Способ диффузионной сварки порошкового жаропрочного сплава на никелевой основе

Изобретение может быть использовано для изготовления деталей из порошковых жаропрочных никелевых сплавов методом диффузионной сварки, например, при изготовлении рабочих лопаток и дисков газовых турбин. После сборки элементов под сварку проводят вакуумирование и нагрев их до температуры, не превышающей температуру сольвуса более чем на 10°C. Прикладывают сварочное усилие, составляющее 1,5-2,5 кг/мм2 с выдержкой в течение 1,5-2 ч. Затем снимают сварочное усилие и проводят выдержку в течение 2 ч. Осуществляют ступенчатое охлаждение сначала до температуры 800°C со скоростью не ниже 50°С/мин и выдержкой 8 ч, затем до температуры 700°C со скоростью 25-30°С/мин с выдержкой 8 ч, а затем до комнатной температуры со скоростью не более 30°C/мин. Способ обеспечивает получение сварного соединения с прочностью не менее 90% от прочности основного материала и с сохранением однородной мелкозернистой рекристаллизованной структуры, что позволяет проводить дальнейшую механическую обработку деталей. При этом сохраняется жаропрочность сварного соединения при высоких температурах, а также значительно увеличивается ресурс и надежность деталей, работающих в условиях нагружения. 2 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к сварке, а именно к способам соединения деталей из порошкового жаропрочного сплава на никелевой основе методом диффузионной сварки, и может быть использовано для изготовления тяжелонагруженных деталей, работающих при повышенных температурах в двигателях внутреннего сгорания, паровых и газовых турбин, реактивных двигателях, атомно-энергетических установках и т.д.

Аналогом данного изобретения является способ диффузионной сварки сложнолегированных жаропрочных никелевых сплавов (Казаков Н. Ф. Диффузионная сварка материалов. М.: «Машиностроение», 1976 г., 312 с.). Способ заключается в том, что диффузионную сварку проводят при температуре 1000°C, удельное давление сжатия 2 кг/мм2, с последующей выдержкой при 1200°C в течение 20 мин.

Недостатком этого способа является то, что за время сварки при указанной температуре (не более 20 мин) не успевает сформироваться прочное соединение. Прикладываемое удельное давление приводит к пластической деформации деталей >10%, что способствует укрупнению и росту зерен, а это снижение прочности сварного соединения. Медленное охлаждение после сварки также влечет за собой изменение микроструктуры - наблюдается рост зерна. Свойства, характеризующие пластичность, по сравнению со свойствами основного металла занижены. Сварное соединение имеет низкую прочность на разрыв.

Известен способ диффузионной сварки жаропрочного сплава на кобальтовой основе с керамикой на основе нитрида кремния (заявка Японии, МПК B23K 20/00, заявка №1-44434, опубликовано 27.09.89), по которому между сварными деталями помещают тонкую металлическую прослойку.

Конструкционные элементы нагревают до температуры плавления прослойки. Прослойку изготавливают из сплава, содержащего в качестве одного из компонентов железо, никель, кобальт, алюминий.

Известен способ диффузионной сварки (патент №2025241, МПК B23K 20/16, опубл. 30.12.1994 г.), согласно которому, по крайней мере, на поверхности одной из свариваемых деталей выполняют полость и заполняют ее защитно-активирующей средой в виде экзотермической смеси. Подготовленные к сварке детали сжимают, нагревают до температуры сварки с высокой скоростью, осуществляют изотермическую выдержку и после образования соединения детали охлаждают. Под действием температуры и давления происходит вытеснение защитно-активирующей среды из полости и ее подача на разогретые свариваемые поверхности, что приводит к получению качественного соединения за счет удаления окисных пленок и смятия микронеровностей поверхности. Однако защита свариваемых поверхностей от окисления оказывается недостаточной, приводит к снижению качества сварки.

Недостатком этого способа является то, что для двигателестроения, где предъявляются высокие требования к характеристикам сварных соединений, химическому составу и микроструктуре зоны сварки нагрев до температуры сварки с высокой скоростью недопустим, так как это значительно влияет на изменение микроструктуры, эксплуатационные и прочностные характеристики сварных деталей. На свариваемой детали выполнение полости значительно ограничивает конструкторские замыслы. Отсутствие последующей термической обработки после сварки не позволяет стабилизировать прочностные свойства соединений.

Задача, на решение которой направлено изобретение, заключается в разработке способа диффузионной сварки порошкового жаропрочного сплава на никелевой основе без промежуточных прослоек в вакууме с оптимальным подбором режимов сварки и последующей термической обработки. Это позволяет:

- исключить изменения в структуре свариваемого материала;

- минимизировать пластическую деформацию детали;

- обеспечить необходимую стабильную прочность соединения.

Указанный технический результат достигается тем, что в предлагаемом способе диффузионной сварки порошковых жаропрочных сплавов на никелевой основе, включающем сборку элементов под сварку, вакуумирование, нагрев до температуры сварки, приложение сварочного усилия, выдержку и охлаждение, нагрев осуществляют со скоростью, не превышающей 30°C/мин, до температуры, не превышающей температуру сольвуса сплава на 10°C, при достижении температуры сварки прикладывают сварочное усилие, обеспечивающее пластическую деформацию свариваемых деталей, не превышающую 5%, снимают сварочное усилие и выдерживают при температуре сварки в течение 1,5-2 часов, после чего проводят ступенчатое охлаждение, обеспечивающее выделение упрочняющих частиц, стабилизацию структуры сплава. К свариваемым элементам прикладывают сварочное усилие, составляющее 1,5-2,5 кг/мм2. Охлаждение осуществляют ступенчато: сначала со скоростью не ниже 50°C/мин до температуры 800°C с выдержкой при этой температуре в течение 8 час, затем до температуры 700°C со скоростью 25-30°C/мин с выдержкой при этой температуре в течение 8 часов, охлаждение до комнатной температуры со скоростью не более 30°C/мин.

Экспериментально установлено, что при удельном давлении 1,5-2,5 кг/мм2 пластическая деформация свариваемых деталей не превышает 5%, что указывает на то, что происходит лишь деформация микровыступов на свариваемых поверхностях. А это, в свою очередь, не приводит к структурным изменениям в сплаве, что положительно влияет на прочность сварного соединения. Кроме того, для повышения технологических характеристик после снятия сварочного усилия проводят выдержку в течение 1,5-2 часов при этой же температуре. Затем охлаждают до температуры 800°C со скоростью не ниже 50°C/мин, выдерживают 8 часов, охлаждают до 700°C со скоростью 25-30°C/мин, выдерживают 8 часов и охлаждают до комнатной температуры со скоростью не более 30°C/мин.

Сущность предлагаемого изобретения заключается в том, что выбранный режим, включающий диффузионную сварку и последующую термообработку, позволяет активизировать диффузионные процессы, протекающие в зоне контакта. А выбранная скорость охлаждения и ступенчатое термическое воздействие способствуют выделению упрочняющих частиц, стабилизации структуры сплава, что обеспечивает высокий уровень прочности и неизменность микроструктуры материала. Все это увеличивает ресурс и надежность сварной конструкции, работающей в условиях жесткого нагружения.

Пример 1. Были изготовлены детали из сплава ВВ751П с размерами 17×40 каждая. Детали под сварку собирались торцевыми поверхностями и помещались в диффузионную установку. Рабочую камеру установки вакуумировали, нагревали до температуры сварки, не превышающей температуру сольвуса сплава на 10°C Tсв=1100°C. Нагрев осуществляли со скоростью, не превышающей 30°C/мин. При достижении сварочной температуры к элементам прикладывали сварочное усилие 2 кг/мм2 в течение 2 часов. По истечении времени сварочное усилие снималось и элементы выдерживали при температуре сварки в течение 2 часов, после чего производилось ступенчатое охлаждение сначала со скоростью не ниже 50°C/мин до температуры 800°C с выдержкой при этой температуре в течение 8 час, затем до температуры 700°C со скоростью 25-30°C/мин с выдержкой при этой температуре в течение 8 часов, охлаждение до комнатной температуры со скоростью не более 30°C/мин.

Пример 2. Были изготовлены детали из сплава ВВ751П с размерами 17×40 каждая. Детали присоединялись торцевыми поверхностями и помещались в диффузионную установку где производилось вакуумирование, нагрев до температуры сварки не превышающей температуру сольвуса сплава на 10°C Tсв=1050°C, нагрев осуществляли со скоростью, не превышающей 30°C/мин. При достижении сварочной температуры к элементам прикладывали сварочное усилие 1,5 кг/мм2 в течение 1,5 часов. Снималось сварочное усилие и элементы выдерживали при температуре сварки в течение 2 часов, после чего производилось ступенчатое охлаждение сначала со скоростью не ниже 50°C/мин до температуры 800°C с выдержкой при этой температуре в течение 8 час, затем до температуры 700°C со скоростью 25-30°C/мин с выдержкой при этой температуре в течение 8 часов, охлаждение до комнатной температуры со скоростью не более 30°C/мин.

Пример 3. Были изготовлены детали из сплава ВВ751П с размерами 17×40 каждая. Детали присоединялись торцевыми поверхностями и помещались в диффузионную установку где производилось вакуумирование, нагрев до температуры сварки не превышающей температуру сольвуса сплава на 10°C Tсв=1070°C, нагрев осуществляли со скоростью, не превышающей 30°C/мин. При достижении сварочной температуры к элементам прикладывали сварочное усилие 2 кг/мм2 в течение 2 часов. Снималось сварочное усилие и элементы выдерживали при температуре сварки в течение 2 часов, после чего производилось ступенчатое охлаждение сначала со скоростью не ниже 50°C/мин до температуры 800°C с выдержкой при этой температуре в течение 8 час, затем до температуры 700°C со скоростью 25-30°C/мин с выдержкой при этой температуре в течение 8 часов, охлаждение до комнатной температуры со скоростью не более 30°C/мин.

Результаты испытаний механических свойств деталей из ВВ751П при температуре 20°C и рабочей температуре 650°C по стандартным методикам испытания представлены в таблице.

Таким образом, предлагаемый способ обеспечивает на деталях при рабочей температуре 650°C получение жаропрочности гораздо выше по сравнению с прототипом и более высокий уровень прочности, сохранение высокой пластичности. Сварные соединения имеют механические свойства, равноценные основному металлу.

В результате применения предлагаемый способ сварки деталей из порошкового жаропрочного сплава на никелевой основе методом диффузионной сварки позволяет значительно повысить их ресурс и надежность. Кроме того, возможность получения сварных соединений из таких сплавов может привести к изменению конструкций двигателей, уменьшению их массы.

1. Способ диффузионной сварки деталей из порошковых жаропрочных сплавов на никелевой основе, включающий сборку элементов под сварку, вакуумирование, нагрев до температуры сварки, приложение сварочного усилия, выдержку и охлаждение, отличающийся тем, что нагрев осуществляют со скоростью, не превышающей 30°C/мин, до температуры, не превышающей температуру сольвуса сплава на 10°C, при достижении температуры сварки к элементам прикладывают сварочное усилие, обеспечивающее пластическую деформацию свариваемых деталей, не превышающую 5%, снимают сварочное усилие и выдерживают при температуре сварки в течение 1,5-2 ч, после чего проводят ступенчатое охлаждение, обеспечивающее выделение упрочняющих частиц и стабилизацию структуры сплава.

2. Способ по п.1, отличающийся тем, что к свариваемым элементам прикладывают сварочное усилие, составляющее 1,5-2,5 кг/мм2.

3. Способ по п.1, отличающийся тем, что ступенчатое охлаждение осуществляют сначала со скоростью не ниже 50°C/мин до температуры 800°C с выдержкой при этой температуре в течение 8 ч, затем до температуры 700°C со скоростью 25-30°C/мин с выдержкой при этой температуре в течение 8 ч, охлаждение до комнатной температуры со скоростью не более 30°C/мин.



 

Похожие патенты:

Изобретение может быть использовано в аэрокосмическом машиностроении для изготовления многослойных панелей из титанового сплава ВТ-23. После предварительного отжига листов заполнителя при температуре 680°C с последующей выдержкой на воздухе в течение 25 минут осуществляют сборку в пакет упомянутых листовых заготовок.

Изобретение относится к способу диффузионной сварки изделий из разнородных материалов и может быть использовано для бронзирования внутренних, глубоких отверстий корпусов плунжерных гидронасосов, работающих в условиях трения-скольжения.

Изобретение может быть использовано для изготовления сваркой давлением с подогревом многослойных металлических панелей корпусов летательных аппаратов. Локально соединяют листы заполнителя и собирают пакет в штампе с размещением их между листами обшивок.

Изобретение может быть использовано для изготовления многослойных металлических панелей, например, в аэрокосмическом машиностроении. Предварительно листы заполнителя локально соединяют между собой по пересекающимся зонам.
Изобретение может быть использовано при изготовлении слоистых тонкостенных титановых конструкций из листового материала, в частности, выпускных окон энергетических установок для вывода пучка электронов.

Изобретение может быть использовано при соединении деталей из титана и стали путем диффузионной сварки, в частности, для получения турбинных валов для газотурбинных двигателей.

Изобретение может быть использовано при изготовлении аппаратов для нефтегазопереработки и сварки технологических трубопроводов. После механической обработки поверхностей деталей их покрывают защитной консервирующей смазкой и соединяют между собой обработанными поверхностями.

Изобретение относится к сварке давлением, а именно к диффузионной сварке с низкоинтенсивным силовым воздействием, и может быть использовано для изготовления тонкостенных конструкций из титанового сплава ОТ4-1.

Изобретение относится к области металлургии, а именно к производству изделий из литейных жаропрочных сплавов на никелевой основе, и может быть использовано при изготовлении деталей газотурбинных двигателей, в особенности полых тонкостенных лопаток турбины.
Изобретение относится к приборостроению и может применяться при изготовлении полупроводниковых микромеханических устройств, например, чувствительных элементов интегральных датчиков.

Изобретение относится к способу диффузионной сварки элементов из литейных жаропрочных сплавов на никелевой основе. Изобретение может быть использовано для изготовления рабочих лопаток, дисков газовых турбин и др., которые работают при высоких нагрузках и температурах. Собирают элементы под сварку, вакуумируют. Нагревают элементы до температуры, определяемой из следующего соотношения: 0,987Тs<Тсв<1,001Тлп, где Тлп - температура локального плавления литейного сплава, Тсв - температура сварки, Ts - температура солидуса свариваемого материала, а сжатие осуществляют сварочным усилием 1-3,5 кг/мм2, обеспечивающим макропластическую деформацию в течение времени, требуемого на осуществление процесса сварки, 0,5-2,5 часа. Затем снимают сварочное усилие и охлаждают до комнатной температуры со скоростью не более 30-50°C/мин. Изобретение позволяет получить сварное соединение требуемого качества с необходимой прочностью не менее 90% от прочности основного материала и с сохранением однородной мелкозернистой рекристаллизованной структуры, что позволяет проводить дальнейшую механическую обработку деталей. Кроме того, применение диффузионной сварки позволяет упростить конструкцию изделий, повысить технологичность и уменьшить массу конструкций. 1 табл.
Изобретение может быть использовано при изготовлении сверхпластической формовки изделий сложной формы, в частности лопаток компрессора. Изготавливают лопатки компрессора из высокопрочного титанового сплава ВТ6 на основе эвтектоидной системы легирования. Производят горячую деформацию газовой формовкой с использованием эффекта сверхпластичности при температуре от 870°C до 1000°C и скорости деформации 10-4 с-1. Проводят термическую обработку готовых лопаток компрессора при температуре от 870 до 950°C с продолжительностью выдержки при гомогенизации и старении от 450 до 600°C. Изобретение обеспечивает оптимизацию технологического процесса при улучшении механических свойств лопаток, а именно прочности, жаропрочности, вязкости разрушения.
Изобретение может быть использовано для оптимизации технологического процесса сверхпластической формовки при изготовлении ответственных силовых деталей, в частности шпангоутов, силовых нервюр, балок шассийных и т.д. Осуществляют горячую газовую формовку заготовок из титанового сплава ВТ22 с использованием сверхпластической деформации при температуре от 870 до 960°С и скорости деформации 10-3 с-1. Готовые детали дополнительно подвергают термической обработке в (α+β)-области при температуре от 860 до 880°С. Способ обеспечивает улучшение прочностных свойств изделий из титанового сплава ВТ22, в частности трещиностойкости.
Изобретение относится к способу диффузионной сварки. Очищают детали из нержавеющей стали и мембраны из фольги палладия или палладиевого сплава электрополировкой. Собирают в пакет. В качестве промежуточного слоя применяют фольгу из никеля. Размещают в вакуумной камере. Нагревают. Прикладывают сварочное давление и изотермически выдерживают. Сварку ведут в вакууме не хуже 5·10-5 мм рт.ст. при температуре процесса Т=930-980˚C с выдержкой в течение 30-45 мин, при этом прикладывают сварочное давление, которое обеспечивает пластическую деформацию промежуточного слоя на 50% от его исходной толщины. Изобретение позволяет изготавливать герметичную по гелию стенку мембранного элемента, который используется для получения сверхчистого водорода (99,9999 об.%). Потребность в таком водороде для водородной энергетики и высоких технологий неуклонно растет.

Изобретение относится к порошковой металлургии, в частности к способу получения композиционного материала из титана или его сплава, и может быть использовано для медицинских изделий, в частности, погружных фиксирующих имплантатов, применяемых в травматологии и ортопедии. Способ включает создание механическим способом на поверхности металла сети канавок, стенки которых наклонены к поверхности, формирование на этой поверхности слоя порошка с размерами частиц, в 4-5 раз меньшими размеров канавок, прессование под давлением металлического слоя со слоем порошка, вакуумную диффузионную сварку полученной двухслойной конструкции при температуре ниже температуры плавления материалов слоев. Затем осуществляют плазменное осаждение углеродного алмазоподобного покрытия толщиной 0,05-1 мкм и твердостью 70-80 ГПа. Техническим результатом изобретения является повышение прочности композиционного материла за счет увеличения прочности сцепления пористого слоя с металлической поверхностью и твердости поверхности. 3 ил.
Изобретение относится к способу сварки давлением металлических деталей и может быть использовано в различных отраслях машиностроения. Свариваемые детали сжимают. Осуществляют нагрев зоны сварки до температуры ниже температуры рекристаллизации по одну сторону зоны контакта с перемещением температурного поля через зону контакта. Осуществляют сварку. После сварки осуществляют изотермическую выдержку при температуре, превышающей порог рекристаллизации. Нагрев под изотермическую выдержку выполняют по одну сторону зоны контакта с перемещением фронта рекристаллизации через зону контакта. 1 пр.

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия. Перед диффузионной сваркой проводят сжатие поверхностей заготовок при комнатной температуре с приложением к ним удельного давления величиной p=(0,7-1,0) от условного предела текучести меди с фиксацией пакета в сжатом состоянии. Диффузионную сварку сжатого пакета в печи осуществляют при температуре 950-1000°C в течении 20 мин. Прокатывают полученную заготовку при температуре нагрева 950-1000°C с относительной степенью деформации по высоте 10-20%. Способ обеспечивает получение биметалла, сочетающего высокую электро- и теплопроводность меди и прочностные свойства стали. 1 ил., 1 табл.

Изобретение может быть использовано при изготовлении сваркой давлением с подогревом многослойных панелей из титановых сплавов, в частности, для аэрокосмического машиностроения. Предварительно листы заполнителя соединяют лазерной сваркой. Затем электроконтактной сваркой по пересекающимся зонам локально соединяют листы заполнителя. Далее поочередно производят сверхпластическую формовку и диффузионную сварку при температуре 900°С аргоном под давлением 0,12 МПа внутренних и внешних слоев наполнителей и обшивок. Для предотвращения сварки листов осуществляют продувку аргоном под давлением 0,4 МПа. Способ обеспечивает повышение прочностных характеристик многослойных сотовых изделий из титанового сплава ОТ4-1. 2 ил.
Изобретение может быть использовано для получения ультрамелкозернистых сверхпластичных листов титано-алюминиевых сплавов при изготовлении сложных деталей методом сверхпластической формовки и диффузионной сварки. Листы готового проката титано-алюминиевого сплава, например, Ti-48Al-2Cr-2Nb толщиной 2,0 мм, предварительно обрабатывают на воздухе лазерным излучением и подвергают горячему обжатию при давлении 150 МПа и температуре 1250°C в течение 2 часов. Таким образом, первоначальный крупномодульный слоистый микроструктурный сплав превращается в мелкомодульный дуплексный, который обладает сверхпластичностью и способен соединяться на межатомном уровне, т.е. диффузионной сваркой. Диффузионную сварку осуществляют в вакуумной печи при температуре 1100°C, давлении газа 10 МПа и скорости деформации 8·10-5 c-1. Способ обеспечивает повышение прочностных характеристик диффузионного сварного соединения деталей из титано-алюминиевых сплавов.

Изобретение может быть использовано для изготовления многослойных труб, в том числе тонкостенных, в частности биметаллических труб из драгоценных металлов. Трубчатую заготовку с меньшей температурой плавления выполняют из первого металлического сплава, компоненты которого образуют твердый раствор с низкоплавкой эвтектической фазой. Вторую трубчатую заготовку выполняют из второго металлического сплава с присадкой металла, формирующего эвтектическую фазу в первом металлическом сплаве. Устанавливают наружную трубчатую заготовку коаксиально внутренней трубчатой заготовке и обжимают наружную трубчатую заготовку до плотного контакта их смежных поверхностей с формированием биметаллической трубчатой заготовки. Выполняют диффузионную сварку путем нагрева биметаллической трубчатой заготовки до температуры выше температуры плавления низкоплавкой эвтектической фазы, но ниже температуры плавления первого металлического сплава. Охлаждают полученную биметаллическую трубу после диффузионной сварки. Способ обеспечивает высокую прочность диффузионного соединения. 11 з.п. ф-лы, 6 ил.
Наверх