Устройство контроля двигателя турбомашины

Настоящее изобретение относится к устройству производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя, в частности турбомашины. Устройство (10) производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя турбомашины, содержащее трубку (12), на дистальном конце которой установлен палец (14), который удерживает на одном из своих концов пластинку (16) поддержки инструмента контроля (18), а на своем противоположном конце лапку (20) поддержки и (или) зацепления на конструктивном элементе двигателя; причем эта лапка перемещается в направлении (30), параллельном продольной оси пальца. Технический результат - разработка устройства неразрушающего контроля, позволяющего осуществлять контроль конструктивных элементов независимо от их положения в турбомашине и доступности и твердо удерживать инструмент или датчик контроля на этапе контроля. 11 з.п. ф-лы, 8 ил.

 

Настоящее изобретение относится к устройству производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя, в частности, турбомашины.

Неразрушающий контроль конструктивных элементов двигателя турбомашины позволяет проверять состояние этих конструктивных элементов без нанесения им повреждений. В некоторых случаях при контроле может потребоваться снятие двигателя и его частичная разборка для осмотра конструктивных элементов, труднодоступных для средств контроля.

Известное устройство контроля содержит жесткую трубку, удерживающую на своем дистальном конце инструмент контроля или датчик. В том случае, когда турбомашина снабжена эндоскопическими отверстиями, эта трубка вводится в турбомашину через эти отверстия для контроля без демонтажа конструктивных элементов турбомашины, что позволяет избежать снятия или разборки двигателя.

Однако, доступная для этой трубки зона существенно ограничена и расположена в целом перпендикулярно эндоскопическому отверстию и на небольшом расстоянии от этого отверстия. Кроме того, когда инструмент, удерживаемый трубкой, должен быть использован на конструктивном элементе, этот инструмент должен быть прижат с некоторым усилием и в течение определенного периода времени к поверхности конструктивного элемента, что не всегда представляется возможным в случае вышеупомянутого устройства.

Например, в случае лабиринтовых герметичных соединений турбомашины внешние кольцеобразные пластины, удерживаемые ротором турбомашины, взаимодействуют с блоками, выполненными из измельченного материала, удерживаемыми внутренними кольцевыми рабочими площадками лопаток статора турбомашины. Для доступа к пластинам лабиринтового соединения необходимо, таким образом, пропустить инструмент контроля в очень узкое пространство, которое может иметь ширину или осевой размер приблизительно в 1 мм, что не представляется возможным в случае вышеупомянутой трубки.

Как следствие, некоторые зоны турбомашины остаются труднодоступными для известных специалистам устройств неразрушающего контроля, поскольку они не рассчитаны для прохождения через отверстия или проходы небольшого размера и через множество отверстий и (или) проходов, расположенных друг за другом не на одной линии.

Кроме того, во время контроля конструктивного элемента инструмент в целом должен удерживаться неподвижно против двигателя, что представляется сложным в случае вышеупомянутой трубки, известной из уровня техники.

В изобретении предлагается простое, эффективное и экономичное решение проблем известного уровня техники.

Задачей настоящего изобретения является, в частности, разработка устройства неразрушающего контроля, позволяющего осуществлять контроль конструктивных элементов независимо от их положения в турбомашине и доступности и твердо удерживать инструмент или датчик контроля на этапе контроля.

В связи с этим предлагается устройство неразрушающего контроля без снятия конструктивных элементов двигателя, в частности, турбомашины, содержащее продольную трубку, на дистальном конце которой установлен инструмент контроля, отличающееся тем, что оно содержит продольный палец, установленный с возможностью вращения на дистальном конце трубки; причем этот палец удерживает на первом конце средства удержания инструмента контроля, а на втором конце средства зацепления на конструктивном элементе двигателя; причем эти средства зацепления перемещаются в направлении, параллельном пальцу.

Перемещение средств зацепления устройства, согласно изобретению, в направлении, параллельном пальцу, позволяет их удалять или приближать к средствам поддержки инструмента контроля в зависимости от специфического окружения конструктивных элементов контроля двигателя. Эти средства зацепления предназначены для опирания на конструктивный элемент двигателя для стабилизации устройства во время контроля конструктивных элементов. Конструктивный элемент двигателя может быть заключен, например, между средствами поддержки и средствами зацепления устройства, согласно изобретению, для фиксации в неподвижном положении устройства в процессе контроля. Средства удержания инструмента разработаны для введения в очень узкие пространства для размещения инструмента контроля в труднодоступных местах двигателя.

Согласно другому отличительному признаку изобретения, эти средства поддержки содержат тонкую пластину вытянутой формы, которая установлена вращающейся одним из своих концов на первом конце пальца между положением, обращенным книзу, в котором она по существу вытянута параллельно пальцу, и развернутым положением, в котором она по существу вытянута перпендикулярно пальцу.

Пластинка поддержки инструмента контроля имеет в состоянии покоя, предпочтительно, вытянутую форму и немного изогнутую вокруг своей оси растяжения. Пластинка, согласно изобретению, предпочтительно, является гибкой, деформируемой при сгибании, что позволяет, в частности, применять инструмент с приложением некоторого усилия (соответствующим сгибанию пластинки) к поверхности конструктивного элемента контроля, когда этот инструмент должен опираться на конструктивный элемент во время контроля. Эта пластинка, кроме того, перемещается путем вращения между положением, обращенным книзу, в котором она вытянута вдоль и сбоку пальца, и развернутым положением, в котором она вытянута по существу перпендикулярно пальцу. Пластинка приведена в положение, обращенное книзу, которое является предварительным к введению трубки в турбомашину для защиты инструмента от возможного удара об окружающие конструктивные элементы. Вращение пластинки может управляться посредством провода, например, типа «рояльной проволоки», вытянутого вдоль трубки и соединенного своим дистальным концом с пластинкой. Устройство может содержать эластичные возвратные средства, приводящие пластинку в положение, обращенное книзу, или в развернутое положение.

Инструмент контроля может быть закреплен, например, путем приклеивания к свободному концу пластинки. В качестве инструмента контроля может быть использован датчик, работающий на принципе токов Фуко, или ультразвуковой датчик, или миникамера.

Палец, предпочтительно, устанавливается вращающимся своей срединной частью на дистальном конце трубки, между свернутым положением, в котором он вытянут по существу параллельно трубке, и развернутым положением, в котором он вытянут по существу перпендикулярно трубке. Это позволяет дополнительно увеличить зоны, доступные устройству, согласно изобретению. Вращение пальца может управляться посредством провода, например, типа «рояльной проволоки», вытянутого вдоль трубки и соединенного своим дистальным концом с пальцем или пластинкой.

Вышеупомянутые провода могут быть уложены внутри трубки и соединены с соответствующими средствами управления, расположенными на проксимальном конце трубки.

Устройство также может содержать эластичные возвратные средства, приводящие палец в свернутое положение или в развернутое положение.

Средства зацепления устройства, согласно изобретению, могут содержать рычаг, установленный скользящим в соответствующем осевом пазу второго конца пальца и удерживающем на своем свободном конце опорную лапу, вытянутую по существу перпендикулярно рычагу.

Перемещение средств зацепления может управляться посредством, по меньшей мере, одного провода, вытянутого вдоль трубки и соединенного своим дистальным концом с концом рычага, противоположного опорной лапе.

В дальнейшем изобретение поясняется описанием вариантов его осуществления, не носящим ограничительного характера, со ссылкой на прилагаемые чертежи, на которых:

- Фиг.1 представляет собой схематичный, частичный вид устройства контроля, согласно изобретению, изображенного в положении, обращенном книзу, или свернутом положении;

- Фиг.2 - схематичный, частичный вид в изометрии устройства, изображенного на фиг.1, показанного в его развернутом положении;

- Фиг.3 - схематичный вид, выполненный в осевом разрезе, устройства, изображенного на фиг.1, в его развернутом положении;

- Фиг.4 - другой схематичный вид, выполненный в осевом разрезе, устройства, показанного на фиг.1, и изображает средства управления этим устройством;

- Фиг.5-8 представляют собой схематичные виды в изометрии части двигателя турбомашины, в который введено устройство, показанное на фиг.1-4, для контроля на месте конструктивных элементов, и изображают различные этапы расположения этого устройства в двигателе.

Вначале следует обратиться к фиг.1-4, на которых изображено устройство 10 неразрушающего контроля образца, согласно изобретению, конструктивных элементов двигателя турбомашины; причем частичное описание этого двигателя приведено ниже со ссылкой на фиг.5-8.

Устройство 10 содержит продольную трубку 12 (показана пунктирными линиями), на дистальном конце которой установлен вращающимся палец 14, удерживающий на одном из своих концов опорную пластинку 16 инструмента контроля 18, а на своем противоположном конце - опорную лапку 20 и (или) лапку зацепления на конструктивном элементе двигателя.

Трубка 12 удерживает на своем дистальном конце две продольные лапки 22, расположенные параллельно и на расстоянии друг от друга; причем палец 14 установлен вращающимся в своей срединной части на оси 24, вытянутой между свободными концами лапок 22.

Палец 14 подвижен во вращении (стрелка 25) между положением, обращенным книзу, изображенным на фиг.1, в котором он вытянут между лапками и параллельно продольной оси A трубки, и развернутым положением, изображенным на фиг.2-4, в котором он вытянут перпендикулярно этой оси A.

Пластинка 16 имеет вытянутую форму и установлена вращающейся (стрелка 27) одним из своих концов вокруг оси 26, удерживаемой одним из концов пальца 14, между свернутым положением, изображенным на фиг.1, в котором она вытянута вдоль пальца, и развернутым положением, изображенным на фиг.2-4, в котором она вытянута перпендикулярно оси B пальца. Пластинка, предпочтительно, закреплена съемным образом на пальце, предоставляющим возможность быть замененной другой, например, в случае износа пластинки или инструмента или для замены типа инструмента.

Пластинка 16 является относительно тонкой и гибко деформируемой при сгибании. Инструмент контроля 18, который является, например, инструментом, работающим на принципе токов Фуко или ультразвука, закреплен путем приклеивания на свободном конце пластинки. Как вариант или как дополнение, на свободном конце пластинки может быть закреплена миниатюрная камера.

Лапка 20 закреплена на конце рычага 28, который установлен скользящим в соответствующем осевом пазу пальца, выходящим на свой конец, который противоположен пластинке 16. Лапка 20 вытянута по существу параллельно и в том же направлении, что и пластинка 16, когда последняя находится в развернутом положении (фиг.2-4).

Лапка 20 перемещается путем поступательного движения в направлении, параллельном оси B пальца 14, посредством скольжения рычага 28 в пазу пальца. Перемещение лапки (стрелка 30) приводит к изменению расстояния L между этой лапкой и опорной пластинкой 16 инструмента (фиг.2).

Эластичные возвращающие средства 34, такие как винтовая пружина, установлены вокруг рычага 28 и приводят лапку 20 в ее положение, наиболее удаленное от пластинки 16 (фиг.4).

Палец 14 удерживает средства упора 32, взаимодействующие с рычагом 28, для ограничения хода перемещения лапки 20 против пальца.

На фиг.4 схематично изображены средства управления перемещением лапки 20 и вращением пальца 14 и пластинки 16. Эти средства управления содержат провода 36, 38 и 40, например, типа «рояльной струны», которые вытянуты вдоль трубки 12 и соединены своими проксимальными концами с соответствующими средствами управления, расположенными на проксимальном конце трубки. Эти провода выполнены, например, из стали и имеют диаметр порядка 0,5 мм.

Дистальный конец провода 36 соединен с концом рычага 28, противоположным лапке 20, для управления перемещением путем поступательного движения лапки вдоль оси B пальца. При приложении к проводу 36 усилия растяжения лапка приближается к опорной пластинке 16 инструмента.

Дистальный конец провода 38 соединен с концом пластинки 16, противоположной инструменту 18, таким образом, что усилие растяжения, приложенное к проводу, приводит к повороту одновременно тонкой пластины и пальца от их свернутых положений, до их соответствующих развернутых положений.

Дистальный конец провода 40 соединен с концом тонкой пластины, противоположной инструменту, таким образом, что усилие растяжения, приложенное к проводу, приводит к повороту одновременно пластинки и пальца от их развернутых положений до их соответствующих свернутых положений.

Палец 14 удерживает средства 42, 44 направления вышеупомянутых проводов таким образом, чтобы направлять усилия, прилагаемые к конструктивным элементам, которые перемещаются посредством проводов, в заданных направлениях. В изображенном примере первые средства 42 направления провода 36 управления перемещением лапки 20 преобразуют усилие растяжения, параллельное оси трубки 12, в усилие растяжения, параллельное оси В пальца. Вторые средства 44 направления провода 38 управления вращением пальца и пластинки преобразуют усилие растяжения, параллельное оси A трубки, в усилие растяжения, по существу параллельное оси B пальца.

Устройство 10, согласно изобретению, может, кроме того, содержать эластичные возвратные средства, воздействующие на палец и (или) пластинку в их, соответственно, свернутых или в развернутых положениях.

На фиг.5-8, изображены этапы способа производимого без демонтажа контроля конструктивных элементов двигателя турбомашины при помощи устройства, описание которого приведено выше.

Фиг.8 представляет собой схематичный частичный вид в изометрии ступени турбины или компрессора турбомашины. Эта ступень содержит ряд расположенных по кругу лопаток ротора 50, удерживаемых диском 52, и один ряд расположенных по кругу лопаток статора 54, размещенных перед лопатками ротора 50 и радиально вытянутых между внутренней кольцевой рабочей площадкой 56 и внешней кольцевой рабочей площадкой 57 (фиг.5-8). Внутренняя рабочая площадка 56 расположена вокруг стенки ротора 58, по существу цилиндрически, соединяя диск ротора 52 с другим диском ротора 53, расположенным перед лопатками статора 54.

Уплотнительное соединение лабиринтового типа установлено между стенкой ротора 58 и внутренней рабочей площадкой 56 и содержит кольцеобразные кусочки 60, радиально вытянутые наружу от стенки ротора 58 и взаимодействующие с блоками, выполненными из измельченного материала 62, закрепленными на внутренней периферии рабочей площадки 56.

Внешняя рабочая площадка 57 содержит по существу радиальные отверстия для прохождения устройства 10, как это было описано ранее, для контроля труднодоступных конструктивных элементов, таких как стенка ротора 58 и кольцеобразные кусочки 60.

Контроль стенки ротора 58 и кусочков 60 посредством устройства 10, согласно изобретению, осуществляется следующим образом. Палец 14 и пластинка 16 приведены в их свернутые положения, изображенные на фиг.1, в которых палец 14 выровнен по оси A трубки 12, а пластинка 16 вытянута вдоль пальца. Устройство 10 вставлено снаружи в одно из отверстий внешней рабочей площадки 57 до того места, в котором палец 14 будет расположен между двумя рабочими площадками 56 и 57 (фиг.5), т.е. в трубке тока газов компрессора или турбины. Усилие растяжения прилагается к проводу 38 таким образом, чтобы палец 14 поворачивался вокруг оси 24, а пластинка 16 поворачивалась вокруг оси 26 (фиг.6), начиная от их свернутых положений, до их соответствующих развернутых положений, изображенных на фиг.2-4. Эти вращения вокруг оси могут быть облегчены за счет вышеупомянутых эластичных возвращающих средств устройства. Опорная лапка 20, кроме того, приводится в свое положение, наиболее удаленное от пластинки 16, посредством вышеупомянутых эластичных средств 34. Затем трубка 12 поворачивается вокруг своей оси A таким образом, чтобы свободный конец пластинки 16 был расположен на уровне кольцевого пространства 64, вытянутого в осевом направлении между задним кольцеобразным бортом внутренней рабочей площадки 56 лопаток статора 54 и передним кольцеобразным бортом диска 53. Устройство перемещается в поступательном движении вдоль оси A трубки к внутренней рабочей площадке 56 до тех пор, пока палец 14 не будет расположен рядом с этой рабочей площадкой, а пластинка 16 не будет введена в вышеупомянутое пространство 64. Палец 14 может быть вновь перемещен путем вращения вокруг оси A трубки 12 (стрелка 66 на фиг.7) таким образом, что лапка 20 и пластинка 16 упрутся в передний и задний кольцеобразные борта, соответственно, внутренней рабочей площадки 56. Затем усилие растяжения прилагается к проводу 36 таким образом, что лапка перемещается к тонкой пластине и будет прочно удерживаться против переднего кольцеобразного борта рабочей площадки 56. Эта рабочая площадка 56, таким образом, заключена между лапкой 20 и пластинкой 16, а устройство неподвижно фиксируется на рабочей площадке для контроля кусочков 60 (фиг.8). В этом положении инструмент контроля 18 опирается на внешнюю поверхность стенки ротора 58, удерживая кольцеобразные кусочки 60 (фиг.8). Это вызывает легкую деформацию эластичной при сгибании тонкой пластины, возвратно-эластичная сила которой обеспечивает удержание инструмента против стенки 58. Таким образом, может быть начат контроль стенки 58 посредством инструмента 18. Стенка ротора 58 перемещается путем вращения вокруг своей оси таким образом, чтобы контролировать полную кольцевую зону (вытянута на 360°) этой стенки посредством инструмента.

1. Устройство (10) производимого без демонтажа неразрушающего контроля конструктивных элементов двигателя, в частности турбомашины, содержащее продольную трубку (12), на дистальном конце которой установлен инструмент контроля (18), отличающееся тем, что оно содержит продольный палец (14), установленный вращающимся на дистальном конце трубки; причем этот палец удерживает на первом конце средства (16) поддержки инструмента контроля, а на втором конце средства (20) зацепления на конструктивном элементе двигателя; причем эти средства зацепления перемещаются в направлении (30), параллельном пальцу.

2. Устройство по п.1, отличающееся тем, что средства поддержки содержат пластинку (16) вытянутой формы, которая установлена вращающейся одним из своих концов на первом конце пальца (14) между свернутым положением, в котором она вытянута по существу параллельно пальцу, и развернутым положением, в котором она вытянута по существу перпендикулярно пальцу.

3. Устройство по п.2, отличающееся тем, что пластинка (16) является эластично деформируемой при сгибании.

4. Устройство по п.2, отличающееся тем, что инструмент (18) контроля закреплен, например, путем приклеивания на свободном конце пластинки (16).

5. Устройство по п. 2, отличающееся тем, что оно содержит эластичные возвратные средства, приводящие пластинку (16) в свернутое положение или в развернутое положение.

6. Устройство по п. 2, отличающееся тем, что оно содержит, по меньшей мере, один провод управления поворотом пластинки (16) от ее развернутого положения до ее свернутого положения и (или) от ее свернутого положения до ее развернутого положения; причем один кабель или кабели управления вытянуты вдоль трубки (12).

7. Устройство по п. 1, отличающееся тем, что палец (14) установлен вращающимся своей срединной частью на дистальном конце трубки (12) между свернутым положением, в котором он вытянут по существу параллельно трубке, и развернутым положением, в котором он вытянут по существу перпендикулярно трубке.

8. Устройство по п. 7, отличающееся тем, что оно содержит эластичные возвратные средства, приводящие палец (14) в его положение, обращенное книзу, или в развернутое положение.

9. Устройство по п. 7, отличающееся тем, что оно содержит, по меньшей мере, один провод управления поворотом пальца (14) от его развернутого положения до его свернутого положения и (или) от его свернутого положения до его развернутого положения; причем один кабель или кабели управления вытянуты вдоль трубки (12).

10. Устройство по п. 1, отличающееся тем, что средства зацепления устройства содержат рычаг (28), установленный скользящим в соответствующем осевом пазу второго конца пальца (14) и удерживающим на своем свободном конце опорную лапу (20), вытянутую по существу перпендикулярно рычагу.

11. Устройство по п. 10, отличающееся тем, что перемещение средств зацепления (20) управляется посредством, по меньшей мере, одного провода, вытянутого вдоль трубки (12) и соединенного своим дистальным концом с концом рычага, противоположного опорной лапе.

12. Устройство по п. 1, отличающееся тем, что инструмент контроля (18) является датчиком, работающим на принципе токов Фуко, или ультразвуковым датчиком, или камерой.



 

Похожие патенты:

Изобретение относится к устройствам контроля вихревыми токами для определения дефектов на поверхности или на малой глубине детали, в частности лопасти вентилятора авиационного двигателя.

Изобретение относится к измерительной техники, конкретно к способам неразрушающего контроля, и позволяет повысить точность определения параметров дефектов. Снимают годографы влияния зазора между преобразователем и объектом контроля на сигнал на бездефектном участке настроечного образца и на участке этого образца с калибровочным дефектом известной величины.

Изобретение относится к неразрушающему контролю качества материалов и изделий и может быть использовано для измерения толщины немагнитных металлических покрытий на диэлектрической основе или на немагнитной основе с другой удельной электрической проводимостью.

Изобретение относится к области неразрушающего контроля методом вихревых токов. Способ заключается в том, что измерителем возбуждают в изделии электромагнитное поле гармоническим сигналом u1(ωt), получают сигнал u2(ωt), пропорциональный электромагнитному полю вихревых токов, наведенному в изделии, оценивают фазовый сдвиг Δφ сигнала u2(ωt) относительно u1(ωt), по которому судят о толщине покрытия.

Изобретение относится к устройству для регистрации дефектов в контролируемом образце, перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, которое имеет блок передающих катушек, содержащий по меньшей мере одну передающую катушку, предназначенную для намагничивания контролируемого образца периодическими переменными электромагнитными полями, блок улавливающих катушек, содержащий по меньшей мере одну улавливающую катушку, предназначенную для регистрации периодического электрического сигнала, содержащего несущее колебание, при этом когда дефект регистрируется улавливающими катушками, наличие дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, блок обработки сигналов, предназначенный для формирования полезного сигнала из сигнала улавливающей катушки, и блок обработки результатов, предназначенный для обработки полезного сигнала с целью обнаружения дефектов в контролируемом образце.

Изобретение относится к устройству для регистрации дефектов (23) в контролируемом образце (13), перемещаемом относительно предлагаемого устройства, при неразрушающем и бесконтактном контроле, причем передающие катушки (18) намагничивают образец периодическими переменными электромагнитными полями, улавливающие катушки (15) регистрируют периодический электрический сигнал, содержащий несущее колебание, при этом, когда дефект регистрируется улавливающими катушками, наличие этого дефекта в контролируемом образце способствует формированию характерной амплитуды и/или фазы сигнала, каскад аналого-цифровых преобразователей преобразует сигнал улавливающей катушки в цифровую форму, блок (17, 19, 35, 37, 52, 60, 68, 74, 76, 78, 80, 88, 90, 94) обработки сигналов создает полезный сигнал из сигнала улавливающей катушки, преобразованного в цифровую форму, блок (60, 50, 64) обработки результатов обрабатывает полезный сигнал с целью обнаружения дефекта в контролируемом образце.

Предложение относится к неразрушающему контролю и может быть использовано для дефектоскопии и измерения толщины стенки полых деталей типа лопаток газотурбинных двигателей, выполненных как из металла, так и полностью или частично выполненных из керамики.

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним.

Использование: для неразрушающего контроля изделий посредством вихревых токов. Сущность изобретения заключается в том, что установка для неразрушающего контроля дефектов в проверяемом изделии посредством вихревых токов содержит катушку возбуждения (14), на которую может подаваться сигнал (SE) возбуждения для воздействия на проверяемое изделие (16) переменным электромагнитным полем, аналого-цифровой преобразователь (21), фильтрующее устройство (22), вход которого соединен с аналого-цифровым преобразователем (21) и которое выполнено с возможностью осуществления полосовой фильтрации, демодулятор (27), вход которого соединен с выходом указанного фильтрующего устройства (22), приемную катушку (17), предназначенную для формирования сигнала (SP) катушки, зависящего от дефекта в проверяемом изделии (16), причем вход аналого-цифрового преобразователя (21) соединен с приемной катушкой (17), причем фильтрующее устройство (22) выполнено с возможностью уменьшения частоты сканирования.

Использование: для обнаружения трещин на деталях вращения. Сущность изобретения заключается в том, что наличие трещины на контролируемом изделии определяют при получении порогового сигнала вихретокового преобразователя, при этом деталь вращают, а вихретоковый преобразователь скользит по поверхности детали в окружном направлении, получают пороговый сигнал о наличии трещины, при условии, что сигналы от конструктивных концентраторов напряжений при данном расположении вихретокового преобразователя не достигают порогового сигнала, определяют частоту вращения детали, обеспечивающую выявление трещины, строят зависимость минимально-выявляемой длины трещины от частоты вращения детали, перед вращением контролируемого изделия, на котором вблизи концентратора напряжений установлен вихретоковый преобразователь, выбирают по полученной зависимости частоту вращения контролируемого изделия, которая обеспечивает выявление трещины установленной минимальной длины, при вращении контролируемого изделия, по поверхности которого скользит вихретоковый преобразователь в окружном направлении, с выбранной частотой вращения по сигналу вихретокового преобразователя определяют наличие трещины в концентраторе напряжений, если сигнал достигает порогового сигнала, по выявленной зависимости определяют по частоте вращения контролируемого изделия длину трещины, размер которой больше или равен минимально-выявляемой величине, и контролируемое изделие снимают с эксплуатации, если сигнал вихретокового преобразователя не достигает порогового сигнала, то контролируемое изделие допускается к очередному этапу эксплуатации до следующего контроля.

Использование: для проверки длинномерных изделий с помощью вихревых токов. Сущность изобретения заключается в том, что узел проходной катушки (100) для применения в устройстве проверки длинномерных изделий непрерывным способом с помощью вихревых токов включает узел катушки возбуждения с катушкой возбуждения (122), окружающей проходное отверстие (112) для пропуска длинномерного изделия (190) в направлении прохода (192), и расположенный вокруг проходного отверстия узел приемной катушки. Узел приемной катушки включает два или несколько распределенных по периферии проходного отверстия (112) сегментных узлов катушек (142-1÷142-8), при этом каждый сегментный узел катушек имеет зону приема, покрывающую лишь часть периферии поверхности длинномерного изделия. Сегментные узлы катушек (142-1÷142-8) распределены по меньшей мере по двум окружающим проходное отверстие оболочкам (S1, S2), находящимся на различных расстояниях (А1, А2) от базовой оси (114) узла проходной катушки. При этом первые сегментные узлы катушек (142-1÷142-4) без взаимного перекрытия расположены в первой оболочке (S1), а вторые сегментные узлы катушек (142-5÷142-8) без взаимного перекрытия расположены во второй оболочке (S2). Первые и вторые сегментные узлы катушек расположены с таким сдвигом по периферии относительно друг друга, что вторые сегментные узлы катушек промеряют участки периферии, не покрытые первыми сегментными узлами катушек. Технический результат: обеспечение возможности создания высокопрочного узла проходной катушки, позволяющего получать достоверные и содержательные результаты контроля на наличие дефектов и других неоднородностей в проверяемом объекте. 3 н. и 12 з.п. ф-лы, 7 ил.

Изобретение относится к устройству для регистрации электропроводных частиц (20) в жидкости (16), текущей в трубе (10) со скоростью (v), причем передающие катушки (18) подвергают жидкость воздействию периодических переменных электромагнитных полей для наведения в частицах вихревых токов, улавливающие катушки (15) регистрируют периодический электрический сигнал, соответствующий вихревым токам и содержащий несущее колебание, при этом, когда частицы попадают в эффективную ширину зоны чувствительности улавливающих катушек, наличие частицы способствует формированию амплитуды и/или фазы сигнала, каскад аналого-цифровых преобразователей преобразует сигнал улавливающей катушки в цифровую форму, блок (17, 19, 35, 37, 52, 60, 68, 74, 76, 78, 80, 88, 90, 94) обработки сигналов создает полезный сигнал из сигнала улавливающей катушки, преобразованного в цифровую форму, и блок (50, 60, 64) обработки данных обрабатывает полезный сигнал, чтобы зарегистрировать прохождение в трубе электропроводных частиц. В соответствии с изобретением посредством блока обработки сигналов путем осуществления контроля формы кривой преобразованного в цифровую форму сигнала улавливающей катушки определяют перемодуляцию каскада аналого-цифровых преобразователей сигналом улавливающей катушки, а затем путем математической аппроксимации преобразованного в цифровую форму сигнала улавливающей катушки восстанавливают часть сигнала, срезанную каскадом аналого-цифровых преобразователей. Технический результат - расширение диапазона измерений, увеличение вероятности быстрой локализации ошибки. 2 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для обнаружения коррозии в лопатках газотурбинной установки. Сущность: датчик содержит детекторную головку, форма которой согласована с геометрией поверхности переходной секции лопатки газовой турбины. Детекторная головка выполнена с возможностью перемещения вдоль осевого направления переходной секции для обнаружения питтинговой коррозии. По меньшей мере одно индукционное устройство, расположенное внутри детекторной головки, создает первое магнитное поле в области переходной секции, входящей в контакт с детекторной головкой. Приемное устройство обеспечивает обнаружение сигнала, соответствующего второму магнитному полю, принимаемому из области переходной секции, на которую воздействует первое магнитное поле. Второе магнитное поле генерируется посредством токов, созданных в данной области первым магнитным полем. Затем обрабатывающее сигнал устройство обрабатывает обнаруженный сигнал для корреляции соответствующей амплитуды обнаруженного сигнала с наличием питтинговой коррозии в данной области, так что наличие питтинговой коррозии определяют без какого-либо демонтажа корпуса газотурбинной установки. 8 н. и 15 з.п. ф-лы, 8 ил.

Изобретение относится к измерительной технике, представляет собой устройство для вихретоковой дефектоскопии и может быть использовано для выявления и определения параметров подповерхностных дефектов в ферромагнитных объектах. Устройство содержит источник постоянного магнитного поля, линейку вихретоковых преобразователей между его полюсами, параллельную полюсам, и узел регулировки напряженности намагничивающего постоянного магнитного поля. Узел регулировки выполнен в виде рамы и подрамника, соединенных с возможностью поворота относительно оси вращения, направленной вдоль одной из сторон рамы и перпендикулярной линейке преобразователей, а также фиксатора подрамника относительно рамы с заданным углом между их плоскостями. Система обеспечивает создание постоянного магнитного поля, монотонно изменяющегося вдоль линейки преобразователей. Технический результат изобретения - повышение чувствительности и информативности контроля. 4 ил.

Использование: для неразрушающего контроля качества пайки токоведущих соединений. Сущность изобретения заключается в том, что предварительно определяют уровень пропаянности, для чего калибруют первую шкалу вихретокового устройства контроля, используя образец, имитирующий пропаянность 0%, у которого зазор между стенками П-образной оправки и вкладываемой в нее медной пластиной запаян только по поверхности. При этом чувствительность вихретокового устройства позволяет по зависимости показаний устройства контроля, полученной при перемещении П-образного преобразователя по всей длине соединения, определять уровень его пропаянности при существенном уменьшении влияния изменений внешнего сечения соединения на результаты контроля. Затем для калибровки второй шкалы вихретокового устройства используют образец, имитирующий пропаянность 0% для этой шкалы, с зазором между стенками П-образной оправки и вкладываемой в нее медной пластиной, запаянным на большую (6,0÷6,5 мм) глубину, при этом чувствительность вихретокового устройства увеличивается, что позволяет существенно повысить достоверность выявления дефектов пайки контролируемых соединений, относительно предварительно определенного уровня пропаянности, полученного при существенном уменьшении влияния изменений внешнего сечения соединения на результаты контроля, что повышает достоверность выявления дефектов пайки. Технический результат: повышение достоверности выявления дефектов пайки токоведущих кабелей. 7 ил., 1 табл.

Согласно изобретению предложен способ неразрушающего контроля материала испытываемого объекта (8), движущегося мимо датчика (1) с переменной относительной скоростью, содержащий следующие этапы: регистрация сигнала (US) датчика посредством датчика (1); аналого-цифровое преобразование сигнала (US) датчика с получением оцифрованного сигнала (USD) датчика в виде последовательности цифровых слов с заранее заданной, в частности постоянной, частотой повторения слов; n-ступенчатое прореживание частоты повторения слов оцифрованного сигнала (USD) датчика или цифрового детектированного сигнала (UM), выделенного из оцифрованного сигнала датчика, причем это n-ступенчатое прореживание осуществляют с помощью n-каскадного прореживателя (от 5_1 до 5_n), где n≥2; выбор выходного сигнала (от UA_1 до UA_n) одного из n каскадов (от 5_1 до 5_n) прореживателя в зависимости от мгновенной относительной скорости; и фильтрация выбранного выходного сигнала посредством цифрового фильтра (7), синхронизированного с частотой повторения слов выбранного выходного сигнала. Изобретение обеспечивает возможность надежно и просто осуществлять неразрушающий контроль материала испытуемого объекта при переменных относительных скоростях испытуемого объекта. 2 н. и 7 з.п. ф-лы, 1 ил.

Изобретение относится к исследованию или анализу материалов с помощью вихревых токов и может быть использовано для контроля качества паяных соединений обмоток различных электрических машин (ЭМ) при производстве и ремонте. Способ оценки качества паяного соединения обмоток электрических машин заключается в том, что зондируют соединение вихретоковым измерителем, для чего обмоткой возбуждения, расположенной с одной стороны соединения, создают магнитное поле, которое принимают соосной измерительной обмоткой, расположенной с противоположной стороны соединения. Измеряют амплитуду принятого сигнала. Перед измерениями калибруют измеритель, для чего зондируют образцовые: непропаянное, полностью пропаянное, а затем исследуемое соединение. Оценивают качество исследуемого паяного соединения обмотки электрической машины, сопоставляя амплитуды принятого от него сигнала с сигналами от образцовых соединений. При зондировании соединений дополнительно измеряют фазу принятого сигнала, при калибровке зондируют непропаянное и полностью пропаянное соединения несколько раз при различных относительных положениях соединения и обмоток измерителя. Вычисляют положение равноудаленной точки комплексной плоскости, относительно которой амплитуда принятых сигналов не зависит от относительного положения соединения и обмоток как для непропаянных, так и пропаянных соединений. Для оценки степени пропаянности соединения используют соотношения амплитуд принятых сигналов образцовых и исследуемого соединений, пересчитанные относительно равноудаленной точки. Технический результат заключается в повышении точности измерений. При этом процесс измерений становится инвариантным к точности установки обмоток и их размеров по отношению к паяному соединению. 2 ил.

Изобретение относится к дефектоскопии посредством вихревых токов. Сущность: способ обнаружения дефектов посредством вихревых токов включает в себя этап синхронизации, на котором синхронизируют фазу напряжения возбуждения, прикладываемого средством управления катушкой к катушке возбуждения для генерирования вихревого тока в исследуемом объекте, с фазой напряжения управления, имеющего более высокую частоту, чем напряжение возбуждения, прикладываемое средством управления устройством к устройству на основе эффекта магнитного импеданса, для обнаружения изменения магнитного поля, возникающего в катушке возбуждения; и этап обнаружения магнитного поля (S5), на котором обнаруживают изменение магнитного поля, возникающего в катушке возбуждения вследствие вихревого тока, сгенерированного в исследуемом объекте, с использованием устройства на основе эффекта магнитного импеданса. Технический результат: повышение точности обнаружения дефекта за счет уменьшения шума. 2 н. и 2 з.п. ф-лы, 7 ил.

Группа изобретений относится к области измерительной техники и может быть использована для оценки надежности и качества многослойных конструкций из полимерных композиционных материалов на основе контроля толщины слоев. Сущность: способ характеризуется тем, что предварительно измеряют градуировочную характеристику, в зоне измерения толщины композитного материала устанавливают металлические закладные элементы малой площади, устанавливают вихретоковый преобразователь на поверхность контролируемого композитного материала в центре зоны измерения толщины, измеряют сигнал, пропорциональный периоду измерительного автогенератора и толщине измеряемого композитного материала, дополнительно генерируют сигналы опорным автогенератором, по величине пропорциональные периоду. Определяют сигнал, пропорциональный разности периода колебаний измерительного и опорного автогенератора. Линеаризируют полученный сигнал. Перед каждым измерением толщины вихретоковый преобразователь устанавливают вне зоны контроля и измеряют сигнал, пропорциональный разности периодов сигналов опорного и измерительного автогенераторов, и уточняют линеаризированный сигнал, регистрируют значение толщины на регистрирующем устройстве. Для осуществления способа используется устройство, включающее вихретоковый преобразователь с катушкой индуктивности, измерительный автогенератор, регистрирующее устройство, опорный автогенератор со второй катушкой индуктивности, измеритель периода колебаний измерительного автогенератора, измеритель периода колебаний опорного автогенератора, вычитатель/сумматор измерителей периода колебаний, блок временных поправок, блок управления блоком временных поправок и линеаризатор передаточной функции. Технический результат: повышение точности измерения и достоверности результатов оценки технического и эксплуатационного состояния конструкций и их элементов. 2 н.п. ф-лы, 4 ил.

Использование: для измерения параметров трещины в немагнитных электропроводящих объектах. Сущность изобретения заключается в том, что полость трещины дефектного участка заполняют магнитной жидкостью, сканируют дефектный участок подключенным к электронному блоку дефектоскопа вихретоковым преобразователем, регистрируют максимум вихретокового сигнала, вносимого трещиной, и получают основной сигнал, по которому судят о параметрах трещины, далее получают дополнительный сигнал, зависящий преимущественно от глубины трещины, а о ширине трещины судят по совокупности основного и дополнительного сигналов с помощью предварительно полученных зависимостей основного сигнала от трещин, заполненных магнитной жидкостью, с различной глубиной и шириной. Технический результат: обеспечение возможности повышения точности измерения геометрических размеров трещин в немагнитных электропроводящих объектах. 2 з.п. ф-лы, 5 ил.
Наверх