Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия содержит первый источник излучения и первый приемник излучения. Дополнительно введены второй источник излучения, второй, третий и четвертый приемники излучения, первый и второй корреляторы, вычислитель, первая и вторая пара электродов для приложения электрических полей к контролируемому изделию. При этом выход первого приемника соединен с первым входом первого коррелятора, второй вход которого подключен к выходу четвертого приемника, выход третьего приемника соединен с первым входом второго коррелятора, второй вход которого подключен к выходу второго приемника, выход первого коррелятора соединен с первым входом вычислителя, второй вход которого подключен к выходу второго коррелятора, выход вычислителя является выходом устройства. 1 ил.

 

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство измерения формы цилиндра лазерным доплеровским методом (Белоусова О.П., Белоусов П.П., Белоусов П.Я. «Измерение формы цилиндра лазерным доплеровским методом». Материалы 11-ой Международной научно-технической конференции «Оптические методы исследования потоков (ОМИП)», Москва, 27-30 июня 2011 г., Издательский дом МЭИ, 2011 г.; стр.9). Оптический метод измерения формы цилиндра, описанный в этом техническом решении, основан на измерении линейной скорости цилиндра, катящегося по ровным направляющим опорам. Согласно этому методу, определение зависимости радиуса цилиндра от полярного угла дает возможность измерить малые отклонения формы направляющей от круглой. Устройство предназначено для диагностики формы круглых объектов в механике.

Недостатком этого известного устройства является сложность измерения доплеровской частоты, связанной с линейной скоростью катящегося по ровным направляющим опорам цилиндра при его вибрации.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для бесконтактного измерения геометрических параметров цилиндрических изделий (патент №2178140, МПК G01B 11/30, 10.01.2002). В этом устройстве, содержащем источник лазерного излучения, фотоприемник, измерители диаметров и высоты, буферный запоминающий блок, блоки аналого-цифрового преобразователя и цифровой обработки, соединенные последовательно с компьютером, при облучении поверхности контролируемого изделия, принимается отраженный от поверхности изделия сигнал и после обработки этого сигнала в компьютере с учетом трех измерений диаметра и отклонения прямолинейности, а также одного измерения диаметра изделия, выдается информация о геометрическом параметре цилиндрического изделия.

Недостатком данного устройства можно считать сложность процедуры обработки информационных сигналов о геометрических параметрах контролируемого изделия.

Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия.

Технический результат достигается тем, что устройство для определения внешнего объема цилиндрического полого изделия содержит первый источник излучения и первый приемник излучения, введены второй источник излучения, второй, третий и четвертый приемники излучения, первый и второй корреляторы, вычислитель, первая и вторая пара электродов для приложения электрических полей к контролируемому изделию, причем выход первого приемника соединен с первым входом первого коррелятора, второй вход которого подключен к выходу четвертого приемника, выход третьего приемника соединен с первым входом второго коррелятора, второй вход которого подключен к выходу второго приемника, выход первого коррелятора соединен с первым входом вычислителя, второй вход которого подключен к выходу второго коррелятора, выход вычислителя является выходом устройства.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при двойной искусственной поляризации цилиндрического полого изделия измерение времен отставания двух пар ортогонально поляризованных электромагнитных волн, дающее возможность вычислить одновременно диаметр и высоту контролируемого изделия, обеспечивает определение внешнего объема цилиндра.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения внешнего объема цилиндрического полого изделия на основе одновременного измерения высоты и диаметра цилиндра с дальнейшей несложной корреляционной обработкой информативных сигналов, полученных при облучении искусственно поляризованного изделия двумя парами ортогонально направленными электромагнитными волнами с желаемым техническим результатом, т.е. упрощением процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия.

На чертеже представлена функциональная схема предлагаемого устройства.

Данное устройство содержит первый 1 и второй 2 электроды, первый 3 и второй 4 источники излучения, третий 5 и четвертый 6 электроды, первый 7, второй 8, третий 9 и четвертый 10 приемники излучения, первый 11 и второй 12 корреляторы, вычислитель 13. На чертеже цифрой 14 обозначено цилиндрическое изделие.

Устройство работает следующим образом. Предварительно неанизотропное цилиндрическое изделие, высота которого больше диаметра, помещают в двойное электрическое поле, образованное посредством приложения напряжений к первому 1, второму 2, третьему 5 и четвертому 6 электродам соответственно. В результате воздействия на изделие таких двух электрических полей с взаимно перпендикулярными силовыми линиями изделие приобретает искусственную двойную анизотропию. После этого электромагнитными волнами первого 3 и второго 4 источников излучения облучают цилиндрическое изделие 14. При этом зондирующую волну с выхода источника 3 направляют по линии высоты цилиндрического изделия, а волну с выхода источника 4 - по линии диаметра цилиндрического изделия. Эти волны благодаря наличию двойной искусственной анизотропии в изделии поляризуются ортогонально. Другими словами, первым приемником 7 принимают поляризованную волну, направленную параллельно силовым линиям электрического поля (первого электрического поля), образованного электродами 1 и 2, а поляризованную волну, направленную перпендикулярно силовым линиям первого электрического поля, - третьим приемником 9. Аналогично, вторым приемником 8 принимают поляризованную волну, направленную параллельно силовым линиям электрического поля (второго электрического поля), образованного электродами 5 и 6, а поляризованную волну, направленную перпендикулярно силовым линиям второго электрического поля, - четвертым приемником 10. В рассматриваемом случае ввиду двойной анизотропии поляризованные волны, улавливаемые приемниками 7 и 8, будут распространяться через изделие с одной скоростью, а поляризованные волны, улавливаемые приемниками 9 и 10,Ю - другой скоростью. В силу этого для скоростей распространения поляризованных волн, улавливаемых приемниками 7 и 8, можно написать

υп=c/nΔn,

а для скоростей распространения поляризованных волн, улавливаемых приемниками 9 и 10, можно написать

υo=c/n.

Здесь υп и υo - скорости распространения поляризованных волн, улавливаемых приемниками 7, 8, 9 и 10 соответственно; с - скорость распространения электромагнитной волны в свободном пространстве, n - показатель преломления волны при отсутствии анизотропии (показатель преломления среды для волны с плоскостью поляризации, ортогональной силовым линиям поля зондирующей волны), определяемый диэлектрической проницаемостью контролируемого вещества без учета его анизотропных свойств, Δn - показатель преломления волны (показатель преломления среды для волны с плоскостью поляризации, параллельной силовым линиям поля зондирующей волны), связанный с диэлектрической проницаемостью вещества из-за его анизотропных свойств.

Из анализа выше приведенных выражений видно, что волны, улавливаемые, приемниками 7 и 8 отстают в скорости распространения волн, улавливаемых приемниками 9 и 10.

В данном случае для времен распространения поляризованных волн, направленных по линии высоты и диаметра цилиндрического изделия и улавливаемых приемниками 7 и 8, можно записать

t1=HnΔn/c;

t2=dnΔn/с,

где Н и d - высота и диаметр, например, диэлектрического цилиндрического полого изделия, t1 - время распространения волны, улавливаемой приемником 7, t2 - волны, улавливаемой приемником 8. Здесь для показателя преломления Δn принимается

Δn=rn3Eвн/2,

здесь r - линейный электрооптический эффект, Евн - напряженность внешнего электрического поля. Аналогичным образом для времен распространения волн, улавливаемых приемниками 9 и 10, можно принимать

t3=Hn/с;

t4=dn/c,

где t3 и t4 - время распространения волн по линиям высоты и диаметра цилиндрического изделия, улавливаемых соответственно приемниками 9 и 10.

Из сравнения t1=HnΔn/c и t3=Hn/с видно, что время (t1) распространения по линии высоты цилиндра поляризованной параллельно силовым линиям первого электрического поля волны превосходит время (t3) распространения по линии высоты цилиндра поляризованной перпендикулярно силовым линиям второго электрического поля волны. Аналогично, при сравнении t2=dnΔn/c и t4=dn/c - время (t2) распространения по линии диаметра цилиндра поляризованной параллельно силовым линиям второго электрического поля волны - время (t4) распространения по линии диаметра цилиндра поляризованной перпендикулярно силовым линиям первого электрического поля волны. В рассматриваемом случае для вычисления временных отставаний указанных поляризованных волн можно использовать взаимокорреляционые свойства двух сигналов. Согласно этой теории, опережающие поляризованные волны будут задерживаться во времени относительно отстающих поляризованных волн. В силу этого, если обозначить время задержки поляризованной волны с временем распространения t3=Hn/с τ1, то после корреляционной обработки этой волны и поляризованной волны с временем распространения t1=HnΔn/c, для τ1 можно записать

τ1=(HnΔn-Hn)/c.

Отсюда можно определить высоту цилиндрического диэлектрического изделия как

H=τ1C/(nΔn-1).

Таким образом, после корреляционной обработки двух сигналов, соответствующих двум поляризованным волнам, путем измерения времени задержки опережающего сигнала можно судить о величине высоты контролируемого изделия. Аналогичным образом, для времени задержки поляризованной волны с временем распространения t4=dn/c τ2, после корреляционный обработки этой волны с поляризованной волной с временем распространения t2=nΔn/c, можно записать

τ2=(dnΔn-dn)/c.

Отсюда для диаметра цилиндрического диэлектрического изделия можно принимать

d=τ2c/(nΔn-1).

Итак, при постоянных значениях r, с, n, Δn и напряженностей двух электрических полей посредством одновременного измерения диаметра и высоты цилиндрического диэлектрического изделия 14 можно вычислить внешний объем этого изделия.

В данном техническом решении для оценки времени задержки τ1, выходные сигналы приемников 7 и 9, подают на первый и второй входы первого 11 коррелятора соответственно, а τ2, выходные сигналы приемников 8 и 10, - на первый и второй входы второго коррелятора 12 соответственно. Выходные сигналы первого и второго корреляторов, соответствующие временам задержки τ1 и τ2, поступают на первый и второй входы вычислителя 13. Здесь отображается информация о величине внешнего объема цилиндрического полого диэлектрического изделия.

Согласно принципу действия предлагаемого технического решения, местом ввода электромагнитных волн в контролируемое изделие может служить край изделия таким образом, чтобы возникающие ортогонально поляризованные составляющие вводимых волн распространялись по линиям высоты и диаметра цилиндрического изделия. Кроме того, необходимым условием при приобретении равномерной двойной анизотропии контролируемым изделием является идентичность параметров двух электрических полей. Характеристики двух источников и четырех приемников излучения также должны быть идентичными.

Таким образом, согласно предлагаемому устройству на основе одновременного измерения высоты и диаметра цилиндра с последующей несложной корреляционной обработкой сигналов, связанных с ними, можно обеспечить упрощение процедуры обработки результатов измерения внешнего объема цилиндрического полого изделия.

Устройство для определения внешнего объема цилиндрического полого изделия, содержащее первый источник излучения и первый приемник излучения, отличающееся тем, что в него введены второй источник излучения, второй, третий и четвертый приемники излучения, первый и второй корреляторы, вычислитель, первая и вторая пара электродов для приложения электрических полей к контролируемому изделию, при этом выход первого приемника соединен с первым входом первого коррелятора, второй вход которого подключен к выходу четвертого приемника, выход третьего приемника соединен с первым входом второго коррелятора, второй вход которого подключен к выходу второго приемника, выход первого коррелятора соединен с первым входом вычислителя, второй вход которого подключен к выходу второго коррелятора, а выход вычислителя является выходом устройства.



 

Похожие патенты:

Устройство для измерения диаметра относится к области контрольно-измерительной техники, а именно к средствам контроля диаметров легкодеформируемых тел, используемых для оценки их качества и диагностики состояния, преимущественно посадочного материала и плодов садовых культур.

Изобретение относится к заготовке, обработке и транспортировке лесоматериалов и может быть использовано для определения объемов круглого леса. Согласно способу производят фотосъемку торцов штабеля бревен цифровым устройством.

Изобретения относятся к области контрольно-измерительной техники и могут использоваться для определения геометрических параметров сечения тел квазицилиндрической формы, в частности саженцев и укорененных черенков садовых культур.

Изобретение относится к измерительной технике и может быть использовано в металлургии и машиностроении. .

Изобретение относится к области электротехники, в частности к системе и способу дальнейшей обработки определяемого, преимущественно динамически, профиля твердого тела, в частности, с целью определения возникшего износа, причем предложено, что данные определяемого профиля твердого тела используют в качестве управляющей величины для управления, по меньшей мере, одним станком для обработки поверхности, в частности, для механической обработки поверхности, колеса транспортного средства.

Изобретение относится к контрольно-измерительной технике, а именно к оптическим бесконтактным методам измерения диаметра тонких протяженных непрозрачных объектов, и может быть использовано при создании приборов для контроля тонких и сверхтонких нитей и, например, для контроля диаметра нитей накаливания осветительных ламп.

Изобретение относится к измерительной технике и может быть использовано для контроля диаметров деталей, в частности на железнодорожном транспорте, для измерения диаметров рабочих поверхностей колесных осей транспортных средств.

Изобретение относится к устройствам механического перемещения объекта вдоль одной координаты. .

Изобретение относится к области техники - таксация леса и предназначено для измерения суммы площадей поперечных сечений древесных стволов древостоя в расчете на 1 га и их среднего диаметра.

Стационарное устройство предназначено для измерения в условиях эксплуатации износа бандажей (проката) и износа гребней (подреза) локомотивных колесных пар. В заявленном стационарном устройстве рельсовые вставки смещены относительно друг друга на расстоянии 4-5 метров, их профили выполнены в соответствии со стандартным профилем бандажей. Дополнительно вставки оборудованы контррельсами, обеспечивающими, в процессе измерения проката и подреза гребней бандажей, смещение колесной пары в одинаковые контролируемые положения. Кроме этого, рельсовые вставки дополнительно в вертикальной и горизонтальной плоскостях оборудованы возвратно-подвижными толкателями, которые контактно сопряжены с индуктивными датчиками линейных перемещений, и толкатели размещены на расстоянии 70 мм от внутренних граней бандажей и 20 мм от вершин гребней. В результате повышается точность измерений, достигается независимость точности измерений от погодных условий. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике в области метрологического обеспечения эталонов относительной деформации, использующихся для калибровки тензодатчиков или экстензометров. Технический результат заключается в уменьшении веса и габаритов системы контроля деформации, при достижении той же величины диапазонов деформации (±0,003) и повышении точности измерения, и решении задачи создания единой системы нагружения и контроля, позволяющей работать с эталонной балкой с большим диапазоном кривизны. Он достигается тем, что в способе измерения локального радиуса кривизны упругодеформированной эталонной балки на измеряемую поверхность устанавливают накладной прибор с двумя поворотными башмаками, опирающимися на эту поверхность четырьмя референтными элементами, а в качестве корпуса используют поворотный башмак, выполненный в виде пластины с вилкообразным вырезом по оси симметрии, а другой поворотный башмак выполняют в виде пластины-язычка и размещают его на той же оси симметрии в вырезе пластины-вилки, при этом башмаки кинематически связывают между собой общей опорой вращения, включающей поверхности скольжения двух прецизионных шаров, симметрично установленных с двух сторон относительно общей оси симметрии пластин. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения радиуса пучка излучения. Предложенный способ включает в себя этапы, на которых источник (2) пучка (20) излучения возбуждает (S1) нагреванием эталон (1) периодическим образом с частотой (f) для получения периодического теплового возбуждения эталона (1). Датчик (3) измеряет (S2) периодическую тепловую реакцию эталона, возникающую в результате периодического теплового возбуждения. Обрабатывающий модуль (4) определяет (S3) фазовое смещение (φ) между периодическим тепловым возбуждением и периодической тепловой реакцией. Причем источник (2) возбуждает эталон на нескольких частотах (f), а обрабатывающий модуль (4) определяет фазовое смещение для каждой из частот (f), определяя таким образом набор значений фазового смещения (φ). Обрабатывающий модуль (4) определяет (S4) минимум φmin фазового смещения (φ) на основе набора значений фазового смещения, определенного таким образом, и определяет (S5) радиус r0 пучка (20) по формуле типа r0=Δ/g(φmin), где Δ - толщина эталона (1), а g - функция, которая зависит от типа пучка (20) нагревающего излучения. Также предложено устройство для реализации указанного способа измерения радиуса пучка излучения. Технический результат - повышение экспрессности метода и обеспечение возможности проводить измерения на пучках крупных размеров. 2 н. и 7 з.п. ф-лы, 11 ил.

Группа изобретений относится к устройству и способу для бесконтактного определения позиции пробоины пули в поверхности мишени. Измерительная рама, предназначенная для реализации способа бесконтактного определения позиции пробоины пули в поверхности мишени, содержит, по меньшей мере, один источник излучения для излучения первого расходящегося поля излучения, по меньшей мере один второй источник излучения для излучения второго расходящегося поля излучения, причем первое и второе поля излучения перекрещиваются под углом в плоскости, поперечной направлению пробоины, и по меньшей мере первое и по меньшей мере одно второе оптические приемные устройства, которые соотнесены соответственно с по меньшей мере одним первым и вторым источниками излучения. Каждое из оптических приемных устройств содержит группу оптических элементов приемника, которые пригодны для определения пространственно растянутой позиции затенения вследствие подлежащей обнаружению пули. Технический результат – определение, как позиции пробоины, так и калибра пули. 2 н. и 13 з.п. ф-лы, 29 ил.

Изобретение относится к области контрольно-измерительной техники и может использоваться для определения комплекса геометрических параметров поперечного сечения тел квазицилиндрической формы, в частности саженцев и укорененных черенков садовых культур. Заявленное устройство содержит лазерный триангуляционный датчик расстояний, установленный вблизи поверхности тела так, чтобы его лазерный луч находился в плоскости сечения и пересекал контур сечения в контрольных точках, микропроцессорный измерительно-вычислительный блок, приспособление для поворота тела вокруг оси вращения, проходящей через центральную точку, находящуюся в пределах поперечного сечения, перпендикулярно плоскости этого сечения, начиная от начального углового положения через каждые одинаковые угловые интервалы так, чтобы в пределах одного оборота их число было целым, преобразователь сигнала датчика расстояний в код и персональный компьютер. Датчик расстояний установлен на заданном регулируемом расстоянии от оси вращения контролируемого тела. Измерения расстояний до контрольных точек осуществляются через каждые одинаковые угловые интервалы. Таким образом, реализуется возможность определения множества расстояний от центральной точки до контрольных точек, расположенных по всему контуру сечения, представления координат контрольных точек в прямоугольной системе координат и вычисления геометрических параметров сечения тела измерительно-вычислительным блоком. Технический результат - упрощение устройства за счет выполнения измерений расстояний до контрольных точек на контуре сечения с помощью одного лазерного триангуляционного датчика расстояний. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области контрольно-измерительной техники и может использоваться для определения комплекса геометрических параметров поперечного сечения тел квазицилиндрической формы. Способ определения геометрических параметров сечения тела заключается в том, что измеряют расстояния от базовой точки, расположенной на фиксированной дистанции от центральной точки, находящейся в пределах контролируемого поперечного сечения тела, до соответствующих контрольных точек на контуре сечения тела по направлению к этой центральной точке при вращении контролируемого поперечного сечения тела вокруг оси, проходящей через центральную точку перпендикулярно плоскости сечения, начиная от начального углового положения через каждые одинаковые угловые интервалы в пределах одного оборота, и определяют длины отрезков между центральной и контрольными точками путем вычитания измеренных расстояний из расстояния между базовой и центральной точками. Затем определяют координаты всех полученных контрольных точек и геометрические параметры поперечного сечения тела: длину контура, площадь, максимальный и минимальный ортогональные размеры и их отношение - индекс формы. Технический результат - снижение трудоемкости определения комплекса геометрических параметров поперечного сечения тела. 2 з.п. ф-лы, 1 ил., 1 табл.
Наверх