в примерах 1 и 2 условиях обработки закрепляются практически все наночастицы золота, введенные в реакцию. Таким образом, при использовании заявленного способа получения наногибридных функциональных сепарационных материалов достигается технический результат, заключающийся в увеличении содержания наночастиц на поверхности носителя.

1. Способ получения наногибридного функционального сепарационного материала на основе модифицированного оксида кремния и модифицированных наночастиц золота, в котором выполняют следующие стадии: оксид кремния предварительно модифицируют кремнийорганическим соединением, содержащим группу -SH или -NF2, модифицированный носитель обрабатывают коллоидным раствором наночастиц золота и раствором серосодержащего органического соединения.

2. Способ по п.1, отличающийся тем, что серосодержащие органические соединения выбирают из группы, включающей тиолы, дисульфиды, серосодержащие аминокислоты и производные серосодержащих аминокислот.

3. Наногибридный функциональный сепарационный материал на основе модифицированного оксида кремния и модифицированных наночастиц золота, полученный способом, охарактеризованным в п.1 или 2.



 

Похожие патенты:

Изобретение относится к области химии, в частности к методикам наноструктурирования и модификации свойств поверхности. Изобретение может быть использовано для изменения смачиваемости поверхности кремния путем изменения пористости поверхности, в том числе для получения гидрофильных или гидрофобных поверхностей на основе кристаллического кремния.

Изобретение относится к катодному органо-неорганическому гибридному материалу для вторичных литий-ионных источников тока состава (C6H4N)*xV2O5*yH2O, где х=0.10-0.12, y=0.7-0.9 в виде наносвитков длиной от 100 до 500 нм и диаметром от 10 до 20 нм с площадью поверхности 60 м2/г и диаметром пор 20-30 нм.

Изобретение относится к новой высококонцентрированной водной наноразмерной полиуретановой дисперсии. Описан способ получения высококонцентрированной водной наноразмерной полиуретановой дисперсии, не содержащей органический растворитель, с концентрацией основного вещества 30-60%, представляющей собой продукт взаимодействия: A) по меньшей мере одного полиизоцианата, содержащего по меньшей мере две изоцианатные группы; B) одного или нескольких полиолов с молекулярной массой (ММ) от 1000 до 18000, имеющих по меньшей мере две гидроксильные группы; C) одного или нескольких соединений по меньшей мере с двумя OH-функциональными группами, которые содержат по меньшей мере одну карбоксильную группу, которая может быть превращена полностью или частично в карбоксилатную группу в присутствии оснований; D) возможно одного или нескольких полиолов и/или глицидиловых эфиров полиолов со средней молекулярной массой менее 500, содержащих 2 и более гидроксильные и/или эпоксидные группы; E) одного или нескольких третичных аминов; F) одного или нескольких полиаминов, содержащих по меньшей мере одну NH2-группу, при этом подвергают одновременному взаимодействию компоненты (A), (B) и (C) до степени конверсии изоцианатных групп 70-98%, при необходимости вводят в реакционную массу компонент (D), затем полностью или частично нейтрализуют карбоксильные группы компонента (C) компонентом (E), диспергируют в воде, вводят компонент (F), нагревают дисперсию и выдерживают при температуре от 20 до 90°C в течение от одного до четырех часов.
Изобретение относится к нанотехнологии и заключается в способе получения нанокапсул албендазола с оболочкой из альгината натрия. Албендазол небольшими порциями добавляют в суспензию альгината натрия в гексане в присутствии препарата Е472с при перемешивании, приливают четыреххлористый углерод, полученную суспензию отфильтровывают и сушат при комнатной температуре.
Изобретение относится к способу получения нанокапсул лозартана калия в оболочке из ксантановой камеди. Согласно способу по изобретению лозартан калия добавляют по порциям в суспензию ксантановой камеди в бензоле в присутствии препарата Е472с при перемешивании 1000 об/сек.

Изобретение относится к твердосмазочным материалам на основе ультрадисперсных наноалмазов, применяемых в качестве добавки к нефтяным смазочным маслам для защиты контактных поверхностей узлов рения от износа и для снижения коэффициента трения.

Изобретение относится к фотографической промышленности, в частности к технологии синтеза фотографических галогенидосеребряных эмульсий методом контролируемой двухструйной кристаллизации.

Изобретение относится к области наноструктурированных биосовместимых материалов, в частности к пористому кремниевому наноносителю. Способ включает следующие этапы - получение пор под действием электролиза в пластине толщиной 700-730 мкм и площадью до 32 см2 монокристаллического кремния, являющейся анодом, p-типа проводимости, легированной бором с концентрацией около 10-19 см-3, с удельным сопротивлением 3-7·10-3 Ом·см, поверхности которой ориентированы параллельно кристаллографическим плоскостям в стеклоуглеродном стакане, являющемся катодом.

Светодиод содержит подложку, светоизлучающую структуру, первый электрод, второй электрод. На подложке выполнен электропроводящий, прозрачный для излучаемого света U-образный подвес для светоизлучающей структуры.

Группа изобретений относится к вакуумно-плазменной обработке композитов. Установка для наводораживания тонкопленочных композитов в водородной плазме содержит СВЧ-печь и установленный внутри нее кварцевый реактор.

Изобретение относится к области очистки воды. Предложен способ получения средства для очистки воды на основе хлоралюминийсодержащего коагулянта.

Изобретение относится к переработке отходов борсодержащего минерального сырья и может быть использовано для производства высокоэффективных сорбентов. Способ включает обработку отходов борного производства (борогипса), содержащих дигидрат сульфата кальция и аморфный кремнезем.

Изобретение относится к получению композиционных сорбентов, предназначенных для использования в процессах очистки сточных и природных вод. Способ включает соосаждение при pH 8,9 гидроксидов магния и алюминия, взятых в мольном соотношении 4:1, формирование осадка, гранулирование методом высушивания.

Изобретение относится к области сорбционной очистки воды. Предложен способ получения сорбента, включающий смешивание предварительно активированной солью натрия бентонитовой глины и измельченного парафина.

Изобретение относится к области получения ферромагнитных углеродных сорбентов, предназначенных для очистки вод. Целлюлозосодержащее сырье пропитывают водным раствором соли железа, отделяют избыток влаги и полученную смесь подвергают пиролизу.
Изобретение относится к технологии получения магнитных сорбентов. Сорбент содержит полимерное связующее в виде гуминовых кислот и магнитный наполнитель-магнетит.

Изобретение относится к получению сорбента для средств защиты органов дыхания. Способ изготовления сорбента включает смешение порошкообразного гидроксида или оксида кальция с водой при массовом соотношении Са2+/H2O, равном (0,7÷0,3)/1.

Изобретение относится к способам получения сорбентов для хроматографического разделения фуллеренов. Проводят термическую обработку многослойных углеродных нанотрубок при 800-1000°C.
Изобретение относится к получению адсорбента для удаления сероводорода из газообразных потоков. Предложен адсорбент, состоящий из смеси железомарганцевых конкреций, гамма-оксида алюминия и поливинилового спирта.

Изобретение относится к синтезу цеолитов. Предложен BaKX цеолитный адсорбент без связующего.

Настоящее изобретение относится к способу получения катализатора для селективного каталитического восстановления NOx в топочном газе, содержащем щелочной металл, с использованием аммиака в качестве восстанавливающего агента, причем катализатор содержит поверхность с каталитически активными центрами кислот Бренстеда или Льюиса, причем поверхность, по меньшей мере, частично покрыта покрытием, содержащим, по меньшей мере, один оксид металла, причем этот способ включает предоставление носителя, импрегнирование носителя первым водным раствором, содержащим ванадиевый компонент, сушку и прокаливание импрегнированного носителя, покрытие импрегнированного носителя второй водной суспензией, содержащей, по меньшей мере, один оксид основного металла, представляющий собой MgO, и сушку и прокаливание покрытого носителя второй раз.
Наверх