Способ оценки ресурса трубных изделий энергетического оборудования



Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
Способ оценки ресурса трубных изделий энергетического оборудования
G01N23/00 - Исследование или анализ материалов радиационными методами, не отнесенными к группе G01N 21/00 или G01N 22/00, например с помощью рентгеновского излучения, нейтронного излучения (G01N 3/00-G01N 17/00 имеют преимущество; измерение силы вообще G01L 1/00; измерение ядерного или рентгеновского излучения G01T; введение объектов или материалов в ядерные реакторы, извлечение их из ядерных реакторов или хранение их после обработки в ядерных реакторах G21C; конструкция или принцип действия рентгеновских аппаратов или схемы для них H05G)

Владельцы патента RU 2555202:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Использование: для оценки фактического состояния и остаточного ресурса эксплуатации трубных изделий энергетического оборудования. Сущность заключается в том, что из трубы, проработавшей в энергетическом оборудовании, подготавливают один образец, а также два эталона из трубы, не бывшей в эксплуатации. По относительным изменениям параметра элементарной ячейки в образце, отработавшем в ресурсе в котле, определяют скорость и продолжительность первого участка неустановившейся ползучести на кривой, аналогичной классической кривой ползучести. Первый эталон подвергается испытаниям методом термоциклирования и определяется максимально возможное относительное изменение параметра элементарной кристаллической решетки при термических нагрузках. Второй эталон подвергается «холодному» циклическому деформированию, и определяется максимально возможное относительное изменение параметра элементарной кристаллической решетки от внешних давлений. Путем суммирования результатов термоциклирования и «холодного» циклического деформирования устанавливается максимальное относительное изменение параметра элементарной кристаллической решетки на участке ускоренной ползучести, достигаемое при исчерпании изделием ресурса работоспособности за время, рассчитываемое на основании фундаментального кристаллохимического критерия В.М. Гольдшмидта, равного 15% и выбранного за ресурс пластичности матрицы. Ресурсы изделия определяются на основе экспериментальной зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичной классической кривой ползучести. Технический результат: повышение точности определения остаточного ресурса трубных изделий энергетического оборудования. 1 табл., 6 ил.

 

Изобретение относится к способам оценки фактического состояния и остаточного ресурса эксплуатации трубных изделий энергетического оборудования и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях.

Известен способ определения остаточных напряжений в реальных металлоконструкциях (патент РФ №2115901, МПК G01L 1/25), в котором методом рентгеноструктурного анализа определяют значение структурно-чувствительного параметра кристаллической решетки металла трубопровода в его исходном и постдеформационном (после сварки) состояниях. В качестве структурно-чувствительного параметра металла используется расстояние между плоскостями кристалла, полученное на металле в исходном состоянии do и после различного вида воздействия (деформация, упрочнение, технология и т.д.) - d. Сравнивая полученные значения d и do, расчетным путем определяют деформационно-прочностные характеристики металла, обусловленные силовыми или технологическими факторами. В частности, зная d и do, можно определить удлинение Δd=d-do в направлении, перпендикулярном к отражающей поверхности кристалла. Затем в соответствии с законом Гука определяют остаточные напряжения σост в металле согласно зависимости Δ d d 0 E = σ О С Т .

Зная σост, сравнивают его с σтр - пределом текучести при растяжении данного металла - и тем самым определяют запас прочности, т.е. ресурс его работоспособности.

Недостаток данного способа состоит в том, что он не позволяет оценивать зависимость ресурса прочности, работоспособности металла от степени его дефектности - микроразрушений - в поверхностных слоях, неизбежно возникающих как при обработке технологическими методами, так и в условиях эксплуатации.

Известен способ определения ресурса работоспособности металлов (RU 2261436, МПК G01N 23/00, G01N 33/20, опубл. 27.09.2005), в котором методом рентгеноструктурного анализа определяют значения структурно-чувствительного параметра кристаллической решетки исследуемого металла в его исходном и постдеформационном состояниях, по изменению этого параметра расчетным путем определяют деформационно-прочностные характеристики металла, а о ресурсе его работоспособности судят путем сравнения фактически полученных характеристик с допустимыми. При этом в качестве структурно-чувствительного параметра используют ширину рентгеновской линии (β), в процессе испытаний регистрируют усилие деформирования (P), обусловленную им деформацию (Δ1) и соответствующие им значения структурно-чувствительного параметра (β), по которым затем расчетным путем определяют зависимости истинных напряжений (S) и структурно-чувствительного параметра (β) от степени относительной остаточной деформации (δ), строят деструкционную диаграмму (S-δ1/2) и линеаризованную диаграмму (β1/21/2) с регистрацией на них точек перегиба, а деформационно-прочностные характеристики SD и δD, соответствующие точке перегиба на деструкционной диаграмме (точке деструкции D), принимают за критерий допустимой поверхностной прочности, обеспечивающей максимальную работоспособность металла.

Недостатком способа является то, что он не позволяет оценивать остаточный ресурс металла во временном эквиваленте, к тому же в основу установления ресурса заложена величина ширины дифракционной линии, являющейся функцией многих параметров - внутренние напряжения, дисперсность, геометрические параметры и т.д., что существенно снижает точность определения остаточного ресурса. Игнорирование этих факторов может внести непрогнозируемую погрешность при определении ресурса в эксплуатационных условиях.

Наиболее близким, принятым за прототип, является способ «Закономерность изменений параметра элементарной ячейки котельной стали как критерий накопления повреждаемости» (Любимова Л.Л., Макеев А.А., Заворин А.С., Ташлыков А.А., Фисенко Р.Н. Закономерности изменений параметра элементарнной ячейки котельной стали как критерий накопления повреждаемости // Известия Томского политехнического университета. - 2011. - Т.319. - №4. - С.35-39), в котором подготавливают образец трубного изделия, проработавший в энергетическом оборудовании, и два эталона из не эксплуатированных ранее в котле участков трубных изделий, имеющих аналогичный состав и способ изготовления. Определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого и второго эталонов при комнатной температуре. Проводят последовательно три макроцикла термоциклирования первого эталона. Строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона от времени термоциклирования, по которым находят максимальное значение изменения параметра кристаллической ячейки первого эталона после термоциклирования. Проводят «холодное» циклическое нагружение второго эталона. Строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона от внешних давлений при «холодном» циклическом нагружении, по которой определяют максимальное значение изменения параметра кристаллической ячейки второго эталона после «холодного» циклического нагружения. Путем сложения максимального значения изменения параметра кристаллической ячейки первого эталона после термоциклирования и значения максимального изменения параметра кристаллической ячейки второго эталона после «холодного» циклического нагружения вычисляют максимальное изменение параметра кристаллической ячейки образца трубного изделия. Принимают за ресурс пластичности α-железа ресурс пластичности матрицы, равный 11%, соответствующий значению максимальной вытяжки межатомных связей в вершине трещины для α-железа. Адаптируют ресурс пластичности матрицы к максимальным деформациям кристаллической ячейки. Строят экспериментальную кривую зависимости среднего параметра кристаллической ячейки на разных этапах старения стали от времени, аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования.

Недостатком прототипа является низкая точность прогнозирования ресурса трубных изделий энергетического оборудования ввиду того, что относительное изменение параметра кристаллической ячейки после «холодного» циклического нагружения оценивается как максимальное значение деформации параметра кристаллической ячейки от внешних давлений. Данный подход не учитывает изменения параметра кристаллической ячейки, произошедшие при изготовлении трубных элементов, их механической и термической обработке. Второй недостаток прототипа заключается в том, что в нем максимальная вытяжка межатомных связей рассматривается как склонность материала к трещинообразованию. Эта характеристика материала зависит от многих факторов, в том числе, в большей степени - от состава стали. Величина максимальной вытяжки межатомных связей приводится в разных литературных источниках по-разному - 11%, 20%, 25% - без указания химического состава стали. В протопите за ресурс пластичности матрицы произвольно принято значение максимальной вытяжки межатомных связей в вершине трещины для α-железа, равное 11%, что приводит к неопределенности в оценке ресурса работоспособности изделия в целом.

Задача технического решения - повышение точности определения остаточного ресурса трубных изделий энергетического оборудования.

Поставленная задача достигается тем, что в заявленном способе подготавливают образец трубного изделия, проработавший в энергетическом оборудовании, и два эталона из не эксплуатированных ранее участков трубных изделий, имеющих аналогичный состав и способ изготовления. Определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого и второго эталонов при комнатной температуре. Проводят последовательно несколько макроциклов термоциклирования первого эталона. Строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона от времени термоциклирования, по которым находят максимальное относительное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования. Проводят «холодное» циклическое нагружение второго эталона. Строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона от внешних давлений при «холодном» циклическом нагружении. Вычисляют максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия. Строят экспериментальную кривую зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования. При этом максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия вычисляют сложением максимального значения относительного изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования и значения относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения, определяемого как разница между максимальным и минимальным значениями. В качестве ресурса пластичности матрицы выбирают фундаментальный кристаллохимический критерий В.М. Гольдшмидта, равный 15%.

Фундаментальный кристаллохимический критерий В.М. Гольдшмидта - Δr≤15% (Е.С. Макаров. Изоморфизм атомов в кристаллах. М.: Атомиздат, 1973. - 288 с.) - устанавливает различие в ионных радиусах при изоморфном смешении компонентов и характеризует устойчивость сил межатомных связей кристаллической ячейки. Такая растянутость атомных связей способна сохранить геометрические особенности структуры и ее энергетические константы. При больших значениях возникают накопления повреждаемости, структурное трещинообразование и лавинное разрушение изделия. Таким образом, за ресурс пластичности матрицы целесообразно принимать величину εпл.м=15%.

Для пояснения способа оценки ресурса трубных изделий энергетического оборудования приведены чертежи.

На фиг.1, а показана зависимость изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %), наблюдаемого после нагрева до 100°C и последующего охлаждения до 12°C, от времени термоциклирования (τ, ч) в трех термоциклах.

На фиг.1, б показана зависимость изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %), наблюдаемого после нагрева до 200°C и последующего охлаждения до 12°C, от времени термоциклирования (τ, ч) в трех термоциклах.

На фиг.1, в показана зависимость изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %), наблюдаемого после нагрева до 300°C и последующего охлаждения до 12°C, от времени термоциклирования (τ, ч) в трех термоциклах.

На фиг.1, г показана зависимость изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %), наблюдаемого после нагрева до 400°C и последующего охлаждения до 12°C, от времени термоциклирования (τ, ч) в трех термоциклах.

На фиг.2 изображена зависимость изменения параметра элементарной кристаллической ячейки второго эталона (Δa/a, %) от внешних давлений (σвнеш, МПа) при «холодном» циклическом нагружении.

На фиг.3 приведена экспериментальная кривая зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичная классической кривой ползучести: I-II - участок неустановившейся ползучести; II-III - участок установившейся ползучести; III-IV - участок ускоренной ползучести, заканчивающийся разрушением трубного изделия.

В таблице 1 показаны значения параметра элементарной кристаллической ячейки первого эталона (a, А), определенные методом рентгеновской дифракции после охлаждения до 12°C при проведении трех циклов термоциклирования, а также приведены значения изменения параметра элементарной кристаллической ячейки (Δa/a, %), определяемые по формуле:

где a1_t - параметр элементарной кристаллической ячейки первого эталона, определенный методом рентгеновской дифракции после нагрева до температуры t и последующего охлаждения до 12°C при осуществлении первого цикла термоциклирования;

i - номер цикла термоциклирования (i=1, 2, 3);

t - температура нагрева первого эталона (t=100, 200, 300, 400);

ai_t - параметр элементарной кристаллической ячейки первого эталона, определенный методом рентгеновской дифракции после нагрева до температуры t и последующего охлаждения до 12°C при осуществлении i-го цикла термоциклирования.

При нахождении значения изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a)1_t после первого цикла термоциклирования формула (1) принимает вид:

где a01_12 - параметр элементарной кристаллической ячейки первого эталона, определенный методом рентгеновской дифракции до осуществления первого цикла термоциклирования при 12°C.

Температурный интервал термоциклирования ограничен температурой 350°C ввиду того, что Ст 10, из которой изготовлены образец трубного изделия и эталоны, не используется в энергетическом оборудовании при более высоких температурах (Масленков С.Б. Стали и сплавы для высоких температур: справочник: в 2 кн. / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с.).

Пример конкретного применения

Для оценки ресурса трубных изделий котла ДКВР-6,5 подготавливают образец трубного изделия размерами 15×20 мм, вырезанный с поверхности экранной трубы Ст 10, проработавшей в котле в течение времени (tоти), равного 8760 ч, и два эталона из не эксплуатированных ранее участков трубных изделий, имеющих аналогичный состав и способ изготовления. До осуществления первого цикла термоциклирования определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого (a01_12) и второго (a02_12) эталонов при 12°С:

a01_12=a02_12=2,8722 А.

Проводят последовательно три макроцикла термоциклирования первого эталона (нагревают до 100°C - охлаждают до 12°C - определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки (a1_100) при 12°C - нагревают до 200°C - охлаждают до 12°C - определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки (a1_200) при 12°C - нагревают до 300°C - охлаждают до 12°C - определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки (a1_300) при 12°C - нагревают до 400°C - охлаждают до 12°C - определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки (a1_400) при 12°C и затем повторяют эту последовательность действий еще два раза (таблица 1)).

Затем строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %) от времени термоциклирования (τ, ч) - фиг.1, а, б, в, г, по которым находят максимальное относительное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования (Δa/a)_тц_max (фиг.1, в):

(Δa/a)_тц_max=0,3447%.

Проводят холодное» циклическое нагружение второго эталона - фиг.2 (воздействуют внешним давлением σвнеш=25 МПа - точка 1, на второй эталон - снимают нагрузку - определяют параметр элементарной кристаллической ячейки в ненагруженном состоянии и затем повторяют эту последовательность действий, изменяя внешнее давление: σвнеш=33 МПа - точка 2; 42 МПа - точка 3; 49 МПа - точка 4; 58 МПа - точка 5; 65 МПа - точка 6; 73 МПа - точка 7; 83 МПа - точка 8; 90 МПа - точка 9).

Затем строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона (Δa/a, %) от внешних давлений (σвнеш, МПа) при «холодном» циклическом нагружении (фиг.2), по которой определяют значение относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения (Δa/a)_хцн:

(Δa/a)_хцн=0,2700-0,2000=0,0700%.

Максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_оти_max вычисляют сложением максимального значения относительного изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования (Δa/a)_тц_max, равного 0,3447%, и значения относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения (Δa/a)_хцн, равного 0,0700%:

(Δa/a)_оти_max=(Δa/a)_тц_max+(Δa/a)_хцн=0,3447+0,0700-0,4147%.

Строят экспериментальную кривую зависимости изменения параметра элементарной кристаллической ячейки от времени (фиг.3), аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования в следующей последовательности:

- определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки образца трубного изделия (aоти) при 12°C:

aоти=2,8661 А,

по которому расчетным путем вычисляют изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_оти, произошедшее за время эксплуатации (tоти) в котле ДКВР-6,5 (фиг.3, точка 1):

- строят участок I-II. Температура, при которой эксплуатируется образец трубного элемента (экранная труба) в котле ДКВР-6,5, составляет 200°C; при данной температуре по фиг.1, б определяют максимальное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования, при котором наблюдается начало участка установившейся ползучести:

(Δa/a)_тц_max[200]=0,2854%;

Максимальное изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_II на участке I-II составит:

(Δa/a)_II=(Δa/a)_тц_max[200]+(Δa/a)_хцн=0,2854+0,0700=0,3554%.

При этом период времени, соответствующий окончанию участка I-II, равен:

- участок II-III получают соединением участков I-II и III-IV, при этом условно принимают его за прямую линию;

- строят участок III-IV, для построения которого определяют скорость изменения параметра элементарной кристаллической ячейки образца трубного изделия Vcp для температуры эксплуатации (200°C) по фиг.1, б:

где (Δa/a)3_200, (Δa/a)2_200 - значения изменения параметра элементарной кристаллической ячейки, полученные после нагрева до 200°C и последующего охлаждения до 12°C в 3 и 2 циклах термоциклирования соответственно;

τ3_200, τ2_200 - время, затраченное на осуществление нагрева до 200°C и последующее охлаждение до 12°C в 3 и 2 циклах термоциклирования соответственно.

Принимают ресурс пластичности, соответствующий максимальной вытяжке атомных связей в вершине трещины, равным величине εr_ме=15%, согласно (Макаров Е.С. Изоморфизм атомов в кристаллах. М.: Атомиздат, 1973. - 288 с.).

Тогда прогнозируемое время до разрушения образца трубного изделия принимают за окончание участка III-IV и вычисляют по формуле:

Изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_IV, являющееся окончанием участка III-IV, приравнивают к максимальному изменению параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_оти_max:

(Δa/a)_IV=(Δa/a)_оти_max=0,4147%.

Начало участка III-IV устанавливают на основе большого эксплуатационного опыта, свидетельствующего, что на ускоренный процесс развития разрушения приходится примерно 20% времени от общего ресурса (Злепко В.Ф., Линкевич К.Р., Швецова Т.А. Влияние восстановительной термической обработки на свойства стали 12Х1МФ // Теплоэнергетика. - 2001. - №6. - С.68-70), т.е. время начала участка III-IV (τ_III) принимают равным:

τ_III_IV·0,8=156250·0,8=125000 ч.

При этом изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_III определяют как:

(Δa/a)_III=(Δa/a)_II+((Δa/a)_II·εr_ме·0,8)=0,3554+(0,3554-0,15-0,8)=0,3980%.

С помощью экспериментальной кривой зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичной классической кривой ползучести (фиг.3), можно определить продолжительность времени, в течение которого изделие эксплуатировалось в энергетическом оборудовании, а также остаточный ресурс в часах.

Например, через некоторый промежуток времени работы котла ДКВР-6,5 тем же способом подготавливают образец трубного изделия №2, определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки образца трубного изделия №2 (аоти2) при 12°C, который оказывается равным:

аоти2=2,8616 А,

по которому расчетным путем по формуле (2) вычисляют изменение параметра элементарной кристаллической ячейки образца трубного изделия №2 (Δa/a)_оти2, произошедшее за этот промежуток времени в котле ДКВР-6,5 (фиг.3, точка 2):

Отмечают значение изменения параметра элементарной кристаллической ячейки образца трубного изделия №2 (Δa/a)_оти2 на экспериментальной кривой зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичной классической кривой ползучести (фиг.3, точка 2), определяя время эксплуатации образца трубного изделия №2 (τ2=48468 ч) в котле ДКВР-6,5. А остаточный ресурс (τост2) определяют вычитанием времени эксплуатации образца трубного изделия №2 (τ2) из времени окончания участка ускоренной ползучести II-III (τ_III):

τост2_III2=125000-48468=76532 ч≈8,7 лет.

Таблица 1
Температура, °C Параметр элементарной кристаллической решетки a1 при 12°C в 1 макроцикле, Å Изменение параметра элементарной кристаллической решетки (Δa/a)1 после проведения 1-го цикла, % Параметр элементарной кристаллической решетки a2 при 12°C во 2 макроцикле, Å Изменение параметра элементарной кристаллической решетки (Δa/a)2 после проведения 2-го цикла, % Параметр элементарной кристаллической решетки a3 при 12°C в 3 макроцикле, Å Изменение параметра элементарной кристаллической решетки (Δa/a)3 после проведения 3-го цикла, %
100 2,8732 0,0348 2,8664 0,2367 2,8634 0,3411
200 2,8727 0,0174 2,8645 0,2854 2,8644 0,2889
300 2,8718 0,0139 2,8650 0,2268 2,8619 0,3447
400 2,8731 0,0313 2,8633 0,3411 2,8632 0,3446

Способ оценки ресурса трубных изделий энергетического оборудования, в котором подготавливают образец трубного изделия, проработавший в энергетическом оборудовании, и два эталона из не эксплуатированных ранее участков трубных изделий, имеющих аналогичный состав и способ изготовления, определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого и второго эталонов при комнатной температуре, проводят последовательно несколько макроциклов термоциклирования первого эталона, строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона от времени термоциклирования, по которым находят максимальное относительное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования, проводят «холодное» циклическое нагружение второго эталона, строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона от внешних давлений при «холодном» циклическом нагружении, вычисляют максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия, строят экспериментальную кривую зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования, отличающийся тем, что максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия вычисляют сложением максимального значения относительного изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования и значения относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения, определяемого как разницу между максимальным и минимальным значениями, а в качестве ресурса пластичности матрицы выбирают фундаментальный кристаллохимический критерий В.М. Гольдшмидта, равный 15%.



 

Похожие патенты:
Использование: для контроля технологического процесса кучного выщелачивания урановых руд. Сущность изобретения заключается в том, что определяют количество руды и среднюю массовую долю урана, заложенной в штабель руды для выщелачивания, и сравнивают с количеством урана, извлекаемым в процессе выщелачивания на выходе из штабеля, а в лабораторных условиях моделируют технологический процесс выщелачивания с оценкой ожидаемой скорости фильтрации растворов и степени извлечения урана, при этом в штабель рудной массы укладывают горизонтально трубы-скважины диаметром, обеспечивающим перемещение по ним скважинного каротажного прибора для одновременной регистрации потока мгновенных нейтронов деления, потока рассеянных тепловых нейтронов от импульсного нейтронного источника и интенсивность естественного гамма-излучения, а для получения информации по вертикали штабеля устанавливают вертикальные трубы-скважины такого же диаметра и при этом во всех скважинах не должен скапливаться выщелачивающий раствор, что будет упрощать интерпретацию результатов каротажа.

Использование: для сепарации алмазосодержащих материалов. Сущность изобретения заключается в том, что последовательно пропускают зерна материала перед источником первичного рентгеновского излучения, возбуждают в зерне материала вторичное рентгеновское излучение, регистрируют вторичное рентгеновское излучение и разделяют зерна материала относительно заданного порогового значения критерия разделения, при этом зерна материала облучают в узкоколлимированном пучке рентгеновского излучения, позволяющем снизить уровень фона, детектором рентгеновского излучения проводят одновременную регистрацию флуоресцентного характеристического рентгеновского излучения нескольких элементов и рассеянного от зерна материала рентгеновского излучения, одновременно усиливая возбуждение линий анализируемых ХРИ выбором материала анода рентгеновской трубки и материала коллиматора и специальных фильтров первичного излучения, выделяя полезный минерал по критерию разделения с использованием двухполярной логики И, ИЛИ, где в качестве критерия разделения используют отношение интенсивности флуоресцентного характеристического рентгеновского излучения элементов к интенсивности рассеянного зерном рентгеновского излучения источника и к интенсивности флуоресцентного характеристического рентгеновского излучения материала анода рентгеновской трубки.

Использование: для определения канцерогенности вещества. Сущность изобретения заключается в том, что исследуемое вещество в твердом или жидком состоянии помещают в позитронно аннигиляционный временной спектрометр быстро-быстрых задержанных совпадений, измеряют его аннигиляционный спектр, обрабатывая который с помощью компьютера, находят значение долгоживущей временной компоненты (τ3) Ps, и если оно менее 1,005±0,005 нс, то делают вывод о наличии канцерогенных свойств у вещества, а если оно более 1,005±0,005 нс, то делают вывод об отсутствии канцерогенных свойств у вещества.

Использование: для формирования фазово-контрастных изображений. Сущность изобретения заключается в том, что при формировании фазово-контрастных изображений объекта выполняют следующие этапы: формируют основанное на поглощении изображение объекта, расположенного между источником (S) пучка рентгеновских лучей и детектором (D), указывают интересующую область (ROI) в основанном на поглощении изображении, причем интересующая область имеет ширину и положение, перемещают систему решеток между источником (S) и детектором (D), покрывая интересующую область, адаптируют поле зрения пучка рентгеновских лучей к интересующей области, генерируют сигналы посредством детектора (D) для обнаружения пучка рентгеновских лучей, при этом часть объекта (O) находится вместе с системой решеток в пределах пучка рентгеновских лучей между источником (S) пучка рентгеновских лучей и детектором, получают передаваемые данные с различных углов проекции, выполняют локальную обработку сигналов из детектора (D), и формируют изображение на основе обработанных сигналов.

Изобретение относится к области нефтедобывающей промышленности и может быть использовано при определении коллекторских свойств трещиноватых образцов породы. Сущность: определяют максимальную влажность образца спороды.

Использование: для формирования протонных изображений. Сущность изобретения заключается в том, что осуществляют формирование протонного пучка, пропускание его через объект исследования, пропускание прошедшего излучения через магнитную оптику, состоящую из квадрупольных линз, схему размещения которых подбирают предварительно с помощью метода, основанного на решении задачи минимизации функции множества переменных, используя соответствующую оптимизационную программу, в качестве информативных параметров в которой используют энергию протонного пучка, коэффициент увеличения магнитной оптики, диапазон изменения перемещений квадрупольных линз вдоль оптической оси и диапазон изменения градиентов магнитного поля в квадрупольных линзах, последующее формирование в плоскости регистрации изображения и его регистрацию, при этом в процессе формирования протонного пучка ускорение протонов осуществляют до энергии не менее 20 ГэВ, при этом к информативным параметрам добавляют разброс энергии протонов после прохождения объекта исследования, коэффициент коррекции хроматической аберрации, который определяют из условия получения безаберрационного пятна фокусировки пучка протонов в плоскости регистрации и общее расстояние от объекта исследования до плоскости регистрации.

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого кристалла картин изгибных экстинкционных контуров проводят анализ симметрии картин контуров и при выявлении элементов симметрии, отличных от тождественного преобразования, по результатам микродифракционного исследования диагностируют реальную структуру одного из симметрично равных участков нанотонкого кристалла, а затем диагностируют реальную структуру другого как симметрично равную реальной структуре исследованного участка, после чего диагностируют реальную структуру нанотонкого кристалла в целом.

Изобретение относится к области химического анализа веществ и направлено на обеспечение возможности количественного высокочувствительного определения металлов и комплексных соединений металлов в природных и промышленных объектах, для решения задач биотехнологии и медицины, в фармакологии для определения концентрации металлсодержащих лекарственных препаратов, для экспресс-анализа содержания металлов при экологическом контроле.

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально источнику электромагнитного излучения на противоположной стороне трубопровода, при этом импульсный источник быстрых нейтронов является одновременно и импульсным источником электромагнитного излучения, дополнительно содержащим мониторный детектор быстрых нейтронов и мониторный детектор электромагнитного излучения, гамма спектрометр дополнительно содержит коллиматор гамма лучей и расположен рядом с импульсным источником быстрых нейтронов и электромагнитного излучения, детектор гамма лучей расположен на одной стороне трубопровода с импульсным источником быстрых нейтронов и электромагнитного излучения на заданном расстоянии от импульсного источника быстрых нейтронов и электромагнитного излучения по направлению течения многофазной жидкости, детектор быстрых нейтронов, расположен диаметрально импульсному источнику быстрых нейтронов и электромагнитного излучения на противоположной стороне трубопровода, детектор тепловых и эпитепловых нейтронов расположены от импульсного источника быстрых нейтронов и электромагнитного излучения на расстоянии, равном длине замедления быстрых нейтронов в многофазной жидкости, а гамма спектрометр, мониторный детектор электромагнитного излучения и сцинтиллятор выполнены с возможностью измерения спектра импульсного электромагнитного излучения.

Предлагаемое изобретение относится к области измерительной техники, предназначено для измерения электрического заряда движущихся частиц минералов и предназначено, в частности, для обнаружения алмазов в алмазосодержащих смесях минералов, для их последующего извлечения с помощью исполнительного механизма.

Изобретение относится к измерительной технике и может быть использовано для определения зон концентрации напряжений в строительных конструкциях при многократно повторяющихся циклических нагружениях.

Изобретение относится к средствам рентгеноструктурного анализа, для определения остаточных напряжений в металлоконструкциях. .
Изобретение относится к области радиационной дефектоскопии изделий, основанной на просвечивании изделий гамма-излучением и регистрации излучения, прошедшего через изделие. Способ гамма-сцинтилляционного контроля основан на просвечивании изделия гамма-излучением, регистрации прошедшего свод изделия излучения приемным детектором в составе сцинтилляционного кристалла и фотоумножителя, логарифмирования сигнала, аналого-цифрового его преобразования, при этом для выявления небольших (1-2%), но быстрых (1-2 с) сигналов на фоне больших (500 и более раз), но медленных изменений сигнала, цифровой сигнал направляют в 2 блока цифровой фильтрации, обеспечивающей диапазон постоянных времени усреднения ориентировочно от 0,1 до 10 с, с выхода которых сигналы с большой постоянной времени усреднения вычитают из сигналов с выхода цифрового блока с малой постоянной времени усреднения, после чего результирующий сигнал выводят на экран монитора или распечатывают на принтере. Технический результат - повышение качества и надежности выявления небольших дефектов в просвечиваемых изделиях различных типоразмеров на фоне больших изменений толщины.

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах. Химически модифицированный планарный оптический сенсор содержит последовательно расположенные подложку на основе диэлектрического химически инертного материала, наноструктурированное покрытие толщиной 1-10 мкм на основе наночастиц благородных металлов, размеры которых составляют 20-90 нм, и прозрачную микропористую пленку хитозана, химически модифицированную π-акцепторным соединением, способным распознавать анализируемое вещество и химически связываться с ним путем формирования комплекса с переносом заряда. Также представлены способ получения указанного оптического сенсора и способ анализа полиароматических гетероциклических серосодержащих соединений с использованием данного сенсора. Достигается повышение чувствительности, селективности и экспрессности анализа. 3 н. и 10 з.п. ф-лы, 4 ил., 4 табл.

Использование: для формирования изображения быстропротекающего процесса с помощью протонного излучения. Сущность изобретения заключается в том, что способ включает ввод протонного пучка, по крайней мере, в один магнитооптический канал, изменение ширины протонного пучка на разные величины, которое осуществляют последовательно в одном и том же магнитооптическом канале, для этого либо после прохождения части протонных сгустков через рассеиватель его удаляют или изменяют толщину, а затем пропускают оставшуюся часть протонных сгустков, либо следующие друг за другом протонные сгустки смещают относительно друг друга с помощью магнитных линз и, используя разнотолщинный рассеиватель, смещенные протонные сгустки пропускают через области рассеивателя с разной толщиной, после прохождения рассеивателя с помощью системы согласующих магнитных линз формируют протонный пучок с параметрами, соответствующими параметрам области исследования и последующей магнитооптической системы формирования протонного изображения, и просвечивают область исследования, пропуская поочередно протонные сгустки различной ширины, при использовании нескольких магнитооптических каналов просвечивание области исследования осуществляют под разными углами, после чего прошедший протонный пучок направляют в магнитооптическую систему формирования протонного изображения, состоящую, по крайней мере, из двух различных по апертуре линзовых систем, апертура каждого набора соответствует протонному пучку определенной ширины, оба набора линз системы формирования теневого протонного изображения размещают последовательно в одном магнитооптическом канале. Технический результат: обеспечение возможности получения высококачественного изображения области исследования. 3 з.п. ф-лы, 6 ил.

Изобретение относится к рентгено-абсорбционным анализаторам содержания серы в нефти и нефтепродуктах и может быть использовано для измерения концентрации серы в технологических трубопроводах в потоке анализируемой среды. Измерительная кювета поточного анализатора серы в нефти и нефтепродуктах включает корпус кюветы, в котором расположен трубчатый корпус для пропуска потока анализируемой среды, снабженный расположенными напротив друг друга окнами, выполненными из рентгенопрозрачного материала. При этом корпус кюветы снабжен подводящим и отводящим патрубками, окна из рентгенопрозрачного материала размещены по торцам трубчатого корпуса. Также в корпусе кюветы выполнены сообщающиеся, соответственно, с подводящим и отводящим патрубками кольцевые камеры, в которых размещены концы трубчатого корпуса, напротив которых в корпусе кюветы выполнены отверстия для пропуска рентгеновского излучения. При этом по концам трубчатого корпуса около окон из рентгенопрозрачного материала выполнены отверстия, сообщающие трубчатый корпус с кольцевыми камерами, при этом окна из рентгенопрозрачного материала герметично сопряжены с корпусом кюветы. Техническим результатом является повышение точности измерений. 2 ил.

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита. Способ включает отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, при этом концентрации вышеперечисленных фаз электролита определяют по формуле: C j = ( I j a / K j a ) / ( ∑ l M I l a / K j a ) , а криолитовое отношение определяют по формуле: K O = 2 × ∑ j α j C j ∑ j β j C j где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М- количество фторидных фаз, Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе. Обеспечивается упрощение и повышение его точности определения состава электролита. 2 ил., 4 табл.
Наверх