Шпиндельный узел (варианты)

Заявляемое изобретение может быть использовано в машиностроении, например для высокоскоростного шлифования отверстий шлифовальными кругами с нанесенным монослоем сверхтвердого абразива. Технической задачей заявляемого изобретения является достижение осевой осцилляции инструмента с частотой 3÷4 кГц и более при амплитуде не менее 10÷20 мкм за счет генерации собственных продольных волн шпинделя и резонансной концентрации их локальной амплитуды на переднем конце шпинделя. Для достижения поставленной задачи предлагаются варианты шпиндельного узла, содержащего корпус, шпиндель, гидростатическую опору, привод вращения и привод осевой осцилляции шпинделя, состоящий из генератора частоты собственных продольных волн шпинделя и резонансного концентратора их локальной амплитуды. 4 н.п. ф-лы, 4 ил.

 

Заявляемое изобретение может быть использовано в машиностроении, например, при высокоскоростной обработке отверстий малого диаметра шлифовальным инструментом с нанесенным монослоем сверхтвердого абразива (кубический нитрид бора и др.), который не подлежит правке при износе и «засаливании». Повышению стойкости такого инструмента и качества шлифования способствует высокочастотная осевая микро-осцилляция шпинделя.

Известен шпиндельный узел [а.с. СССР №966330, кл. F15B 15/02], в котором вынужденные осевые колебания шпинделя создаются за счет перекоса рабочих поверхностей осевой гидростатической опоры. В этом случае частота осевых колебаний равна частоте вращения шпинделя и не превышает 0,2÷0,4 кГц. Амплитуда вынужденных осевых колебаний не превышает нескольких микрометров из-за малого осевого зазора и высокого демпфирования осевой гидростатической опоры, а также инерции шпинделя.

Недостатком данного решения является то, что диапазон частот такого привода микроосциляции не превышает 0,1÷0,2 кГц из-за большой инерции шпинделя и высокого демпфирования осевых гидростатических опор.

Известны устройства для динамического дробления стружки при токарной обработке [а.с. СССР №778938, кл. B23B 25/02; а.с. СССР №874263 СССР, кл. B23B 25/02], содержащие шпиндель, установленный в гидростатических опорах; генератор колебаний, корпус которого взаимодействует с вращающимся торцовым кулачком; оппозитные сопла, расположенные в полости корпуса и сообщающиеся с карманами осевой гидростатической опоры; регулируемый двуплечий рычаг, одно плечо которого расположено между соплами, а второе прижато к торцу шпинделя. При вращении кулачка корпус генератора с соплами колеблется относительно двуплечего рычага, расход рабочей жидкости, поступающей через сопла в несущие карманы осевой гидростатической опоры, периодически изменяется и шпиндель совершает вынужденные осевые колебания. Второе плечо двуплечего рычага позволяет обеспечить необходимую осевую жесткость нагруженного шпинделя. Из-за недостаточного быстродействия механических звеньев и других указанных выше причин такое устройство также не позволяет получить высокочастотные осевые колебания шпинделя.

Недостатком данного решения является то, что из-за недостаточного быстродействия механических звеньев и других указанных выше причин также не позволяют получить высокочастотные осевые колебания шпинделя.

Наиболее близким аналогом заявляемого изобретения является шпиндельный узел [а.с. СССР №848146, кл. B23B 19/00], содержащий шпиндель, установленный в гидростатических опорах, систему управления, состоящую из преобразователя, устройства сравнения, усилителя и регулятора типа сопло-заслонка, активным элементом которого является пакет пьезопластин. Одна или несколько пьезопластин подключены к входу усилителя и преобразуют изменение разности давления рабочей жидкости в оппозитных несущих карманах в электрический сигнал, пропорциональный изменению нагрузки на шпиндель. Вторая часть пьезопластин соединена с выходом усилителя и осуществляет микроперемещение заслонки регулятора. Такое техническое решение позволяет целенаправленно управлять нагнетанием рабочей жидкости в карманы гидростатических опор, чтобы получить положительную, нулевую или отрицательную податливость шпинделя в радиальном и осевом направлении. Однако оно также не позволяет получить необходимую частоту и амплитуду осевой осцилляции шпинделя.

Недостатком данного решения является то, что оно не позволяет получить необходимую высокочастотную осевую осцилляцию шпинделя.

Технической задачей заявляемого изобретения является достижение осевой осцилляции шпинделя с частотой 3÷4 кГц и более при амплитуде не менее 10÷20 мкм на основе генерации собственных продольных волн шпинделя и резонансной концентрации их локальной амплитуды на переднем конце шпинделя.

Частоту собственных продольных волн шпинделя можно определить по формуле

где l, E и ρ - длина, модуль упругости и плотность материала шпинделя, k - порядковый номер гармоники собственных продольных волн [Справочник в 3-х томах под общей ред. А.И. Биргера и Я.Г. Пановко. // М.: Машиностроение. Т. 3, 1968. - 567 с. 288÷290]. При реальном значении параметров шпиндельного узла значение ω0 может составлять 4÷6 кГц при k=1, 12÷18 кГц при k=2, 20÷30 кГц при k=3. Использование конического резонансного концентратора позволяет увеличить локальную амплитуду собственных продольных волн на переднем конце шпинделя пропорционально квадрату отношения большего и меньшего диаметра конуса. В результате локальная амплитуда на переднем конце шпинделя может достигать 20÷30 мкм.

Для достижения поставленной задачи предлагаются четыре варианта:

Вариант 1. Шпиндельный узел, содержащий корпус, шпиндель, гидростатическую опору с несущими карманами, привод вращения и привод осевой осцилляции шпинделя, в котором согласно изобретению привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, для чего генератор частоты содержит нагружающий стакан, наружный торец которого соединен с корпусом узла через пакет пьезопластин, соединенных с частотным преобразователем электрического тока, внутренняя цилиндрическая поверхность нагружающего стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец нагружающего стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, передняя часть шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу шпинделя, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.

Вариант 2. Шпиндельный узел, содержащий корпус, шпиндель, гидростатическую опору с несущими карманами, привод вращения и привод осевой осцилляции шпинделя, в котором согласно изобретения, привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, для чего генератор частоты содержит нагружающий стакан, наружный торец которого неподвижно соединен с корпусом узла, внутренняя цилиндрическая поверхность нагружающего стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец нагружающего стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией через дросселирующий зазор между внешним торцом стакана и пакетом пьезопластин, соединенных с частотным преобразователем электрического тока, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.

Вариант 3. Шпиндельный узел, содержащий корпус, шпиндель, гидростатическую опору, привод вращения и привод осевой осцилляции шпинделя, в котором согласно изобретения, привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, для чего генератор частоты содержит неподвижный нагружающий стакан, внутренняя цилиндрическая поверхность которого охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, на сопряженных цилиндрических поверхностях стакана и шпинделя выполнены канавки, которые при вращении шпинделя периодически соединяют нагружающую камеру с дренажной полостью, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу шпинделя, а гидростатическая опора выполнена конической, гидравлически соединена с гидростанцией и расположена в передней части шпинделя.

Вариант 4. Шпиндельный узел, содержащий корпус, шпиндель, гидростатическую опору, привод вращения и привод осевой осцилляции шпинделя, в котором согласно изобретению привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, для чего генератор частоты содержит неподвижный нагружающий стакан и электромагнитную катушку, внутренняя цилиндрическая поверхность стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, а внутренний торец стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, электромагнитная катушка, которая охватывает с радиальным зазором свободную заднюю часть шпинделя и соединена с частотным преобразователем электрического тока, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.

От известных предлагаемый шпиндельный узел по 1 варианту отличается тем, что привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, для чего генератор частоты содержит нагружающий стакан, наружный торец которого соединен с корпусом узла через пакет пьезопластин, соединенных с частотным преобразователем электрического тока, внутренняя цилиндрическая поверхность нагружающего стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец нагружающего стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, передняя часть шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу шпинделя, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.

От известных предлагаемый шпиндельный узел по 2 варианту отличается тем, что привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, для чего генератор частоты содержит нагружающий стакан, наружный торец которого неподвижно соединен с корпусом узла, внутренняя цилиндрическая поверхность нагружающего стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец нагружающего стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией через дросселирующий зазор между внешним торцом стакана и пакетом пьезопластин, соединенных с частотным преобразователем электрического тока, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.

От известных предлагаемый шпиндельный узел по 3 варианту отличается тем, что привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, для чего генератор частоты содержит неподвижный нагружающий стакан, внутренняя цилиндрическая поверхность которого охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, на сопряженных цилиндрических поверхностях стакана и шпинделя выполнены канавки, которые при вращении шпинделя периодически соединяют нагружающую камеру с дренажной полостью, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу шпинделя, а гидростатическая опора выполнена конической, гидравлически соединена с гидростанцией и расположена в передней части шпинделя.

От известных предлагаемый шпиндельный узел по 4 варианту отличается тем, что привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, для чего генератор частоты содержит неподвижный нагружающий стакан и электромагнитную катушку, внутренняя цилиндрическая поверхность стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, а внутренний торец стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, электромагнитная катушка, которая охватывает с радиальным зазором свободную заднюю часть шпинделя и соединена с частотным преобразователем электрического тока, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.

На фиг.1 показан шпиндельный узел для варианта 1.

В корпусе 1 шпиндельного узла неподвижно установлена коническая гидростатическая опора 2, которая воспринимает радиальную, осевую и угловую нагрузку шпинделя 3, имеет на рабочей поверхности два ряда несущих карманов 4, расположенных по окружности и ограниченных по периферии перемычками, образующими со шпинделем выходные дросселирующие щелевые зазоры 5. Каждый несущий карман через входной дросселирующий щелевой зазор 6 соединен с гидростанцией, нагнетающей рабочую жидкость под давлением pн (на фиг. 1 не показана).

Привод вращения шпинделя выполнен в виде встроенного асинхронного электродвигателя, который имеет ротор 7, установленный на шпинделе 3, и статор 8, установленный в корпусе 1 узла. Электромагнитные обмотки статора электрически соединены с регулируемым частотным преобразователем переменного тока (на фиг. 1 не показан).

Генератор частоты собственных продольных волн шпинделя имеет нагружающий стакан 9, выполненный с дренажной кольцевой камерой 10, наружный торец которого соединен с корпусом 1 узла через пакет пьезопластин 11, электрически соединенных с частотным преобразователем переменного тока (на фиг. 1 не показан). Внутренняя поверхность нагружающего стакана 9 охватывает задний конец шпинделя 3 и образует радиальный дросселирующий зазор 12, и нагружающую камеру 13, которая гидравлически соединена с гидростанцией, нагнетающей рабочую жидкость под давлением pн (на фиг. 1 не показана). Для статического равновесия действующих на шпиндель осевых сил необходим диаметр задней части шпинделя где dmax и dmin - максимальный и минимальный диаметр рабочей поверхности конической гидростатической опоры.

На фиг.2 показан шпиндельный узел для варианта 2, в котором нагружающая камера 13 соединена с гидростанцией, нагнетающей рабочую жидкость под давлением pн (на фиг. 2 не показана) через дросселирующий зазор 14 между внешним торцом стакана и пакетом пьезопластин 11, соединенных с частотным преобразователем электрического тока (на фиг. 2 не показан).

На фиг. 3 показан шпиндельный узел для варианта 3, в котором нагружающая камера 13 соединена с гидростанцией (на фиг 3 не показана). На внутренней цилиндрической поверхности нагружающего стакана выполнены канавки 15, выходящие в дренажную полость 10. На цилиндрической поверхности шпинделя, охватываемой нагружающим стаканом, выполнены канавки 16, выходящие в нагружающую камеру 13.

На фиг. 4 показан шпиндельный узел для варианта 4, в котором генератор частоты имеет электромагнитную катушку 17. Катушка соединена с частотным преобразователем переменного тока (на фиг. 4 не показан), неподвижно установлена в корпусе 1 узла и охватывает с радиальным зазором заднюю часть шпинделя.

Предлагаемые варианты шпиндельного узла работают следующим образом.

Вариант 1. Пьезопластины 11 сообщают нагружающему стакану 9 осевую осцилляцию с частотой ω0, которая через рабочую жидкость нагружающей камеры 13 передается шпинделю 3. В результате генерируются резонансные собственные продольные волны шпинделя, амплитуда которых может достигать 3÷5 мкм. Конический резонансный концентратор позволяет увеличить локальную амплитуду на переднем торце шпинделя до 20÷30 мкм.

Коническая передняя часть шпинделя 3, диаметр которой уменьшается к переднему торцу шпинделя, является резонансным концентратором локальной амплитуды собственных продольных волн. Локальная амплитуда собственных продольных волн на переднем конце шпинделя увеличивается пропорционально квадрату отношения большего и меньшего диаметра конуса.

Радиальную стабилизацию задней части шпинделя при высокой частоте вращения дополнительно обеспечивает гироскопический эффект и гидродинамический эффект рабочей жидкости в радиальном дросселирующем зазоре 12.

Вариант 2. При работе шпиндельного узла управляемый пакет пьезопластин 11 периодически изменяет с частотой ω0 дросселирующий зазор 14 и давление рабочей жидкости в нагружающей камере 13, которое действует на задний торец шпинделя и генерирует его собственные продольные волны. Конический резонансный концентратор увеличивает локальную амплитуду собственных продольных волн на переднем конце шпинделя.

Вариант 3. При вращении шпинделя канавки 15 и 16 периодически соединяют нагружающую камеру 13 с дренажной кольцевой камерой 10. В результате давление рабочей жидкости в нагружающей камере 13 периодически изменяется и создает переменную осевую нагрузку на задний торец шпинделя, вызывая его вынужденные осевые колебания с частотой ω=n·k, где n - частота вращения шпинделя в с-1, k - число соединений канавок за один оборот шпинделя. Изменением n можно обеспечить резонанс частот ω, ω0, то есть генерировать собственные продольные волны шпинделя, амплитуда которых зависит от давления pн. Конический резонансный концентратор дополнительно увеличивает локальную амплитуду на переднем торце шпинделя, а резонансная частота собственных продольных волн настраивается изменением частоты вращения шпинделя.

Вариант 4. Электромагнитная катушка 17 создает магнитное поле, интенсивность которого изменяется с частой ω0. В результате магнитострикционного эффекта генерируются резонанс собственных продольных волн шпинделя. Конический резонансный концентратор дополнительно увеличивает локальную амплитуду на переднем торце шпинделя.

Применение данного изобретения дает возможность достижения осевой осцилляции шпинделя с частотой не менее 3÷4 кГц при амплитуде 20÷30 мкм за счет генерации резонансной частоты и локальной концентрации амплитуды собственных продольных волн шпинделя.

1. Шпиндельный узел, содержащий корпус, шпиндель, гидростатическую опору с несущими карманами, привод вращения и привод осевой осцилляции шпинделя, отличающийся тем, что привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, при этом генератор частоты содержит нагружающий стакан, наружный торец которого соединен с корпусом узла через пакет пьезопластин, соединенных с частотным преобразователем электрического тока, внутренняя цилиндрическая поверхность нагружающего стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец нагружающего стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, передняя часть шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу шпинделя, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.

2. Шпиндельный узел, содержащий корпус, шпиндель, гидростатическую опору с несущими карманами, привод вращения и привод осевой осцилляции шпинделя, отличающийся тем, что привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, при этом генератор частоты содержит нагружающий стакан, наружный торец которого неподвижно соединен с корпусом узла, внутренняя цилиндрическая поверхность нагружающего стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец нагружающего стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией через дросселирующий зазор между внешним торцом стакана и пакетом пьезопластин, соединенных с частотным преобразователем электрического тока, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.

3. Шпиндельный узел, содержащий корпус, шпиндель, гидростатическую опору с несущими карманами, привод вращения и привод осевой осцилляции шпинделя, отличающийся тем, что привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, при этом генератор частоты содержит неподвижный нагружающий стакан, внутренняя цилиндрическая поверхность которого охватывает задний конец шпинделя с радиальным дросселирующим зазором, внутренний торец стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, на сопряженных цилиндрических поверхностях стакана и шпинделя выполнены канавки, которые при вращении шпинделя периодически соединяют нагружающую камеру с дренажной полостью, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу шпинделя, а гидростатическая опора выполнена конической, гидравлически соединена с гидростанцией и расположена в передней части шпинделя.

4. Шпиндельный узел, содержащий корпус, шпиндель, гидростатическую опору с несущими карманами, привод вращения, привод осевой осцилляции шпинделя, отличающийся тем, что привод осевой осцилляции шпинделя состоит из генератора частоты собственных продольных волн шпинделя и резонансного концентратора локальной амплитуды собственных продольных волн на переднем конце шпинделя, при этом генератор частоты содержит неподвижный нагружающий стакан и электромагнитную катушку, внутренняя цилиндрическая поверхность стакана охватывает задний конец шпинделя с радиальным дросселирующим зазором, а внутренний торец стакана образует с задним торцом шпинделя нагружающую камеру, соединенную с гидростанцией, электромагнитная катушка, которая охватывает с радиальным зазором свободную заднюю часть шпинделя и соединена с частотным преобразователем электрического тока, передний конец шпинделя имеет форму усеченного конуса, диаметр которого уменьшается к переднему торцу, а гидростатическая опора выполнена конической и расположена в передней части шпинделя.



 

Похожие патенты:

Изобретение относится к области абразивной обработки и может быть использовано в ручных угловых машинах, предназначенных для обработки камня. Шлифовальная головка содержит корпус, приводной вал и конический редуктор с двумя ведомыми зубчатыми колесами, закрепленными на соосно установленных вертикальном валу и втулке.

Изобретение относится к машиностроению и может быть использовано в торцешлифовальных станках. Устройство содержит установленный в консоли станка с возможностью вращения от привода корпус с закрепленным на нем внешним шлифовальным кругом, чашечные шлифовальные круги-сателлиты, установленные в корпусе и закрепленные на осях с шестернями, находящимися в зацеплении с опорным зубчатым колесом.

Изобретение относится к машиностроению и может быть использовано при изготовлении плоскошлифовальных машин для шлифования древесины в горизонтальной плоскости с максимальным выравниванием древесины разных пород и разной плотности.

Изобретение относится к области машиностроения, преимущественно может быть использовано в машинах и аппаратах с вращающимися деталями. .

Шпиндель // 2370344
Изобретение относится к машиностроению, а именно к шпинделям со встроенным электродвигателем и магнитными подшипниками вала, и может быть использовано для оснащения обрабатывающих станков, в центрифугах и различных центробежных установках.

Изобретение относится к машиностроению и может быть использовано в прецизионных станках и для создания станков с управляемым натягом в опорах шпинделей. .

Изобретение относится к металлообработке и может быть использовано при абразивной обработке плоских поверхностей. .

Изобретение относится к обработке металлов резанием и может быть использовано при шлифовании деталей с наружными эллиптическими поверхностями. .

Изобретение относится к обработке металлов резанием и может быть использовано при шлифовании деталей с наружными эллиптическими поверхностями. .

Изобретение относится к обработке металлов резанием и может быть использовано при шлифовании деталей с отверстиями с криволинейными эллиптическими поперечными сечениями.

Передача содержит вал электродвигателя, выполненный с возможностью передачи движения на шпиндельный узел станка со шпинделем, при этом вал электродвигателя выполнен со сквозным отверстием, в котором установлен шпиндель с возможностью движения вдоль его оси.

Способ включает установку шпинделя внутри корпуса шпиндельного узла станка и закрепление посредством фланца с возможностью вращения в передних и задних подшипниковых опорах.

Изобретение относится к области машиностроения, в частности к шпинделям высокоскоростных обрабатывающих станков. .

Изобретение относится к металлообрабатывающей промышленности, в частности к токарным станкам, и может быть использовано для автоматической балансировки шпиндельных узлов.

Изобретение относится к области машиностроения, а именно к шпиндельным узлам. .

Изобретение относится к области станкостроения, в частности к элементам металлообрабатывающих станков. .

Изобретение относится к станкостроению, а именно к быстроходным токарным станкам с полым шпинделем, на которых возможна обработка длинных цилиндрических деталей небольшого диаметра, например труб, валов, осей, при их подаче в зону обработки через полый шпиндель.

Изобретение относится к области станкостроения и может быть использовано в металлорежущих станках сверлильно-фрезерно-расточной группы для выполнения сверлильно-фрезерно-расточных и токарных операций на вращающемся столе.

Шпиндель // 2370344
Изобретение относится к машиностроению, а именно к шпинделям со встроенным электродвигателем и магнитными подшипниками вала, и может быть использовано для оснащения обрабатывающих станков, в центрифугах и различных центробежных установках.

Изобретение относится к области деревообрабатывающей промышленности, шпинделям фрезерных станков. .

Устройство блокирования шпинделя предназначено для установки в корпусе шпиндельной бабки между шпиндельным узлом и силовым цилиндром. Плиту устанавливают на корпусе шпиндельной бабки, с закрепленной на ней направляющей, по которой перемещается каретка со шпиндельным стопором, выполненным в виде Г-образного кронштейна. Ориентированный к реборде шкива конец длинной части Г-образного кронштейна соединен с фиксатором. Фиксатор имеет канал для обдувания сжатым воздухом инструментального конуса, горизонтальную поверхность для отжима инструмента и выступы, выполненные для перемещения в сквозных проходных прорезях реборды и имеющие возможность взаимодействия с остановочными пазами реборды. Технический результат: упрощение конструкции и расширение технологических возможностей. 9 з.п. ф-лы, 2 ил.
Наверх