Способ определения подвижности зубов

Изобретение относится к медицине, а именно к стоматологии, и предназначено для унифицированного определения степени подвижности зубов у пациентов с болезнями пародонта в динамике лечения. Получают оттиск и изготавливают гипсовую модель, на которой определяют путь введения будущей каппы и центр вестибулярной поверхности исследуемых зубов, отмечая его химическим карандашом. Гипсовую модель обжимают разогретым базисным воском толщиной 2 мм. Далее зуботехническим шпателем с цоколя модели срезают воск, оставляя его лишь на зубах. Полученную композицию дублируют силиконовой массой. Силиконовый дубликат заливают гипсом и получают модель. По полученной модели изготавливают каппу из жесткой прозрачной пластмассы толщиной 4 мм. Через прозрачную пластмассу, ориентируясь на ранее установленные химическим карандашом метки, делают сквозные отверстия конусной фрезой, имеющей параметры датчика периотеста. Излишки пластмассы обрезают до уровня переходной складки, границы каппы сглаживают. Каппу снимают с гипсовой модели, обрабатывают дезинфицирующими растворами и устанавливают на зубной ряд пациента. В конусные сквозные отверстия каппы фиксируют датчик периотеста, на расстоянии 2 мм. Проводят измерения периотестом, данные фиксируют в медицинскую карту пациента. Проводят комплексное лечение пациента, после чего возможны повторные исследования подвижности зуба с использованием имеющейся каппы на разных этапах лечения. Способ позволяет обеспечить высокую точность проведения периотестометрии у пациентов, а также сопоставить полученные результаты подвижности зубов в процессе лечения. 1 ил.

 

Изобретение относится к медицине, а в частности к стоматологии, и может быть использовано для унифицированного определения степени подвижности зубов у пациентов с болезнями пародонта в динамике лечения.

Способы определения подвижности зубов основаны на приложении силы к стенке зуба. При этом способы определения степени подвижности зуба разнообразны. Наиболее часто для оценки степени смещения зуба в горизонтальном направлении фиксируют величину смещения зуба непосредственно линейными измерениями или посредством электронных устройств путем представления величины горизонтального смещения в виде кода или цифровой индикации. При этом регистрирующие приборы, осуществляющие способ, закрепляют непосредственно на зубе (способ, реализованный в а.с. СССР №1117054, A61C 19/04, 07.10.84; способ, реализованный в а.с. СССР №1648444, A61C 19/04, 15.09.91).

Известен способ определения подвижности зуба по величине упругости и вязкости тканей, окружающих зуб, состояние которых влияет на его подвижность. Способ заключается в приложении к зубу переменной силы, обеспечивающей возвратно-поступательные колебания зуба. Регистрирующий прибор, осуществляющий способ, также закрепляют непосредственно на зубе. В известном способе измерение амплитуды смещения зуба выполняют выделением двух составляющих колебаний зуба: синфазной переменной силе и сдвинутой на 90° по отношению к переменной силе. По величине этих составляющих судят об упругой и вязкой характеристиках тканей, окружающих зуб, влияющих на его подвижность, и констатируют степень подвижности зуба (патент РФ №2065724, A61C 19/04, 27.08.1996).

Известен способ определения подвижности зуба путем приложения к зубу переменной силы, обеспечивающей возвратно-поступательные колебания и измерения амплитуды смещения зуба (DE 4003947 A1, 14.08.1991).

В этом способе определения подвижности зуба непосредственно измеряют амплитуду смещения зуба при приложении переменной силы и датчиком перемещений регистрируют показания амплитуды, соответствующей вязкоупругим характеристикам опорно-удерживающего аппарата зуба.

Наиболее близким является способ определения состояния удерживающих зуб тканей с использованием периотестометрии.

Периотестометрия - это опосредованная оценка состояния опорных тканей зуба, т.е. функциональных возможностей пародонта с помощью прибора «Периотест», вычисляется способность тканей пародонта вернуть зуб в исходное положение после действия на него определенной внешней нагрузки (функциональной или патологической). Физический принцип работы прибора заключается в преобразовании электрического импульса в механический. Исследуемый зуб перкутируется бойком наконечника, направленным горизонтально и под прямым углом к середине вестибулярной анатомической плоскости коронки опорного зуба, через равные промежутки времени с усилием (И.Ю. Лебеденко и др. Функциональные и аппаратные методы исследования в ортопедической стоматологии. Учебное пособие. - М.: ООО «Медицинское и информационное агентство», 2003. - С. 97-100).

На сегодняшний день, по мнению многих авторов, периотестометрия является основополагающей методикой в определении степени подвижности зубов, а в европейских странах - обязательной и введенной в стандарт приема стоматологического больного.

Однако данная методика имеет недостатки, основным из которых является невозможность унификации исследований на различных этапах лечения. Это прежде всего связано с наличием «человеческого фактора». Невозможно избежать физиологического тремора рук исследователя, контролировать точность места воздействия датчика, а это должна быть наиболее выпуклая часть центра вестибулярной поверхности зуба, строгое перпендикулярное соотношение датчика прибора к изучаемой поверхности и расстояние датчика от поверхности, составляющее 2 мм.

Задачей, на решение которой направлено изобретение, является наиболее точное и унифицированное определение подвижности зубов у пациентов с болезнями пародонта в динамике лечения.

Техническим результатом изобретения является высокая точность проведения периотестометрии у пациентов с болезнями пародонта, с возможностью мониторинга сопоставления результатов определения подвижности зубов в процессе лечения.

Технический результат изобретения достигается за счет того что, способ определения подвижности зуба заключается в получении оттиска альгинатной массой и изготовлении гипсовой модели, на которой в параллелометре определяют путь введения будущей каппы и центр вестибулярной поверхности исследуемых зубов, отмечая его химическим карандашом, после чего гипсовую модель обжимают разогретым базисным воском толщиной 2 мм, далее зуботехническим шпателем с цоколя модели срезают воск, оставляя его лишь на зубах, полученную композицию дублируют специальной силиконовой массой, силиконовый дубликат заливают гипсом и получают модель, по полученной модели изготавливают каппу из жесткой прозрачной пластмассы толщиной 4 мм методом вакуумного термопрессования, через прозрачную пластмассу, ориентируясь на ранее установленные химическим карандашом метки, делают сквозные отверстия конусной фрезой, имеющей параметры датчика периотеста, далее излишки пластмассы обрезаются до уровня переходной складки, границы каппы сглаживаются, полируются, каппа снимается с гипсовой модели, промывается, обрабатывается дезинфицирующими растворами, устанавливается на зубной ряд и альвеолярную кость пациента, в конусные сквозные отверстия каппы фиксируется датчик периотеста, на расстоянии 2 мм, соответствующем зазору между исследуемыми зубами и поверхностью устройства, проводятся измерения периотестом, данные которых фиксируются в медицинскую карту пациента, проводится комплексное лечение пациента, после чего, возможны повторные исследования подвижности зуба с использованием имеющейся каппы на разных этапах лечения.

Зазор между каппой и естественными зубами обеспечивает физиологическую и патологическую подвижность зубов, конусные отверстия фиксируют датчик на запрограммированном для точности проведения исследования расстоянии от поверхности зуба, а общая толщина каппы нивелирует деформацию конструкции и погрешность смещения прибора во время проведения исследования. Каппа предназначена для многоразового использования в одних и тех же точках приложения у пациента на разных сроках лечения. Предлагаемый способ определения подвижности зуба позволяет с высокой точностью провести периотестометрию у пациентов с болезнями пародонта, а также провести мониторинг успешности проводимого лечения на всех этапах. Способ определения подвижности зуба поясняется чертежом, где на фиг. 1:

1. Зубной ряд пациента

2. Альвеолярная кость пациента

3. Каппа

4. Зазор между исследуемыми зубами и поверхностью каппы

5. Конусные сквозные отверстия в каппе

6. Датчик периотеста.

Каппа для осуществления способа определения подвижности зуба изготавливается следующим образом.

1. В клинике получают оттиск альгинатной массой и изготавливают гипсовую модель.

2. На гипсовой модели в параллелометре определяют путь введения будущей каппы и центр вестибулярной поверхности исследуемых зубов, отмечая его химическим карандашом.

3. Гипсовые модели обжимают разогретым базисным воском толщиной 2 мм.

4. Зуботехническим шпателем с цоколя модели срезают воск, оставляя его лишь на зубах.

5. Полученную композицию дублируют специальной силиконовой массой.

6. Силиконовый дубликат заливают гипсом и получают модель.

7. По полученной модели изготавливают каппу из жесткой прозрачной пластмассы толщиной 4 мм методом вакуумного термопрессования (например, в приборе Pro-Form фирма Keystone industries США).

8. Через прозрачную пластмассу, ориентируясь на ранее установленные химическим карандашом метки, делают сквозные отверстия конусной фрезой, имеющей параметры датчика периотеста.

9. На модели, обрезаются излишки пластмассы до уровня переходной складки, границы каппы сглаживаются, полируются.

10. Полученное устройство для определения подвижности зуба снимается с гипсовой модели, промывается, обрабатывается дезинфицирующими растворами, стерилизуется.

Способ определения подвижности зубов у пациентов с болезнями пародонта проводится следующим образом.

1. Каппа (3) устанавливается на зубной ряд (1) и альвеолярную кость пациента (2).

2. В конусные сквозные отверстия (5) каппы (3) фиксируется датчик периотеста (6), на расстоянии 2 мм, соответствующем зазору между исследуемыми зубами и поверхностью каппы (4).

3. Включается периотест, проводятся измерения, полученные данные фиксируются в медицинскую карту пациента.

4. Проводится комплексное лечение пациента.

5. Повторные исследования подвижности зуба с использованием имеющейся каппы (3) на разных этапах лечения.

6. Сопоставления полученных данных, формирование выводов о эффективности проводимого лечения с последующей коррекцией плана лечения, при необходимости.

Способ определения подвижности зуба заключается в получении оттиска альгинатной массой и изготовлении гипсовой модели, на которой в параллелометре определяют путь введения будущей каппы и центр вестибулярной поверхности исследуемых зубов, отмечая его химическим карандашом, после чего гипсовую модель обжимают разогретым базисным воском толщиной 2 мм, далее зуботехническим шпателем с цоколя модели срезают воск, оставляя его лишь на зубах, полученную композицию дублируют силиконовой массой, силиконовый дубликат заливают гипсом и получают модель, по полученной модели изготавливают каппу из жесткой прозрачной пластмассы толщиной 4 мм методом вакуумного термопрессования, через прозрачную пластмассу, ориентируясь на ранее установленные химическим карандашом метки, делают сквозные отверстия конусной фрезой, имеющей параметры датчика периотеста, далее излишки пластмассы обрезаются до уровня переходной складки, границы каппы сглаживаются, полируются, каппа снимается с гипсовой модели, промывается, обрабатывается дезинфицирующими растворами, устанавливается на зубной ряд и альвеолярную кость пациента, в конусные сквозные отверстия каппы фиксируется датчик периотеста, на расстоянии 2 мм, соответствующем зазору между исследуемыми зубами и поверхностью устройства, проводятся измерения периотестом, данные которых фиксируются в медицинскую карту пациента, проводится комплексное лечение пациента, после чего проводят повторные исследования подвижности зуба с использованием имеющейся каппы на разных этапах лечения.



 

Похожие патенты:

Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано для изучения механических свойств костной ткани нижней челюсти. Устройство содержит элементы фиксации исследуемого материала, источник механической энергии, элементы регистрации нагрузки, основание, которое выполнено из твердого материала в виде площадки.

Изобретение относится к медицине, в частности к стоматологии, и предназначено для проведения эхоостеометрии челюстей у пациентов в ретенционном периоде ортодонтического лечения.
Изобретение относится к медицине, а именно к стоматологии. Способ включает измерение электропроводности эмали и оценку светоиндуцированной флюоресценции твердых тканей зуба в очаге поражения.

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для определения и фиксации центрального соотношения челюстей. У пациентов, с частичным или полным отсутствием зубов, снимают оттиск специально изготовленными оттискными ложками.

Изобретение относится к медицине, а именно к стоматологии, и предназначено для определения функционального состояния жевательных мышц у лиц с подвижными зубами при патологии пародонта и при ортодонтическом лечении аномалий прикуса.

Группа изобретений относится к области медицины, в частности к ортопедической стоматологии, и предназначено для моделирования ортопедических лечебных конструкций с учетом привычных движений нижней челюсти человека.

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для использования при проверке правильности постановки искусственных зубов в протезах относительно ориентиров на черепе и лице человека на любом этапе моделирования конструкции протеза, включая этап замены восковой модели на материал протеза.

Изобретение относится к медицине, а именно к диагностике в стоматологии. Способ включает проведение электромиографии симметричных жевательных мышц путем наложения поверхностных электродов для регистрации электромиограммы (ЭМГ).

Изобретение относится к стоматологии и предназначено для применения в ортопедической и терапевтической стоматологии. Создают гипсовые модели челюстей пациента.

Группа изобретений относится к медицине, а именно к стоматологии, и предназначено для нахождения проекции протетической плоскости на лице человека. Для этого используют устройство для регистрации сагиттального суставного пути, содержащее U-образно изогнутую дугу, которая идет от области височно-нижнечелюстных суставов до центральных резцов верхней челюсти.

Изобретение относится к области медицины, а именно стоматологическому материаловедению, и позволяет определить прочность соединения стоматологического материала, используемого для фиксации зубных протезов твердым тканям зуба. Устройство для проведения механических испытаний зубных протезов состоит из несущей плиты, на которой смонтирован шаговый двигатель и приспособление для фиксации протеза. Взаимодействие шагового двигателя с приспособлением для фиксации протеза происходит через нить, связанную с шаговым двигателем, пружиной, весовым модулем, на корпусе которого имеется жидкокристаллический индикатор для контроля измеряемого значения силы, и крючком-зацепом. Измерение приложенной к протезу нагрузки осуществляется с помощью весового модуля, а также имеется часовой индикатор, используемый для измерения деформации протеза, определяемой по отклонению стрелки на циферблате устройства. Управление включения и выключения устройства производится с помощью персонального компьютера и специализированного программного обеспечения. Изобретение позволяет обеспечить мониторинг и регистрацию допустимых прочностных характеристик как самих зубных протезов, так и зубных протезов, фиксированных к твердым тканям зуба, приложение задаваемой статической или динамической нагрузки зубного протеза. 1 ил.

Изобретение относится к медицине, в частности к стоматологии, и касается способа чистки полости рта. Способ включает установку на секции полости рта соответствующего устройства для обнаружения и удаления зубного налета с поверхности, по меньшей мере, одного зуба. При этом чистку и облучение указанной поверхности проводят одновременно. На поверхность, по меньшей мере, одного зуба наносят флуоресцентный агент, способный связываться с зубным налетом. Длина волны падающего излучения такова, что эффективно обеспечивает флуоресцентное излучение. Регистрируют флуоресцентное излучение в течение первого периода времени. Определяют первое среднее значение зубного налета (APV1) на основе указанного флуоресцентного излучения. Затем проводят регистрацию флуоресцентного излучения в течение второго периода времени и определение второго среднего значения зубного налета (APV2). Проводят сравнение APV1 с APV2. При этом отраженный свет, полученный при взаимодействии указанного падающего излучения с указанной поверхностью, регистрируют, по существу, одновременно с указанным флуоресцентным излучением и APV1 и APV2 для определения среднего компенсированного значения зубного налета (ACPV) для указанных APV1 и APV2. Способ обеспечивает эффективное очищение полости рта за счет достоверного отражения состояния зубного налета в процессе чистки. 14 з.п. ф-лы, 2 пр., 2 табл., 5 ил.

Изобретение относится к медицине, а именно к детской терапевтической стоматологии, и предназначено для диагностики воспаления пульпы временного зуба. Для этого проводят исследование десневой жидкости в области проблемного зуба, определяя активность ферментов ACT и АЛТ. При снижении активности ACT и АЛТ и соотношении ACT/АЛТ > 1,5 диагностируют воспаление пульпы. Способ обеспечивает получение объективной оценки состояния пульпы временного зуба у детей неинвазивным путем. 1 пр., 1 табл.

Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования при проведении диагностики аномалий формы зубной дуги верхней челюсти в период прикуса постоянных зубов. Строят окружность для расположения передних зубов радиусом, равным разнице ширины зубной дуги между клыками и глубиной переднего отдела дуги. При этом измеряют ширину зубной дуги между клыками и из полученной величины вычитают расстояние от фронтальной вестибулярной точки, расположенной с вестибулярной стороны между медиальными резцами, до линии, соединяющей точки зубной дуги на клыках. Из верхней точки А, построенной по обе стороны до пересечения с дугой окружности, откладывают отрезки АС и AD, каждый из которых равен величине фронтально-дистальной диагонали, измеряемой от фронтальной вестибулярной точки до точки на клыках. Из верхней точки А через центр О проводят линию, выходящую за пределы нижней части построенной окружности, и на этой линии откладывают отрезок АЕ, равный глубине зубной дуги, измеряемой от фронтальной вестибулярной точки до линии, соединяющей вестибулярно-дистальные точки вторых моляров по проекции срединного небного шва, и отрезок AT, равный ширине зубной дуги между вторыми молярами. Через полученные точки Е и Т проводят перпендикулярно отрезку AT линию Е и линию Т. На линии Е по обе стороны от точки Е откладывают отрезки ЕК и EL, каждый из которых равен половине ширины зубной дуги между вторыми молярами. Соединяют точки С и К и точки D и L прямыми линиями СК и DL, от середины которых и перпендикулярно к ним проводят линии до пересечения с линией Т, получают точки М и N, из которых радиусом MD и радиусом NC проводят дуги DL и СК, по которым будут располагаться точки вестибулярной поверхности окклюзионного контура жевательной поверхности премоляров и моляров. Полученная таким образом дуга KCADL является индивидуальной зубной дугой. Способ позволяет повысить точность построения формы зубной дуги пациента. 1 ил.

Изобретение относится к стоматологии и может быть использовано при оценке качества зубного протезирования. Осуществляют запись произношения буквы "С" после протезирования, спектральный анализ записи, выделение спектра звука «С» и построение кривой изменения его амплитуды от частоты. Измеряют площадь под полученной кривой на участке от 5000 до 10000 Гц и сравнивают ее с площадью под всей кривой. Качество протезирования оценивают как хорошее, если отношение площадей составляет величину не менее 0,5. При отношении площадей в пределах 0,5-0,3 качество протезирования оценивают как удовлетворительное. При отношении площадей ниже 0,3 качество протезирования оценивают как неудовлетворительное. Способ позволяет расширить функциональные возможности методов исследований фонетического контроля за счет формирования объективных оценок качества зубного протезирования и использования спектрального анализа, а также улучшает произнесение звука “С”, что является оптимальным клиническим методом определения центрального соотношения челюстей и положения передних искусственных зубов. 9 ил., 3 пр.

Способ относится к медицине, а именно к стоматологии ортопедической, и может быть использован для контроля за состоянием альвеолярных отростков беззубых челюстей с целью определения степени атрофии костной ткани, для уточнения диагноза, выбора плана лечения. Изготавливают индивидуальные ложки и получают по общепринятой методике функциональные оттиски корригирующими силиконовыми массами. По полученным оттискам отливают диагностические модели из высокопрочного гипса. Следующим этапом приступают к разметке моделей, на которых проводят линии посередине гребня альвеолярного отростка и середине нейтральной зоны, а затем приступают к нанесению контрольных точек измерения. На модели верхней челюсти из точек А1, Б1, Б2, K1, K2 проводят перпендикулярные линии до пересечения с линией середины нейтральной зоны, получая контрольные точки Д, Д1, Д2, Д3, Д4, расположенные на линии середины нейтральной зоны. Размеры модели верхней челюсти в вертикальной плоскости оценивают, измерив расстояние Б1-Д3, Б2-Д4 между точками середин верхнечелюстных бугров и середины нейтральной зоны, расстояние K1-Д1, K2-Д2 между точками пересечения линии, проведенной через наружные края первых поперечных небных складок до линии середины гребня альвеолярного отростка и середины нейтральной зоны, и расстояние А1-Д между точкой середины резцового сосочка и линией середины нейтральной зоны. На модели нижней челюсти из точек В1, С1, С2, Г1, Г2 проводят перпендикулярные линии до пересечения с линией середины нейтральной зоны, получая контрольные точки Е, E1, Е2, Е3, Е4, расположенные на линии середины нейтральной зоны. Размеры модели нижней челюсти в вертикальной плоскости оценивают, измерив расстояние С1-Е3, С2-Е4 между точками середин слизистых бугорков и середины нейтральной зоны, расстояние Г1-Е1, Г2-Е2 между точками, расположенными на вершине гребня альвеолярного отростка посередине расстояния от точки симфиза до середин слизистых бугорков и середины нейтральной зоны и расстояние В1-Е между точкой симфиза и линией середины нейтральной зоны, и диагностируют атрофию челюстей по изменениям, произошедшим со временем, расстояний между контрольными точками. Способ позволяет проводить измерение в трех взаимно перпендикулярных плоскостях, определяя атрофию челюстей по изменению со временем расстояния между контрольными точками, повышает информативность исследования. 1 табл., 2 ил., 1 пр.

Изобретение относится к медицине, а именно к ортопедической стоматологии и ортодонтии, и предназначено для определения параметров коронковой части зуба. Измерения проводят с помощью ортодонтического циркуля в полости рта или на моделях с четырех сторон: на вестибулярной и оральной поверхностях от наиболее апикально расположенной части десневого контура до режущего края или от рвущего бугра на передних зубах и до самой глубокой точки одной из фиссур на боковых зубах; с мезиальной и дистальной поверхностей от вершины десневого сосочка до самой глубокой точки фиссуры на боковых зубах или до режущего края или рвущего бугра на передних. Полученные значения суммируют и делят на четыре, получая среднее значение высоты коронки. Способ за счет проведения измерений с учетом высоты бугорков, глубины фиссур и состояния десневого края всех поверхностей зуба позволяет более достоверно определить высоту клинических коронок зубов, проводить измерения в полости рта и на моделях и выбрать ортопедические конструкции с дополнительными ретенционными приспособлениями или обосновать необходимость хирургической коррекции десневого края. 2 пр., 2 ил.
Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для определения глубины пародонтального кармана. В пародонтальный карман в области исследуемого зуба вводят шарик пародонтального пуговчатого зонда диаметром 0,5 мм. Затем вводят шарик меньшего диаметра, равного не менее 0,2 мм и не более 0,4 мм. Фиксируют величины глубины зондирования. Проводят расчет глубины пародонтального кармана по определенной формуле. Способ позволяет установить правильный диагноз, выбрать тактику лечения, осуществлять дифференциальную диагностику микробной и нагрузочной составляющих повреждения пародонта за счет использования при измерении глубины пародонтального кармана двух пародонтальных пуговчатых зондов с различным диаметром шарика. 2 пр.

Изобретения относятся к медицине, в частности к стоматологии, и касаются способа и устройства для очистки полости рта. Для этого размещают устройство, предназначенное для обнаружения и удаления налета с поверхности, по крайней мере, одного зуба. На поверхность наносят флуоресцентный агент, способный связываться с налетом. Поверхность зуба одновременно очищают и облучают светом с эффективной длиной волны для обеспечения флуоресцентного излучения при контакте с указанным флуоресцентным агентом. Часть флуоресцентного излучения (APV1) регистрируют и сравнивают с предварительно заданным пороговым значением количества налета(PPTV). При этом излучение перед контактом с поверхностью и после этого проводят через оптические фильтры. Если APV1 меньше PPTV, устройство перемещают в другую секцию. Если APV1 больше или равно PPTV, то собирают другую часть флуоресцентного излучения (APV2). Процентное сокращение APV1 до APV2 определяют при перемещении устройства в другую секцию. Предложенное устройство содержит источник излучения, оптические фильтры, оптические коллекторы для сбора отраженного света и флуоресцентного излучения, оптические каналы для передачи света и излучения, средство для преобразования оптического светового сигнала в электрический сигнал, средство для математической обработки последнего для определения количества налета и средство для очищения поверхности зуба. Изобретения обеспечивают повышение эффективности очистки полости рта, в т.ч. за счет более точного определения количества налета на зубах в процессе очищения. 2 н. и 29 з.п. ф-лы, 2 пр., 2 табл., 6 ил.

Изобретение относится к области медицины, в частности к ортопедической стоматологии, и предназначено для использования при изготовлении металлокерамических конструкций или безметалловых конструкций, при протезировании ортопедическими конструкциями на имплантатах и съемными конструкциями в эстетически значимых зонах, когда обширные дефекты, неравномерная атрофия альвеолярного отростка приводят к трудностям при восстановлении протетической плоскости. Способ конструирования протетической плоскости при изготовлении металлокерамических и безметалловых конструкций, несъемных ортопедических конструкций на имплантатах и съемных конструкций характеризуется тем, что после снятия оттисков фиксируют центральную окклюзию, определяют зрачковую линию на лице пациента, затем с помощью силиконовой массы фиксируют положение центральной окклюзии, закрепляют в силиконовой массе технический ориентир параллельно зрачковой линии, определяют на лице пациента камперовскую горизонталь и устанавливают параллельно ей в силиконовой массе технический ориентир. Затем по полученным оттискам изготавливают модели, фиксируют их в артикуляторе в положении центральной окклюзии, далее устанавливают силиконовые блоки с техническими ориентирами, параллельно им переносят ориентир зрачковой линии и камперовской горизонтали на артикулятор, согласно этим ориентирам конструируют протетическую плоскость. Дальнейшее моделирование ортопедических конструкций проводят с учетом полученных ориентиров. Изобретение позволяет зубному технику наиболее рационально отрегулировать высоту коронки, угол коронки, степень ангуляциии и величину апроксимальной поверхности. 5 ил.
Наверх