Плазменный реактивный двигатель на основе эффекта холла

Изобретение относится к плазменному реактивному двигателю на основе эффекта Холла. Двигатель содержит окружающий основную ось кольцевой выпускной канал, который имеет открытый нижний по потоку конец и ограничен внутренней стенкой и наружной стенкой, катод, магнитный контур для создания магнитного поля в канале, трубопровод для подачи способного к ионизации газа в канал. Анод, расположенный в верхнем по потоку конце канала, служит также распределителем, обеспечивающим течение способного к ионизации газа в зону ионизации канала по концентрической траектории вокруг основной оси. Распределитель совместно с внутренней и наружной стенками ограничивает в направлении снизу вверх по потоку кольцевую выходную полость, которая выходит в зону ионизации канала и кольцевую промежуточную полость. При этом выходные отверстия соединяют промежуточную полость с выходной полостью. Использование изобретения позволяет устранить закручивание вокруг оси двигателя потока ионов на выходе выпускного канала. 16 з. п. ф-лы, 11 ил.

 

Область техники, к которой относится изобретение

Предметом изобретения является плазменный реактивный двигатель на основе эффекта Холла, содержащий окружающий основную ось кольцевой выпускной канал (образующий основной канал ионизации и ускорения), который имеет открытый нижний по потоку конец и ограничен между внутренней стенкой и наружной стенкой, по меньшей мере, один катод, магнитный контур для создания магнитного поля в канале, трубопровод для подачи способного к ионизации газа в канал, анод и распределитель, расположенный в верхнем по потоку конце канала, причем распределитель соединен с трубопроводом и позволяет способному к ионизации газу течь в зону ионизации канала по концентрической траектории вокруг основной оси.

Двигатель этого типа называют также плазменным двигателем с замкнутым дрейфом электронов или двигателем со стационарной плазмой.

В частности, изобретение относится к плазменному реактивному двигателю на основе эффекта Холла, используемому для перемещения спутников, таких как геостационарные спутники связи. Благодаря высокому удельному импульсу (от 1500 до 6000 с) двигатели обеспечивают значительную экономию массы на спутниках по сравнению с двигателями на химической тяге.

Уровень техники

Одним из типовых случаев применения двигателей этого типа является управление «север/юг» для геостационарных спутников, для которых получают экономию массы от 10 до 15%. Двигатель этого типа используют также для первичной межпланетной тяги, для компенсирующей тяги на низких орбитах, для поддержания гелиосинхронной орбиты, для перехода с одной орбиты на другую и для выхода с орбиты по окончании срока службы. Он может эпизодически использоваться, возможно, при комбинации электрической и химической тяги для того, чтобы избежать столкновения с отходами или для компенсации сбоев при переводе на переходную орбиту.

Фиг.1-4 относятся к известному из уровня техники двигателю 10 на основе эффекта Холла. Двигатель 10 на основе эффекта Холла схематично представлен на фиг.1. Центральная магнитная обмотка 12 охватывает центральный сердечник 14, проходящий вдоль основной продольной оси А. Кольцевая внутренняя стенка 16 окружает центральную обмотку 12. Эта внутренняя стенка 16 окружена кольцевой наружной стенкой 18, причем внутренняя стенка 16 и наружная стенка 18 ограничивают между собой кольцевой выпускной канал 20, проходящий вокруг основной оси А.

В последующем описании термин «внутренний» обозначает часть, близкую в основной оси А, а термин «наружный» означает часть, удаленную от основной оси А. Аналогичным образом термины «верхний по потоку» и «нижний по потоку» определены по отношению к направлению нормального истечения газа (сверху вниз по потоку) через выпускной канал 20.

Обычно внутренняя стенка 16 и наружная стенка 18 являются частями одной детали 19 из керамики, причем эта керамика является изоляционной и однородной, в частности изготовленной на основе нитрида бора и диоксида кремния (BNSiO2). Керамика на основе нитрида бора обеспечивает реактивным двигателям на основе эффекта Холла повышенную эффективность, однако подвержена быстрой эрозии под действием ионной бомбардировки, что снижает срок службы реактивных двигателей.

Верхний по потоку конец 20а выпускного канала 20 (слева на фиг.1) закрыт инжекционной системой 22, которая образована трубопроводом 24 подачи способного к ионизации газа (обычно ксенона), причем трубопровод 24 сообщается через впускное отверстие 25 с анодом 26, который служит распределителем для инжекции молекул газа в выпускной канал 20. На уровне анода 26 молекулы газа переходят от потока из трубопровода 24 к кольцевому потоку инжекции в верхний по потоку конец 20а выпускного канала 20, образующий зону 28 ионизации. Нижний по потоку конец 20b выпускного канала 20 открыт (справа на фиг.1).

Множество периферийных магнитных обмоток 30 с осью, параллельной основной оси А, расположены вокруг наружной стенки 18. Центральная магнитная обмотка 12 и периферийные магнитные обмотки 30 позволяют генерировать радиальное магнитное поле В, интенсивность которого максимальна на уровне нижнего по потоку конца 20b выпускного канала 20.

Полый катод 40 расположен снаружи от периферийных обмоток 30, причем его выход ориентирован таким образом, чтобы выбрасывать электроны в направлении основной оси А и от зоны, расположенной ниже нижнего по потоку конца 20b выпускного канала 20. Между катодом 40 и анодом 26 создана разность потенциалов.

Выбрасываемые таким образом электроны частично направляются внутрь выпускного канала 20. Некоторые из этих электронов под влиянием электрического поля, созданного между катодом 40 и анодом 26, доходят до анода 26, однако большая часть электронов оказывается уловленной интенсивным магнитным полем В вблизи нижнего по потоку конца 20b выпускного канала 20.

Эти электроны, сталкиваясь с молекулами газа, которые циркулируют в выпускном канале 20 от верхнего к нижнему концу по потоку, производят ионизацию молекул газа.

Тем временем присутствующие в выпускном канале 20 электроны создают осевое электрическое поле Е, которое ускоряет ионы между анодом 26 и выходом (нижним по потоку концом 20b) выпускного канала 20, так что ионы выбрасываются из выпускного канала 20 с большой скоростью, что создает тягу двигателя.

Как показано на фиг.2-4, в присутствии радиального магнитного поля В (линии 42 поля) траектория ионов не параллельна основной оси А двигателя, соответствующей направлению тяги, а подвержена угловому отклонению. На практике угол α, образованный между струей ионов (траектория 44 на фиг.2-4) и основной осью А, составляет около 6°.

На фиг.3 и 4 показано отклонение траектории 44 ионов от центральной окружности 46 выпускного канала 20. Это угловое отклонение траектории ионов имеет тенденцию искажать желаемое ламинарное движение с преобразованием в слегка завихренное движение, центрированное вокруг основной оси А.

Это отклонение отчасти является причиной отклонений, замеченных в плазменных реактивных двигателях на основе эффекта Холла.

На практике отклонение ионизированного газа радиальным магнитным полем В создает паразитный механический крутящий момент, создающий помехи получению оптимальной тяги двигателя.

Раскрытие изобретения

Перед изобретением поставлена задача предложить плазменный реактивный двигатель на основе эффекта Холла, позволяющий устранить недостатки известных решений уровня техники и, в частности, обеспечить возможность преодоления путем модификации углового отклонения, создаваемого воздействием на ионы радиального магнитного поля на выходе выпускного канала.

Точнее, задачей изобретения является полная или частичная компенсация или даже усиление этого отклонения. Так, например, полная компенсация отклонения позволит устранить радиальную составляющую движения ионов на выходе выпускного канала.

Для этого в соответствии с изобретением плазменный реактивный двигатель на основе эффекта Холла отличается тем, что анод служит распределителем, а распределитель содержит направляющие средства, которые вызывают на выходе распределителя движение газа вокруг основной оси с завихрением.

При этом понятно, что благодаря наличию этих направляющих средств движение с завихрением молекул газа, вызываемое на выходе распределителя, способно компенсировать угловое отклонение траектории ионов, вызываемое радиальным магнитным полем на нижнем по потоку конце выпускного канала.

Таким образом, в общем аспекте изобретения у верхнего по потоку конца выпускного канала создают движение с завихрением, которое накладывается на движение с завихрением у нижнего по потоку конца выпускного канала под действием радиального магнитного поля.

Это наложение двух завихрений позволяет изменять и контролировать отклонение, которому ионы подвергаются под действием радиального магнитного поля, при этом отклонение может усугубляться, снижаться или полностью компенсироваться.

В целом благодаря решению по изобретению механический крутящий момент, создаваемый угловой скоростью нейтрального газа вследствие наличия направляющих средств, позволяет учитывать отклонение, которому ионы подвергаются под действием радиального магнитного поля, присутствующего на нижнем по потоку конце выпускного канала.

Согласно предпочтительному примеру выполнения направляющие средства содержат ряд выходных отверстий, выходящих на выход анода вблизи зоны ионизации канала, образуя в проекции на плоскость, поперечную основной оси, первый отличный от нуля угол β с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с указанным движением с завихрением.

Понятно, что благодаря отличному от нуля углу, образованному выходом выходных отверстий, каждая выходящая из распределителя струя газа имеет траекторию с тангенциальной составляющей, перпендикулярной радиальному направлению. При этом совокупность струй газа на выходе анода создает механический крутящий момент, способный добавляться к механическому крутящему моменту, который создается на нижнем по потоку конце выпускного канала ионами, подвергающимися отклонению под действием радиального магнитного поля, или противодействовать этому крутящему моменту.

Предпочтительно первый угол β между проекцией выхода выходных отверстий на поперечную основной оси плоскость и радиальным направлением составляет от 20° до 70°, более предпочтительно от 35° до 55° и, в частности, равен 45°.

Краткое описание чертежей

Другие особенности и преимущества изобретения будут ясны из последующего описания примеров осуществления изобретения со ссылками на прилагаемые чертежи. На чертежах:

уже описанная фиг.1 схематично изображает известный из уровня техники плазменный двигатель на основе эффекта Холла,

уже описанная фиг.2 изображает участок II на фиг.1,

уже описанная фиг.3 изображает в перспективе с продольным разрезом выпускной канал, представляя угловое отклонение траектории газа в известном плазменном реактивном двигателе,

фиг.4 изображает устройство по фиг.3 в разрезе в плоскости IV,

фиг.5 изображает в перспективе с продольным разрезом выпускной канал плазменного реактивного двигателя на основе эффекта Холла в соответствии с изобретением,

фиг.6 изображает в перспективе и в поперечном разрезе анод плазменного реактивного двигателя на основе эффекта Холла в соответствии с изобретением,

фиг.7 изображает в увеличенном виде в радиальном разрезе анод по фиг.6,

фиг.8-11 изображают анод по фиг.7 в поперечных разрезах по линиям VIII-VIII, IX-IX, Х-Х и XI-XI на фиг.7,

фиг.12 изображает вид, аналогичный виду по фиг.7, для первого варианта выполнения анода,

фиг.13 изображает вид, аналогичный виду по фиг.7, для второго варианта выполнения анода.

Осуществление изобретения

Далее со ссылками на фиг.5-11 будет описан предпочтительный пример выполнения.

Выполненный в соответствии с изобретением анод 50 представляет собой также и распределитель. Для этого он совместно с внутренней стенкой 16 и наружной стенкой 18 керамической детали 19 ограничивает в направлении снизу вверх по потоку кольцевую выходную полость 52, которая выходит в зону 28 ионизации канала 20, и кольцевую промежуточную полость 54, по меньшей мере часть которой расположена концентрично по отношению к выходной полости 52. Выходные отверстия 53 соединяют промежуточную полость 54 с выходной полостью 52.

Предпочтительно выходные отверстия 53 выполнены прямолинейными.

За счет первого отличного от нуля угла β (см. фиг.9) между радиальным направлением и поперечной проекцией выходных отверстий 53 на выходе анода создается завихренное движение.

Предпочтительно образующий распределитель анод 50 содержит по меньшей мере четыре выходных отверстия 53, распределенных с равномерным угловым шагом вокруг основной оси А.

В показанном примере выполнения используется шестнадцать выходных отверстий 53, распределенных с равномерным угловым шагом вокруг основной оси А по круговой симметрии (см. фиг.9). Такая не строго радиальная инжекция газа на выходе анода создает механический крутящий момент, который добавляется или компенсирует механический крутящий момент, вызываемый на нижнем по потоку конце выпускного канала ионами, которые подвергаются угловому отклонению под действием радиального магнитного поля В.

В показанном примере осуществления (см. фиг.7 и 9) выходные отверстия 53 выполнены прямолинейными и параллельными поперечной плоскости, перпендикулярной основной оси А, и в этой поперечной плоскости образуют с радиальным направлением первый угол β, равный 45°. Само собой разумеется, что возможны другие варианты как в отношении величины угла β (от 0 до 90°), так и в отношении возможного наклона относительно поперечной плоскости (в некоторых случаях плоскость инжекции бывает неперпендикулярна оси тяги или основной оси А).

На выходе выходных отверстий 53 циркуляция газа в выходной полости 52, которая расположена непосредственно перед зоной 28 ионизации, обычно происходит в виде свободных молекул.

Кроме того, образующий распределитель анод 50 совместно с внутренней стенкой 16 и наружной стенкой 18 керамической детали 19 ограничивает выше по потоку от промежуточной полости 54 кольцевую распределительную полость 56, которая сообщается с одной стороны с трубопроводом 24, а с другой стороны с промежуточной полостью 54 рядом проходных отверстий 55.

Как видно на фиг.7 и 10, проходные отверстия 55 образуют на своем выходе в проекции на поперечную основной оси А плоскость второй отличный от нуля угол γ с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с завихренным движением.

Предпочтительно второй угол γ, образованный между проекцией выхода проходных отверстий 55 на поперечную основной оси А плоскость и радиальным направлением, составляет от 20° до 70°, предпочтительно от 35° до 55° и, в частности, 45°.

Предпочтительно второй угол γ ориентирован противоположно первому углу β относительно радиального направления (на фиг.7, 9 и 10 первый угол β равен +45°, тогда как второй угол γ равен -45°).

Предпочтительно проходные отверстия 55 выполнены прямолинейными.

За счет второго отличного от нуля угла γ (см. фиг.10) между радиальным направлением и поперечной проекцией проходных отверстий 55 в промежуточной полости 54 создается завихренное течение, которое благоприятствует молекулярному течению в выходных отверстиях 53 к выходной полости 52 и к выходу анода 50.

Предпочтительно образующий распределитель анод 50 содержит, по меньшей мере, два проходных отверстия 55, распределенных с равномерным угловым шагом вокруг основной оси А.

В показанном примере выполнения используются четыре проходных отверстия 55, распределенных с равномерным угловым шагом вокруг основной оси А по круговой симметрии (см. фиг.10).

В показанном примере осуществления (см. фиг.7 и 10) проходные отверстия 55 выполнены прямолинейными и параллельными поперечной плоскости и в этой поперечной плоскости образуют с радиальным направлением второй угол γ, равный 45°. Само собой разумеется, что возможны другие варианты как в отношении величины второго угла γ (от 0 до 90°), так и в отношении возможного наклона проходных отверстий 55 относительно поперечной плоскости.

В примере осуществления по фиг.5-11 и в первом варианте по фиг.12 выходные отверстия 53 ориентированы таким образом, что допускают выход способного к ионизации газа в направлении внутренней стенки 16 (см. фиг.9).

Такая конфигурация позволяет полностью или частично компенсировать угловое отклонение ионов под действием радиального магнитного поля В, показанное на фиг.2-4. Если ориентация радиального магнитного поля В противоположна показанной на фиг.1-4, ситуация меняется, и угловое отклонение ионов под действием магнитного поля усугубляется.

В этом случае, кроме того, на выходе анода удары молекул или ионов газа в наружную стенку 18 создают достаточную зеркальность, чтобы газ, поступающий в зону 28 ионизации, имел остаточную скорость завихрения порядка той, которая создается за счет разности температур между внутренней стенкой 16 и наружной стенкой 18.

Следует напомнить, что удары электронов, ионов и молекул во внутреннюю стенку 16 и наружную стенку 18 вызывают нагрев этих стенок 16 и 18, которые нагреваются также излучением плазмы, и что меньшая поверхность внутренней стенки 16 имеет температуру выше температуры наружной стенки 18 (разница температур превышает 100°С и составляет около 160°С).

Вследствие этого согласно изобретению упомянутая выше остаточная скорость завихрения также может добавляться или компенсировать скорость завихрения вследствие разницы температур между внутренней стенкой 16 и наружной стенкой 18. Разумеется, этот физический эффект вследствие разницы температур представляет собой только явление второго порядка по сравнению с основным явлением в отношении компенсации окружного отклонения ионов и молекул магнитным полем.

Вследствие этого согласно примеру осуществления изобретения по фиг.5-11 реактивный двигатель 10 содержит в верхней по потоку части выпускного канала 20 в направлении сверху вниз по потоку кольцевую распределительную полость 56, которая сообщается с трубопроводом 24 и ограничена между образующим распределитель анодом 50 и внутренней стенкой 16, кольцевую промежуточную полость 54, ограниченную между образующим распределитель анодом 50 и наружной стенкой 18, и кольцевую выходную полость 52, ограниченную между образующим распределитель анодом 50 и внутренней стенкой 16 и выходящую в зону 28 ионизации канала 20. При этом выходная полость 52 и распределительная полость 56 расположены с последовательным наложением одна за другой, а промежуточная полость 54 окружает распределительную полость 56 и выходную полость 52. Кроме того, проходные отверстия 55 соединяют распределительную полость 56 с промежуточной полостью 54, а ряд выходных отверстий 53 соединяет промежуточную полость 54 с выходной полостью 52, образуя в проекции на поперечную плоскость, перпендикулярную основной оси А, первый отличный от нуля угол β с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с указанным завихренным движением.

Таким образом, распределительная полость 56 и выходная полость 52 образуют внутренние полости, а промежуточная полость 54 является наружной полостью.

Указание на то, что полости наложены друг на друга, означает их последовательное расположение выше и ниже по потоку в направлении основной оси А.

Следует отметить, что поскольку распределительная полость 56 питается только через одно отверстие (впускное отверстие 25), давление и скорости в ней неравномерны. При этом в промежуточной полости 54 за счет ее объема и за счет подачи в нее газа через множество проходных отверстий 55 (в показанном примере выполнения через четыре проходных отверстия 55) давление и окружная скорость распределены более равномерно и она служит также успокоительной полостью.

В первом варианте выполнения по фиг.12 анод 50 имеет модифицированную форму. В данном случае реактивный двигатель 10 содержит в верхней по потоку части выпускного канала 20 в направлении сверху вниз по потоку кольцевую распределительную полость 56, которая сообщается с трубопроводом 24 и ограничена между образующим распределитель анодом 50 и внутренней стенкой 16, кольцевую промежуточную полость 54, ограниченную между образующим распределитель анодом 50 и наружной стенкой 18, и кольцевую выходную полость 52, ограниченную между образующим распределитель анодом 50 и внутренней стенкой 16 и выходящую в зону 28 ионизации канала 20. При этом промежуточная полость 54 окружает выходную полость 52, а выходная полость 52 и распределительная полость 56 расположены с наложением друг за другом. Кроме того, проходные отверстия 55 соединяют распределительную полость 56 с промежуточной полостью 54, а ряд выходных отверстий 53 соединяет промежуточную полость 54 с выходной полостью 52, образуя в проекции на поперечную плоскость, перпендикулярную основной оси А, первый отличный от нуля угол β с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с указанным завихренным движением.

В этом первом варианте по фиг.12 выходная полость 52 и распределительная полость 56 расположены с наложением друг за другом.

Таким образом, выходная полость 52 является внутренней полостью, промежуточная полость 54 является наружной полостью, а распределительная полость 56 образует полость, занимающую по существу все сечение выпускного канала 20.

Согласно второму варианту по фиг.13 анод 50 имеет другую модифицированную форму. В данном случае реактивный двигатель 10 содержит в верхней по потоку части выпускного канала 20 в направлении сверху вниз по потоку кольцевую распределительную полость 56, которая сообщается с трубопроводом 24 и ограничена между образующим распределитель анодом 50 и наружной стенкой 18, кольцевую промежуточную полость 54, ограниченную между образующим распределитель анодом 50 и внутренней стенкой 16, и кольцевую выходную полость 52, ограниченную между образующим распределитель анодом 50 и наружной стенкой 18 и выходящую в зону 28 ионизации канала 20. Кроме того, распределительная полость 56 и выходная полость 52 расположены с наложением друг за другом, а промежуточная полость 54 окружена распределительной полостью 56 и выходной полостью 52. Здесь также ряд проходных отверстий 55 соединяет распределительную полость 56 с промежуточной полостью 54, а ряд выходных отверстий 53 соединяет промежуточную полость 54 с выходной полостью 52, образуя в проекции на поперечную плоскость, перпендикулярную основной оси А, первый отличный от нуля угол β с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с указанным завихренным движением.

Таким образом, распределительная полость 56 и выходная полость 52 образуют наружные полости, а промежуточная полость 54 является внутренней полостью.

Следует отметить, что во втором варианте по фиг.13 выходные отверстия 53 допускают выход способного к ионизации газа в направлении наружной стенки 18 с завихренным движением.

При такой конфигурации в случае ориентации радиального магнитного поля В по фиг.2-4 происходит усугубление углового отклонения ионов под действием радиального магнитного поля. Если ориентация радиального магнитного поля В противоположна ориентации по фиг.1-4, ситуация модифицируется и происходит компенсация (полная или частичная) углового отклонения ионов под действием магнитного поля.

Во всех случаях предусмотрено, что стенка анода 50 проходит радиально над выходом выходных отверстий 53 для того, чтобы формировать защитную стенку 58, которая предотвращает или, по меньшей мере, ограничивает присутствие ионов и/или электронов вблизи выхода выходных отверстий 53. Благодаря этому выходные отверстия 53 защищены от засорения материалом (керамикой) от эрозии внутренней стенки 16 и наружной стенки 18.

Предпочтительно анод 50 и распределитель совмещены. Таким образом, эти две функции выполняются одной деталью или одной группой деталей.

Предпочтительно анод 50 представляет собой моноблок и изготовлен из углерода, что облегчает его установку на дне выпускного канала 20. Анод 50 может быть также сборным из нескольких деталей.

Далее, предпочтительно внутренняя стенка 16 и наружная стенка 18 изготовлены из керамики и герметично соединены с анодом 50.

В качестве примера керамическая деталь 19 изготовлена из нитрида бора и диоксида кремния (BNSiO2).

При использовании для анода 50 и для керамической детали 19 материалов, имеющих близкие коэффициенты теплового расширения, обеспечивается герметичная связь между анодом 50 и внутренней и наружной стенками 16, 18 на уровне полостей 52, 54 и 56.

Соединение анода 50 с внутренней и наружной стенками 16, 18 может производиться путем пайки в четырех кольцевых зонах 60 крепления (см. фиг.7, 12 и 13).

В примерах выполнения, иллюстрирующих решение уровня техники и решение по изобретению, анод и распределитель показаны в виде одной и той же детали (обозначенной позицией 26 на фиг.1-4 и позицией 50 на фиг.5-13). Однако следует заметить, что в пределах объема защиты изобретения эти две функции могут выполняться двумя независимыми деталями или двумя узлами. В этом случае анод и распределитель устанавливаются на дне выпускного канала, распределитель подсоединяется к трубопроводу подачи газа, а анод соединяется с источником тока.

1. Плазменный реактивный двигатель на основе эффекта Холла, содержащий окружающий основную ось (А) кольцевой выпускной канал (20), который имеет открытый нижний по потоку конец (20b) и ограничен внутренней стенкой (16) и наружной стенкой (18), по меньшей мере один катод (40), магнитный контур для создания магнитного поля в канале (20), трубопровод (24) для подачи способного к ионизации газа в канал (20), анод (50) и распределитель, расположенный в верхнем по потоку конце (20а) канала (20), причем распределитель соединен с трубопроводом (24) и обеспечивает течение способного к ионизации газа в зону (28) ионизации канала (20) по концентрической траектории вокруг основной оси (А), отличающийся тем, что анод (50) служит распределителем, причем распределитель (50) содержит направляющие средства (53), которые вызывают на выходе из распределителя (50) движение газа с завихрением вокруг основной оси (А), при этом направляющие средства содержат ряд выходных отверстий (53), выходящих на выход анода (50) вблизи зоны (28) ионизации канала (20), образуя в проекции на плоскость, поперечную основной оси (А), первый отличный от нуля угол (β) с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с указанным движением с завихрением, причем распределитель (50) совместно с внутренней стенкой (16) и наружной стенкой (18) ограничивает в направлении снизу вверх по потоку кольцевую выходную полость (52), которая выходит в зону (28) ионизации канала (20), и кольцевую промежуточную полость (54), по меньшей мере часть которой расположена концентрично по отношению к выходной полости (52), при этом выходные отверстия (53) соединяют промежуточную полость (54) с выходной полостью (52).

2. Плазменный реактивный двигатель по п.1, отличающийся тем, что распределитель (50) совместно с внутренней и наружной стенками дополнительно ограничивает выше по потоку от промежуточной полости (54) кольцевую распределительную полость (56), соединенную с одной стороны с трубопроводом (24) и с другой стороны с промежуточной полостью (54) посредством ряда проходных отверстий (55).

3. Плазменный реактивный двигатель по п.2, отличающийся тем, что проходные отверстия (55) образуют в проекции на плоскость, поперечную основной оси (А), второй отличный от нуля угол (γ) с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с движением с завихрением.

4. Плазменный реактивный двигатель по п.1, отличающийся тем, что первый угол (β) составляет от 20° до 70°.

5. Плазменный реактивный двигатель по п.4, отличающийся тем, что первый угол (β) составляет от 35° до 55°.

6. Плазменный реактивный двигатель по п.4, отличающийся тем, что первый угол (β) по существу равен 45°.

7. Плазменный реактивный двигатель по п.1, отличающийся тем, что выходные отверстия (53) обеспечивают выход способного к ионизации газа в направлении внутренней стенки (16).

8. Плазменный реактивный двигатель по п.1, отличающийся тем, что выходные отверстия (53) обеспечивают выход способного к ионизации газа в направлении наружной стенки (18).

9. Плазменный реактивный двигатель по п.1, отличающийся тем, что распределитель (50) содержит по меньшей мере четыре выходных отверстия (53), распределенных с равномерным угловым шагом вокруг основной оси (А).

10. Плазменный реактивный двигатель по п.1, отличающийся тем, что содержит в верхней по потоку части выпускного канала (20) в направлении сверху вниз по потоку кольцевую распределительную полость (56), соединенную с трубопроводом (24) и ограниченную распределителем (50) и внутренней стенкой (16), кольцевую промежуточную полость (54), ограниченную распределителем (50) и наружной стенкой (18), и кольцевую выходную полость (52), ограниченную распределителем (50) и внутренней стенкой (16) и выходящую в зону (28) ионизации канала (20), причем выходная полость (52) и распределительная полость (56) расположены с наложением друг за другом, а промежуточная полость (54) окружает распределительную полость (56) и выходную полость (52), при этом ряд проходных отверстий (55) соединяет распределительную полость (56) с промежуточной полостью (54), а ряд выходных отверстий (53) соединяет промежуточную полость (54) с выходной полостью (52), образуя в проекции на плоскость, поперечную основной оси (А), первый отличный от нуля угол (β) с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с указанным движением с завихрением.

11. Плазменный реактивный двигатель по п.1, отличающийся тем, что содержит в верхней по потоку части выпускного канала (20) в направлении сверху вниз по потоку кольцевую распределительную полость (56), соединенную с трубопроводом (24) и ограниченную распределителем (50) и внутренней стенкой (16), кольцевую промежуточную полость (54), ограниченную распределителем (50) и наружной стенкой (18), и кольцевую выходную полость (52), ограниченную распределителем (50) и внутренней стенкой (16) и выходящую в зону (28) ионизации канала (20), причем промежуточная полость (54) окружает выходную полость (52), выходная полость (52) и распределительная полость (56) расположены с наложением друг за другом, промежуточная полость (54) и распределительная полость (56) расположены с наложением друг за другом, при этом ряд проходных отверстий (55) соединяет распределительную полость (56) с промежуточной полостью (54), а ряд выходных отверстий (53) соединяет промежуточную полость (54) с выходной полостью (52), образуя в проекции на плоскость, поперечную основной оси (А), первый отличный от нуля угол (β) с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с указанным движением с завихрением.

12. Плазменный реактивный двигатель по п.1, отличающийся тем, что содержит в верхней по потоку части выпускного канала (20) в направлении сверху вниз по потоку кольцевую распределительную полость (56), соединенную с трубопроводом (24) и ограниченную распределителем (50) и наружной стенкой (18), кольцевую промежуточную полость (54), ограниченную распределителем (50) и внутренней стенкой (16), и кольцевую выходную полость (52), ограниченную распределителем (50) и наружной стенкой (18) и выходящую в зону (28) ионизации канала (20), причем распределительная полость (56) и выходная полость (52) расположены с наложением друг за другом, промежуточная полость (54) окружена распределительной полостью (56) и выходной полостью (52), при этом ряд проходных отверстий (55) соединяет распределительную полость (56) с промежуточной полостью (54), а ряд выходных отверстий (53) соединяет промежуточную полость (54) с выходной полостью (52), образуя в проекции на плоскость, поперечную основной оси (А), первый отличный от нуля угол (β) с радиальным направлением таким образом, чтобы ориентировать истечение газа в соответствии с указанным движением с завихрением.

13. Плазменный реактивный двигатель по п.1, отличающийся тем, что анод и распределитель (50) выполнены совмещенными.

14. Плазменный реактивный двигатель по п.13, отличающийся тем, что анод (50) выполнен в виде моноблока, выполненного по существу из углерода, а внутренняя стенка (16) и наружная стенка (18) изготовлены из керамики и герметично соединены с анодом (50).

15. Плазменный реактивный двигатель по п.3, отличающийся тем, что второй угол (γ) составляет от 20° до 70°.

16. Плазменный реактивный двигатель по п.3, отличающийся тем, что второй угол (γ) составляет от 35° до 55°.

17. Плазменный реактивный двигатель по п.3, отличающийся тем, что второй угол (γ) по существу равен 45°.



 

Похожие патенты:

Предлагаемое изобретение относится к области электроракетных двигателей. В двигателе с замкнутым дрейфом электронов, содержащем электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенную внутри него кольцевую разрядную камеру, закрепленную на фланце, подпружиненном относительно магнитопровода, фланец с закрепленной на нем кольцевой разрядной камерой соединен со стержнем, другой конец которого прикреплен к магнитопроводу, причем стержень выполнен из материала, обладающего скоростью ползучести, равной линейной скорости эрозии стенок разрядной камеры.

Изобретение относится к области создания электрических реактивных двигателей. Предлагается электрический ракетный двигатель небольшой мощности в качестве корректирующего для космического аппарата многолетнего использования с применением вместо газообразной составляющей твердого топлива в виде металла высокой плотности, преобразованного в плазменный сгусток, под действием электрического разряда.

Изобретение относится к космической технике и может быть использовано для коррекции космического аппарата (КА) с помощью электрореактивных плазменных двигателей (ЭРПД).

Изобретение относится к энергетике. Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет торообразную форму, причем катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, при этом их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя.

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться, в частности, в качестве электроракетного двигателя. Катод (1) и два электрически изолированных анода (2, 3) образуют ускорительный канал эрозионного импульсного плазменного ускорителя (ЭИПУ).

Ускоритель плазмы предназначен для получения тяги при перемещении космических объектов и в технологии для получения композитных порошков, напыления и обработки материалов.

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя.

Группа изобретений относится к ионному двигателю (ИД) для космического аппарата и способу его эксплуатации. ИД (1) включает в себя ионизационную камеру (2) с высокочастотным генератором (4) ионизирующего электромагнитного поля.

Изобретение относится к плазменному маневровому реактивному двигателю на основе эффекта Холла, используемому для перемещения спутников с помощью электричества. Плазменный реактивный двигатель на основе эффекта Холла содержит основной кольцевой канал ионизации и ускорения.

Изобретение относится к области электрореактивных двигателей, а именно, к широкому классу плазменных ускорителей (холловских, ионных, магнитоплазмодинамических и др.), использующих в своем составе катоды.

Предлагаемое изобретение относится к области электроракетных двигателей, в частности к системам хранения и подачи в них рабочего тела (иода). В системе хранения и подачи иода, содержащей снабженную нагревателем цилиндрическую емкость с иодом, которая сообщена с электроракетным двигателем трубопроводом с клапаном, на днище внутри цилиндрической емкости со стороны трубопровода установлена пористая шайба, контактирующая с кристаллическим иодом, причем цилиндрическая емкость со стороны, противоположной трубопроводу, содержит фланец и подпружиненный относительно него поршень, контактирующий с другой стороны с кристаллическим иодом, при этом нагреватель снабжен электрической изоляцией, контактирующей снаружи с днищем емкости со стороны трубопровода. Причем в системе подачи иода поршень выполнен составным в виде наружного стакана, контактирующего с цилиндром емкости, и вставленного в него внутреннего стакана, при этом днища стаканов обращены в разные стороны и между его днищами установлена пружина. Изобретение направлено на обеспечение стабильной подачи иода при любом расположении цилиндрической емкости в условиях гравитации и микрогравитации. 1 з.п. ф-лы, 2 ил.

Изобретение находит использование в спутнике. Электроракетная двигательная установка содержит, по меньшей мере, один электродвигатель (10), систему питания двигателя (10), содержащую резервуар (1) высокого давления для ионизируемого газа, буферный резервуар (2) низкого давления, связанный с резервуаром (1) высокого давления с помощью клапана (5, 6), и систему трубопроводов для передачи газа от буферного резервуара (2) низкого давления к аноду (26) и катоду (40) двигателя. Буферный резервуар (2) низкого давления находится в открытом сообщении с двигателем (10). Электроракетная двигательная установка содержит средства для обнаружения того, что сила тока разряда между анодом (26) и катодом (40) ниже пороговой величины, и для отсечения напряжения разряда в результате этого обнаружения. 3 н. и 4 з.п. ф-лы, 8 ил.

Изобретение относится к средствам управления электрическими ракетными двигателями с индукционным возбуждением разряда в газоразрядной камере. Устройство генерации ВЧ энергии содержит микроконтроллер (8), усилитель мощности (3) и источник (6) электропитания усилителя мощности. Микроконтроллер (8) выполнен с аналого-цифровым преобразователем входных управляющих сигналов, цифроаналоговым преобразователем выходных сигналов и тактовым генератором сигнала с перестраиваемой частотой. Выходы усилителя мощности (3) соединены через линию связи с устройством ввода энергии (1), которое выполнено в виде индуктора. Устройство (1) установлено с внешней стороны стенок газоразрядной камеры (2). В линию связи с устройством ввода энергии (1) включены датчики тока (4) и напряжения (5). Выходы датчиков подключены к входам фазового детектора (7) и к сигнальным входам микроконтроллера (8). Выход фазового детектора (7) подключен к сигнальному входу микроконтроллера (8). Электропитание нейтрализатора (11) пространственного заряда ионного потока и входящего в его состав термоэмиссионного катода осуществляется с помощью источников (13) и (14). Положительный полюс источника напряжения (19) и отрицательный полюс источника напряжения (17) раздельно подключены через датчики тока (25) и (26) к общему выводу системы электропитания двигателя. Расход рабочего газа, подаваемого в газоразрядную камеру и в камеру нейтрализатора, регулируется с помощью двух независимо управляемых регуляторов. Электропитание регуляторов расхода газа осуществляется с помощью управляемых источников тока. Технический результат заключается в повышении эффективности двигателя, расширении диапазона регулирования тяги при высоком удельном импульсе и повышении стабильности тяги за счет автоматического поддержания расчетных значений токов и напряжений в цепях питания узлов и блоков двигателя в процессе его длительной эксплуатации. 6 з.п. ф-лы, 2 ил.

Изобретение относится к реактивному двигателю (1) на основе эффекта Холла. Двигатель содержит разрядный канал (50) с открытым, нижним по потоку концом (52), катод (100), расположенный снаружи разрядного канала (50), инжекционную систему (30) для инжекции атомов газа в разрядный канал (50), которая расположена на верхнем по потоку конце разрядного канала (50) и которая формирует анод, и нагреватель (60) для нагрева катода (100). Реактивный двигатель (1) также содержит измерительные средства (70) для измерения температуры Td нагревателя (60) и цепь регулятора (80) для регулирования температуры Td таким образом, чтобы нагреватель (60) осуществлял нагрев, только пока его температура Td меньше пороговой температуры Ts, начиная от которой возможен запуск реактивного двигателя, и прекращал нагрев сразу после достижения пороговой температуры Ts. Использование изобретение позволяет повысить срок работы катода и срок эксплуатации ракетного двигателя. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к области электроракетных двигателей. В крупногабаритном ионном двигателе, содержащем заключенную в корпус газоразрядную камеру, включающую узел подачи рабочего тела, ионно-оптическую систему, состоящую из плазменного и ускоряющего электродов, закрепленных на наружной стенке корпуса и изолированных от него и друг от друга, и катод-нейтрализатор, закрепленный на корпусе, вдоль центральной оси корпус имеет внутреннюю стенку, образующую сквозное отверстие, в котором установлен катод-нейтрализатор. Электроды ионно-оптической системы выполнены в виде колец, внутренние периметры которых закреплены на внутренней стенке корпуса и изолированы друг от друга и от него. Причем газоразрядная камера содержит, по крайней мере, один кольцевой магнитопровод и кольцевую разрядную камеру, узел подачи рабочего тела которой выполнен в виде установленного внутри нее кольцевого анода - газораспределителя. Разрядная камера размещена внутри охватывающего ее кольцевого магнитопровода, полюса которого охватывают кольца разрядной камеры, причем магнитопровод снабжен магнитом, например соленоидальным электромагнитом. Техническим результатом предлагаемого изобретения является то, что источник ионов, выполненный по предложенной схеме с замкнутым дрейфом электронов, имеет коэффициент использования рабочего тела порядка 1. Это практически позволяет избежать обратного тока ионов на ИОС, что приведет к значительному увеличению ресурса ионного двигателя. 2 з.п. ф-лы, 1 ил.

Способ создания электрореактивной тяги может быть применен в электрореактивных двигателях и источниках электроэнергии для аэрокосмических транспортных средств и аппаратов. Способ заключается в формировании потока продуктов сгорания углеводородного, химического или ядерного топлива, движущегося с заданной скоростью в магнитном поле, вектор индукции которого ортогонален вектору скорости потока продуктов сгорания, затем поток продуктов сгорания разделяют на пучок катионов и пучок электронов, причем энергию пучка электронов преобразовывают в дополнительную электрическую мощность, направляемую на ускорение пучка катионов, который создает реактивную тягу, пропорциональную кинетической энергии ускоренного пучка. Заявленный способ повышает КПД системы электропитания, экономит топливо и другие расходные материалы, увеличивает коэффициент полезной загрузки, радиус действия и срок жизни летательного аппарата. 1 ил.

Изобретение относится к двигательным установкам (ДУ) малой тяги для коррекции орбит космических аппаратов (КА). ДУ содержит размещенные друг над другом ускорители плазмы (УП) с ускоряющими электродами: катодом (3) и анодом (4), а также узлами подачи рабочего тела: шашек (7), снабженных пружинными толкателями (8). Для инициирования плазмообразующего разряда служат электроды (9) в отверстии катода (3). Между электродами (3, 4) выполнен торцевой керамический изолятор (ТКИ). С электродами связан через анодную и катодную шины (на панели (15)) блок (13) накопительных конденсаторов (14). Отвод тепла от УП осуществляется тепловыми трубами (ТТ). Испарительная часть (22) ТТ примыкает к электродам (3, 4) и ТКИ, а конденсационная часть (23) ТТ закреплена на раме крепления ДУ к корпусу КА. В окне этой рамы размещена теплонапряженная плоская стенка блока питания и управления. Техническим результатом изобретения является повышение надежности и тяговой эффективности ДУ за счет улучшенной системы теплоотвода. 6 з.п. ф-лы, 5 ил.

Изобретение относится к области ракетных двигателей, в частности к ракетным двигателям с центральным телом с вихревым процессом горения, и может быть использовано в ракетно-космической технике. Способ формирования тяги двигателя с центральным телом, включающий подачу горючего и окислителя в камеру сгорания с созданием за центральным телом вихревой зоны, при этом в вихревую зону под давлением тангенциально подают мелкодисперсную фракцию воды или воды с добавлением органического вещества, создавая осевую закрутку смеси газов горения и, как следствие, вихревой поток холодной неравновесной пульсирующей плазмы, создавая дополнительную тягу двигателя. Предложен также двигатель с центральным телом для реализации способа, содержащий камеру сгорания и сопло, при этом на центральном теле выполнены винтовые канавки, введена емкость с водой или водой с добавлением органического вещества, сообщенная с помощью трубопровода с насосом, расположенным внутри центрального тела, который в свою очередь с помощью распределительных патрубков сообщен через коллектор с винтовыми канавками с помощью форсунок, открытые торцы которых расположены на внешней поверхности центрального тела, на торцевой плоскости которого установлены игольчатые термокатоды, обеспечивающие термоэмиссию. Изобретение обеспечивает увеличение тяги. 2 н.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Способ запуска стационарного плазменного двигателя, при котором подачу напряжения разряда на катод и анод двигателя выполняют не до подачи поджигных импульсов, а после завершения нагрева катода, открытия клапанов двигателя и подачи поджигных импульсов. При этом достигается уменьшение, вплоть до полного устранения, броска тока в разрядной цепи двигателя и, соответственно, на первичной шине питания систем преобразования и управления стационарными плазменными двигателями. Изобретение позволяет снизить нагрузку на функциональные элементы системы электропитания и систем преобразования и управления стационарными плазменными двигателями. 2 табл., 9 ил.

Изобретение относится к космической технике, к классу электрореактивных двигателей. Двигатель содержит автономный источник низкотемпературной плазмы, систему улавливания нейтральных частиц и регенерации ионов, разделитель потоков электронов и ионов, плазменный ускоритель. Плазменный ускоритель представляет собой асинхронный циклотрон, разделенный вдоль на дуанты двумя соосными парами параллельных сеток с зазорами, создающими однородные, равные и постоянные ускоряющие электрические поля взаимно противоположного направления векторов напряженности, имеющий выходные газовые каналы плазменного ускорителя - основные переходники-ферромагнетики с соленоидами; выходные прямые газовые диэлектрические каналы двигателя, соединенные с основными переходниками через пропускные электроклапаны, а между собой - переходниками-ферромагнетиками с соленоидами. Магнитное поле внутри плазменного ускорителя создается группой соленоидов, размещенных внутри цилиндрического ферромагнетика, частью своей являющегося цилиндрической стенкой плазменного ускорителя. Техническим результатом изобретения является увеличение удельного импульса тяги с сохранением и возможным уменьшением массогабаритных характеристик двигательных установок при относительно невысокой мощности энергопотребления. 2 з.п. ф-лы, 3 ил.
Наверх