Устройство управления транспортного средства

Изобретение относится к устройству управления транспортным средством или устройству для оценки того, начал ли элемент фрикционного сцепления сцепляться, при этом элемент фрикционного сцепления сцепляется, когда находится в диапазоне приведения в движение. Устройство содержит источник приведения в движение, включающий в себя двигатель, элемент фрикционного сцепления, расположенный в пути передачи движущей силы от источника приведения в движение к ведущему колесу. Элемент фрикционного сцепления сцепляется, когда выбирается диапазон приведения в движение. Средство оценки начала сцепления оценивает, в ответ на условие, что элемент фрикционного сцепления начал сцепляться, при условии того, что параметр превысил или стал равным предварительно определенному пороговому значению в начальной области управления сцеплением элемента фрикционного сцепления. Средство оценки начала сцепления устанавливает абсолютное значение предварительно определенного порогового значения большим, когда возможно оценить, что вращательное колебание источника приведения в движение является большим, чем когда возможно оценить, что вращательное колебание источника приведения в движение является небольшим. Достигается возможность предотвращения некорректной оценки начала сцепления элемента фрикционного сцепления. 9 з.п. ф-лы, 17 ил.

 

Область техники

Изобретение относится к устройству управления транспортным средством или устройству для оценки того, начал ли элемент фрикционного сцепления сцепляться (а именно, был ли выбран зазор элемента фрикционного сцепления), при этом элемент фрикционного сцепления сцепляется, когда находится в диапазоне приведения в движение.

Уровень техники

Обычно известное устройство управления электрическим транспортным средством оценивает, что вторая муфта (а именно, пусковая муфта) автоматической коробки передач начала сцепляться, в ответ на условие того, что нагрузка мотор-генератора достигла заданной нагрузки, когда операция переключения с N-диапазона на D-диапазон выполняется при условии того, что транспортное средство неподвижно (см., например, патентный документ 1).

Патентный документ

Патентный документ 1: JP 2009-190584 A

Задача, которая должна быть решена изобретением

Однако традиционное устройство управления электрического транспортного средства сконфигурировано, чтобы устанавливать постоянной заданную нагрузку мотор-генератора, которая является пороговым значением для оценки начала сцепления второй муфты. Соответственно, если управление выполняется для поддержания входной скорости вращения автоматической коробки передач посредством мотор-генератора, когда вращательные колебания двигателя являются большими, оно может вызывать значительные колебания нагрузки мотор-генератора, таким образом вызывая некорректную оценку того, что вторая муфта начала сцепляться.

Например, когда двигатель находится в холодном состоянии и скорость вращения холостого хода двигателя является высокой (высокая скорость вращения холостого хода), управление выполняется для способствования прогреву двигателя, так что вращательные колебания двигателя являются большими. Если управление скоростью вращения мотор-генератора выполняется в этих условиях, чтобы поддерживать постоянную целевую скорость вращения, нагрузка мотор-генератора значительно колеблется для поддержания постоянной входной скорости вращения, подавляя большие вращательные колебания двигателя. Соответственно, большие колебания нагрузки мотор-генератора некорректно оцениваются как указывающие на то, что вторая муфта начала сцепляться.

Настоящее изобретение осуществлено, принимая во внимание проблемы, описанные выше. Задачей настоящего изобретения является создание устройства управления транспортного средства, способного предотвращать некорректную оценку начала сцепления элемента фрикционного сцепления, когда возможно оценить вращательные колебания источника приведения в движение как большие.

Средства решения задачи

Для решения указанной задачи устройство управления транспортного средства согласно настоящему изобретению является средством, содержащим источник приведения в движение, элемент фрикционного сцепления и средство оценки начала сцепления. Источник приведения в движение включает в себя, по меньшей мере, двигатель. Элемент фрикционного сцепления расположен в пути передачи движущей силы от источника приведения в движение к ведущему колесу, при этом элемент фрикционного сцепления сцепляется, когда выбирается диапазон приведения в движение. Средство оценки начала сцепления оценивает, в ответ на условие, что элемент фрикционного сцепления начал сцепляться, при этом условие является условием того, что параметр превысил или стал равным предварительно определенному пороговому значению в начальной области управления сцеплением элемента фрикционного сцепления, при этом параметр изменяется вместе с вращательными колебаниями источника приведения в движение. Средство оценки начала сцепления устанавливает абсолютное значение предварительно определенного порогового значения большим, когда возможно оценить, что вращательное колебание источника приведения в движение является большим, чем когда возможно оценить, что вращательное колебание источника приведения в движение является небольшим.

Преимущества изобретения

Соответственно, когда возможно оценить вращательные колебания источника приведения в движение как большие, абсолютное значение порогового значения для оценки относительно начала сцепления элемента фрикционного сцепления устанавливается большим. Это предотвращает оценку значительного изменения параметра как указывающего, что элемент фрикционного сцепления начал сцепляться, даже когда параметр значительно изменился вместе с большими вращательными колебаниями источника приведения в движение. В результате, когда возможно оценить вращательные колебания источника приведения в движение как большие, можно предотвращать некорректную оценку начала сцепления элемента фрикционного сцепления.

Краткое описание чертежей

Фиг.1 - схема всей системы, показывающая FR-гибридное транспортное средство, к которому применяется устройство управления согласно первому варианту осуществления.

Фиг.2 - схема, показывающая пример карты переключения автоматической коробкой "AT" передач, которая задается в AT-контроллере 7, согласно первому варианту осуществления.

Фиг.3 - схема, показывающая пример карты выбора EV-HEV, которая задается в части выбора режима объединенного контроллера 10, согласно первому варианту осуществления.

Фиг.4 - скелетная схема, показывающая пример автоматической коробки AT передач, установленной на FR-гибридном транспортном средстве, к которому применяется устройство управления согласно первому варианту осуществления.

Фиг.5 - таблица операции сцепления, показывающая состояния сцепления элементов фрикционного сцепления на отдельных передачах в автоматической коробке AT передач, установленной на FR-гибридном транспортном средстве, к которому применяется устройство управления согласно первому варианту осуществления.

Фиг.6 - блок-схема последовательности операций, показывающая ход процесса оценки начала сцепления для второго тормоза B2 (а именно, тормоза LOW/B низших передач), который выполняется объединенным контроллером, когда операция переключения с N-диапазона на D-диапазон выполняется в первом варианте осуществления.

Фиг.7 - карта пороговых значений степени изменения входной скорости вращения, показывающая относительные характеристики степени изменения входной скорости вращения относительно входной скорости вращения, которая используется в операции оценки начала сцепления второго тормоза B2, показанной на фиг.6.

Фиг.8 - карта пороговых значений величины изменения крутящего момента мотора, показывающая относительные характеристики величины изменения крутящего момента мотора относительно входной скорости вращения, которая используется в операции оценки начала сцепления для второго тормоза B2, показанной на фиг.6.

Фиг.9 - диаграмма, показывающая пример экспериментальных данных степени изменения входной скорости вращения относительно входной скорости вращения, которая показывает область, где пороговое значение степени изменения входной скорости вращения может быть установлено.

Фиг.10 - диаграмма, показывающая пример экспериментальных данных величины изменения крутящего момента мотора относительно входной скорости вращения, которая показывает область, где пороговое значение величины изменения крутящего момента мотора может быть установлено.

Фиг.11 - иллюстративная диаграмма, показывающая пример характеристик настроек порогового значения величины изменения крутящего момента мотора, который основан на экспериментальных данных и сравнительном примере.

Фиг.12 - временная диаграмма, показывающая характеристики сигнала диапазона, входной скорости вращения, крутящего момента мотора, командного давления для второго тормоза B2 и фактического давления второго тормоза B2, когда операция переключения с N-диапазона на D-диапазон выполняется в условиях высокой скорости вращения холостого хода.

Фиг.13 - блок-схема последовательности операций, показывающая последовательность операций задания порогового значения согласно состояниям сцепления первой муфты согласно второму варианту осуществления.

Фиг.14A-14D - иллюстративные схемы, показывающие примеры таблиц для задания пороговых значений второго варианта осуществления.

Способы осуществления изобретения

Последующее описание описывает наилучшую форму осуществления устройства управления транспортным средством согласно настоящему изобретению со ссылкой на первый вариант осуществления и второй вариант осуществления, показанные на чертежах.

Первый вариант осуществления изобретения

Во-первых, последующее описание описывает конфигурацию устройства управления FR-гибридного транспортного средства типа "один мотор, две муфты" (пример транспортного средства) согласно первому варианту осуществления, и это будет описано отдельно в разделах "Конфигурация всей системы", "Конфигурация автоматической коробки передач" и "Конфигурация процесса оценки начала сцепления".

Конфигурация всей системы

Фиг.1 показывает FR-гибридное транспортное средство, к которому применяется устройство управления согласно первому варианту осуществления. Фиг.2 показывает пример карты переключения автоматической коробки "AT" передач, которая задается в AT-контроллере 7 согласно первому варианту осуществления. Фиг.3 показывает пример карты выбора EV-HEV, которая задается в части выбора режима объединенного контроллера 10 согласно первому варианту осуществления. Последующее описание описывает конфигурацию всей системы со ссылкой на фиг.1-3.

Как показано на фиг.1, трансмиссия FR-гибридного транспортного средства включает в себя двигатель "Eng", маховик "FW", первую муфту CL1, мотор-генератор "MG" (мотор), вторую муфту CL2, автоматическую коробку AT передач, входной вал "IN" коробки передач, главный маслонасос "M-O/P", вспомогательный маслонасос "S-O/P", карданный вал "PS", шестерню "DF" дифференциала, левый ведущий вал "DSL", правый ведущий вал "DSR", левое заднее колесо "RL" (ведущее колесо) и правое заднее колесо "RR" (ведущее колесо). "FL" представляет левое переднее колесо, а "FR" представляет правое переднее колесо.

Двигатель Eng является бензиновым двигателем или дизельным двигателем, который управляется на основе команды управления двигателем от контроллера 1 двигателя, так что выполняются управление запуском двигателя, управление остановкой двигателя, управление открытием дроссельной заслонки, управление прекращением подачи топлива и другие. Маховик FW присоединен к выходному валу двигателя.

Первая муфта CL1 размещена между двигателем Eng и мотор-генератором MG и управляется, чтобы полностью сцепляться, или сцепляться с возможностью проскальзывания, или полностью расцепляться посредством управляющего гидравлического давления первой муфты, которое создается посредством гидравлического блока 6 первой муфты на основе управляющей команды первой муфты от контроллера 5 первой муфты.

Мотор-генератор MG является синхронным мотор-генератором, в котором постоянный магнит вставлен в ротор и обмотка статора обмотана вокруг статора. Мотор-генератор MG управляется на основе управляющей команды от контроллера 2 мотора, так что трехфазные переменные токи генерируются и прикладываются к мотор-генератору MG посредством инвертора 3. Мотор-генератор MG может функционировать в качестве мотора, который вращается на основе подачи энергии от аккумулятора 4 ("движение от электрической мощности"), и функционировать также в качестве электрогенератора, чтобы заряжать аккумулятор 4, посредством формирования электродвижущей силы между концами обмотки статора, когда ротор получает вращательную энергию от двигателя Eng и ведущих колес ("рекуперация"). Ротор мотор-генератора MG соединен с входным валом IN коробки передач для автоматической коробки AT передач.

Вторая муфта CL2 размещается между мотор-генератором MG и левым и правым задними колесами RL, RR. Вторая муфта CL2 является элементом сцепления для начала движения, который сцепляется, когда выполняется операция переключения с N-диапазона на D-диапазон (или R-диапазон). Вторая муфта CL2 управляется, чтобы быть полностью сцепленной, сцепленной с возможностью проскальзывания или полностью расцепленной, посредством управляющего гидравлического давления, которое создается посредством гидравлического блока 8 второй муфты на основе команды управления второй муфтой от AT-контроллера 7. Например, вторая муфта CL2 реализована посредством обычно разомкнутой многодисковой муфты мокрого типа или тормоза, при этом скорость потока и гидравлическое давление рабочей жидкости может управляться непрерывно посредством электромагнитного пропорционального клапана. Гидравлический блок 6 первой муфты и гидравлический блок 8 второй муфты установлены в блоке управления гидравлическим клапаном "CVU", который предусмотрен с автоматической коробкой AT передач.

Автоматическая коробка AT передач размещает вторую муфту CL2 в качестве элемента сцепления. Автоматическая коробка AT передач является коробкой передач, которая автоматически переключается между множеством ступенчатых положений передач, в зависимости от скорости транспортного средства и открытия педали акселератора. Входной вал IN коробки передач для автоматической коробки AT передач (а именно, вал мотора) снабжен главным маслонасосом M-O/P, который приводится в действие посредством входного вала IN коробки передач. Вспомогательный маслонасос S-O/P предусмотрен в корпусе мотора или т.п. Вспомогательный маслонасос S-O/P приводится в действие мотором для пресечения падения гидравлического давления, когда сброс давления главного маслонасоса M-O/P является коротким, в то время как транспортное средство неподвижно или в аналогичных случаях. Управление приведением в действие вспомогательного маслонасоса S-O/P выполняется AT-контроллером 7, описанным ниже. Выходной вал коробки передач для автоматической коробки AT передач соединяется с карданным валом PS. Карданный вал PS соединяется с левым и правым задними колесами RL, RR через шестерню DF дифференциала, левый ведущий вал DSL и правый ведущий вал DSR.

Гибридное транспортное средство применяет режимы приведения в движение, которые отличаются по форме приведения в движение, при этом режимы приведения в движение включают в себя режим электрического транспортного средства (в дальнейшем называемый "EV-режимом"), режим гибридного транспортного средства (в дальнейшем называемый "HEV-режимом") и режим управления крутящим моментом приведения в движение (в дальнейшем называемый "WSC-режимом").

EV-режим - это режим, в котором первая муфта CL1 расцеплена и транспортное средство приводится в движение только посредством движущей силы мотор-генератора MG. EV-режим включает в себя режим приведения в движение от мотора и режим рекуперативного приведения в движение. EV-режим выбирается, например, когда требуемая движущая сила является небольшой и SOC аккумулятора является достаточным.

HEV-режим - это режим, в котором транспортное средство приводится в движение со сцепленной первой муфтой CL1. HEV-режим включает в себя режим приведения в движение с помощью мотора, режим выработки электрической энергии и режим приведения в движение от двигателя, один из которых выбирается для движения транспортного средства. HEV-режим выбирается, например, когда требуемая движущая сила является большой или когда SOC аккумулятора недостаточно.

WSC-режим - это режим, в котором вторая муфта CL2 сцеплена с возможностью проскальзывания и максимальный крутящий момент второй муфты CL2 управляется так, что передаваемый муфтой крутящий момент, проходящий через вторую муфту CL2, удовлетворяет требуемому крутящему моменту приведения в движение, определенному в зависимости от операции водителя или т.п. WSC-режим выбирается, когда скорость вращения ведущего колеса получается ниже скорости вращения двигателя, так что необходимо компенсировать дифференциальное вращение между ними посредством проскальзывания второй муфты CL2, например, когда транспортное средство неподвижно или находится в области начала ускорения.

Последующее описание описывает систему управления FR-гибридного транспортного средства. Как показано на фиг.1, система управления FR-гибридного транспортного средства включает в себя контроллер 1 двигателя, контроллер 2 мотора, инвертор 3, аккумулятор 4, контроллер 5 первой муфты, гидравлический блок 6 первой муфты, AT-контроллер 7, гидравлический блок 8 второй муфты, контроллер 9 тормоза и объединенный контроллер 10. Контроллеры 1, 2, 5, 7 и 9 и объединенный контроллер 10 соединены через CAN-линию 11 связи для обмена информацией друг с другом.

Контроллер 1 двигателя принимает входную информацию о скорости вращения двигателя от датчика 12 скорости вращения двигателя и входную команду целевого крутящего момента двигателя от объединенного контроллера 10 и входную другую необходимую информацию. Контроллер 1 двигателя выводит команду для управления рабочей точкой двигателя (Ne, Te) актуатору дроссельной заслонки двигателя Eng и другим.

Контроллер 2 мотора принимает входную информацию от датчика 13 положения, который обнаруживает угловое положение ротора мотор-генератора MG, и входную команду целевого крутящего момента MG и команду целевой скорости вращения MG от объединенного контроллера 10 и входную другую необходимую информацию. Контроллер 2 мотора выводит инвертору 3 команду для управления рабочей точкой мотора (Nm, Tm) мотор-генератора MG. Контроллер 2 мотора наблюдает за SOC аккумулятора, указывающим состояние заряда аккумулятора 4, и предоставляет информацию о SOC аккумулятора объединенному контроллеру 10 через CAN-линию 11 связи.

Контроллер 5 первой муфты принимает входную информацию датчика от датчика 15 хода первой муфты, который обнаруживает положение хода поршня 14a гидравлического актуатора 14, и входную команду целевого крутящего момента CL1 от объединенного контроллера 10 и входную другую необходимую информацию. Контроллер 5 первой муфты выводит команду для управления сцеплением и расцеплением первой муфты CL1 гидравлическому блоку 6 первой муфты в блоке CVU управления гидравлическим клапаном.

AT-контроллер 7 принимает входную информацию от датчика 16 открытия акселератора, датчика 17 скорости транспортного средства, переключателя 18 нейтрали и т.д. Когда транспортное средство движется с выбранным D-диапазоном, оптимальное положение передачи определяется на основе положения рабочей точки в карте переключения, показанной на фиг.2, при этом рабочая точка определяется посредством открытия APO педали акселератора и скорости VSP транспортного средства, и управляющая команда для получения найденного положения передачи выводится блоку CVU управления гидравлическим клапаном. В дополнение к этому управлению переключением, если команда целевого крутящего момента CL2 вводится от объединенного контроллера 10, выполняется управление второй муфтой, чтобы выводить команду для управления сцеплением с возможностью проскальзывания второй муфты CL2 гидравлическому блоку 8 второй муфты в блоке CVU управления гидравлическим клапаном.

Контроллер 9 тормоза принимает входную информацию датчика от датчика 19 скорости вращения колеса для измерения скорости вращения колеса каждого из четырех колес и датчика 20 хода тормоза и входную команду управления совместной рекуперацией от объединенного контроллера 10 и входную другую необходимую информацию. Например, когда педаль тормоза нажимается для торможения и запрошенное тормозное усилие, вычисленное из хода BS тормоза, не удовлетворяется только посредством рекуперативного тормозного усилия, контроллер 9 тормоза выполняет управление совместным рекуперативным торможением для покрытия нехватки с помощью механического тормозного усилия (гидравлического тормозного усилия или усилия торможения мотором).

Объединенный контроллер 10 управляет потребляемой энергией всего транспортного средства и функционирует, чтобы предоставлять возможность транспортному средству двигаться с оптимизированной эффективностью. Объединенный контроллер 10 принимает входную необходимую информацию от датчика 21 скорости вращения мотора для измерения скорости Nm вращения мотора и других датчиков, переключателей и т.д. 22 и входную информацию через CAN-линию 11 связи. Объединенный контроллер 10 выводит команду целевого крутящего момента двигателя контроллеру 1 двигателя, команду целевого крутящего момента MG и команду целевой скорости вращения MG контроллеру 2 мотора, команду целевого крутящего момента CL1 контроллеру 5 первой муфты, команду целевого крутящего момента CL2 AT-контроллеру 7 и команду управления совместным рекуперативным торможением контроллеру 9 тормоза.

Объединенный контроллер 10 включает в себя секцию выбора режима, которая определяет оптимальный режим приведения в движение в зависимости от позиции рабочей точки на карте выбора EV-HEV, показанной на фиг.3, при этом рабочая точка определяется посредством открытия APO педали акселератора и скорости VSP транспортного средства, и выбирает найденный режим приведения в движение в качестве целевого режима приведения в движение. В карте выбора EV-HEV заданы линия переключения с EV на HEV для переключения из EV-режима в HEV-режим, линия переключения с HEV на EV для переключения из HEV-режима в EV-режим и линия переключения с WSC на HEV для переключения из WSC-режима на HEV-режим. Линия переключения с EV на HEV и линия переключения с HEV на EV заданы с величиной гистерезиса. Линия переключения с WSC на HEV задана согласно первой заданной скорости VSP1 транспортного средства, с которой двигатель Eng поддерживает скорость вращения холостого хода в положении первой передачи автоматической коробки AT передач. Однако когда SOC аккумулятора становится ниже или равно предварительно определенному значению, в то время как выбран EV-режим, целевой режим приведения в движение принудительно устанавливается в HEV-режим.

Конфигурация автоматической коробки передач

Фиг.4 показывает пример автоматической коробки AT передач, установленной на FR-гибридном транспортном средстве, к которой применяется устройство управления согласно первому варианту осуществления. Фиг.5 показывает состояния сцепления элементов фрикционного сцепления на отдельных передачах в автоматической коробке AT передач, установленной на FR-гибридном транспортном средстве, к которой применяется устройство управления согласно первому варианту осуществления. Последующее описание описывает конфигурацию автоматической коробки AT передач со ссылкой на фиг.4 и 5.

Автоматическая коробка AT передач является ступенчатой автоматической коробкой передач с семью передачами переднего хода и одной передачей заднего хода. Автоматическая коробка AT передач принимает входную движущую силу, по меньшей мере, одного из двигателя Eng и мотор-генератора MG через входной вал "Input" коробки передач и переключает скорость вращения посредством четырех планетарных шестерен и семи элементов фрикционного сцепления и выводит ее через выходной вал "Output" коробки передач.

Автоматическая коробка AT передач включает в себя зубчатый механизм переключения передач, включающий в себя первый планетарный набор GS1 и второй планетарный набор GS2, которые размещены вдоль оси, протягивающейся от входного вала Input коробки передач к выходному валу Output коробки передач. Первый планетарный набор GS1 включает в себя первую планетарную передачу G1 и вторую планетарную передачу G2. Второй планетарный набор GS2 включает в себя третью планетарную передачу G3 и четвертую планетарную передачу G4. Более того, первая муфта C1, вторая муфта C2, третья муфта C3, первый тормоз B1, второй тормоз B2, третий тормоз B3 и четвертый тормоз B4 размещены в качестве элементов фрикционного сцепления. Кроме того, размещены первая односторонняя муфта F1 и вторая односторонняя муфта F2.

Первая планетарная передача G1 включает в себя первую солнечную шестерню S1, первую коронную шестерню R1, первый сателлит P1 и первое водило PC1. Вторая планетарная передача G2 включает в себя вторую солнечную шестерню S2, вторую коронную шестерню R2, второй сателлит P2 и второе водило PC2. Третья планетарная передача G3 включает в себя третью солнечную шестерню S3, третью коронную шестерню R3, третий сателлит P3 и третье водило PC3. Четвертая планетарная передача G4 включает в себя четвертую солнечную шестерню S4, четвертую коронную шестерню R4, четвертый сателлит P4 и четвертое водило PC4. А именно, первая-четвертая планетарные передачи G1-G4 являются планетарными передачами с одним сателлитом.

Входной вал Input коробки передач соединен со второй коронной шестерней R2 и принимает входной крутящий момент приведения в движение, по меньшей мере, от одного из двигателя Eng и мотор-генератора MG. Выходной вал Output коробки передач соединен с третьим водилом PC3 и передает выходной крутящий момент приведения в движение через редуктор и т.п. ведущим колесам (левому и правому задним колесам RL, RR).

Первая коронная шестерня R1, второе водило PC2 и четвертая коронная шестерня R4 соединены вместе посредством первого соединительного элемента M1. Третья коронная шестерня R3 и четвертое водило PC4 соединены вместе посредством второго соединительного элемента M2. Первая солнечная шестерня S1 и вторая солнечная шестерня S2 соединены вместе посредством третьего соединительного элемента M3.

Первая муфта C1 (а именно, входная муфта I/C) выборочно соединяет входной вал Input коробки передач со вторым соединительным элементом M2 и отсоединяет входной вал Input коробки передач от второго соединительного элемента M2. Вторая муфта C2 (а именно, муфта D/C прямой передачи) выборочно соединяет четвертую солнечную шестерню S4 с четвертым водилом PC4 и отсоединяет четвертую солнечную шестерню S4 от четвертого водила PC4. Третья муфта C3 (а именно, H&LR муфта H&LR/C) выборочно соединяет третью солнечную шестерню S3 с четвертой солнечной шестерней S4 и отсоединяет третью солнечную шестерню S3 от четвертой солнечной шестерни S4. Вторая односторонняя муфта F2 (а именно, односторонняя муфта 1&2OWC первой и второй передачи) предусмотрена между третьей солнечной шестерней S3 и четвертой солнечной шестерней S4 и выборочно соединяется и отсоединяется механически. Первый тормоз B1 (а именно, передний тормоз Fr/B) выборочно удерживает первое водило PC1 неподвижно относительно картера "Case" коробки передач и предоставляет возможность первому водилу PC1 вращаться относительно картера Case коробки передач. Первая односторонняя муфта F1 (а именно, односторонняя муфта 1stOWC первой передачи) размещена параллельно первому тормозу B1 и выборочно соединяется и отсоединяется механически. Второй тормоз B2 (а именно, тормоз LOW/B нижней передачи) выборочно удерживает третью солнечную шестерню S3 неподвижно относительно картера Case коробки передач и предоставляет возможность третьей солнечной шестерне S3 вращаться относительно картера Case коробки передач. Третий тормоз B3 (а именно, 2346-тормоз "2346/B") выборочно удерживает третий соединительный элемент M3 неподвижным относительно картера Case коробки передач и предоставляет возможность третьему соединительному элементу M3 вращаться относительно картера Case коробки передач, при этом третий соединительный элемент M3 соединяет первую солнечную шестерню S1 и вторую солнечную шестерню S2 вместе. Четвертый тормоз B4 (а именно, тормоз R/B заднего хода) выборочно удерживает третье водило PC3 неподвижным относительно картера Case коробки передач и предоставляет возможность третьему водилу PC3 вращаться относительно картера Case коробки передач.

Последующее описание описывает операцию сцепления в каждом положении передачи со ссылкой на фиг.5. В таблице операции сцепления на фиг.5 каждый незаштрихованный кружок представляет условия, в которых соответствующий элемент фрикционного сцепления гидравлически вовлекается в состояние приведения в движение, а каждый заключенный в скобки незаштрихованный кружок представляет условия, в которых соответствующий элемент фрикционного сцепления гидравлически вовлекается в состояние движения по инерции (он функционирует как односторонняя муфта в состоянии приведения в движение), и каждая пустая ячейка представляет условия, в которых соответствующий элемент фрикционного сцепления расцеплен.

Каждое из семи положений передач получается посредством переключателя сцепления, включающего в себя переключение одного из элементов фрикционного сцепления, предусмотренных в зубчатом механизме переключения передач, сконструированном, как описано выше, из сцепленного состояния в расцепленное состояние и переключение другого из элементов фрикционного сцепления из расцепленного состояния в сцепленное состояние, как описано ниже. Кроме того, получается одно положение передачи заднего хода.

На первой передаче сцеплены первый тормоз B1 (со сцеплением первой однонаправленной муфты F1) и третья муфта C3 (со сцеплением второй однонаправленной муфты F2) и второй тормоз B2. На второй передаче сцеплены третья муфта C3 (со сцеплением второй однонаправленной муфты F2) и второй тормоз B2 и третий тормоз B3. На третьей передаче сцеплены второй тормоз B2, третий тормоз B3 и вторая муфта C2. На четвертой передаче сцеплены третий тормоз B3, вторая муфта C2 и третья муфта C3. На пятой передаче сцеплены первая муфта C1, вторая муфта C2 и третья муфта C3. На шестой передаче сцеплены третий тормоз B3, первая муфта C1 и третья муфта C3. На седьмой передаче сцеплены первый тормоз B1 (со сцеплением первой односторонней муфты F1) и первая муфта C1 и третья муфта C3. На передаче заднего хода сцеплены четвертый тормоз B4, первый тормоз B1 и третья муфта C3. Таким образом, во время переключения с N-диапазона на D-диапазон сцепляется второй тормоз B2 (а именно, тормоз LOW/B низших передач). Соответственно, второй тормоз B2 является элементом фрикционного сцепления, на который нацелена оценка начала сцепления согласно первому варианту осуществления.

Конфигурация процесса оценки начала сцепления

Фиг.6 - это блок-схема последовательности операций, показывающая последовательность операций процесса оценки начала сцепления относительно второго тормоза B2 (а именно, тормоза LOW/B низших передач), который выполняется посредством объединенного контроллера 10, когда выполняется операция переключения с N-диапазона на D-диапазон, согласно первому варианту осуществления. Последующее описание описывает этапы на фиг.6, которые составляют процесс оценки начала сцепления. Процесс управления на фиг.6 выполняется многократно с интервалами предварительно определенного периода времени начала управления.

На этапе S1 объединенный контроллер 10 оценивает, выполнена или нет операция переключения с N-диапазона на D-диапазон, на основе переключения сигнала положения диапазона от переключателя 18 нейтрали с сигнала N-диапазона на сигнал D-диапазона. Когда ответ - да (когда операция переключения с N-диапазона на D-диапазон выполнена), процесс переходит к этапу S3. Когда ответ - нет (когда выбран N-диапазон), процесс переходит к этапу S2.

На этапе S2, следом за оценкой на этапе S1 того, что выбирается N-диапазон, объединенный контроллер 10 выполняет управление скоростью вращения мотора, в котором целевая скорость вращения устанавливается в целевую скорость вращения холостого хода (переменная скорость вращения), и переходит к окончанию процесса. Целевая скорость вращения холостого хода устанавливается в высокую скорость вращения холостого хода, когда температура охлаждающей жидкости двигателя находится в очень низком температурном диапазоне, при этом высокая скорость вращения холостого хода выше обычной скорости вращения холостого хода. Когда температура охлаждающей жидкости двигателя растет посредством операции прогрева, целевая скорость вращения холостого хода устанавливается постепенно снижающейся с высокой скорости вращения холостого хода до нормальной скорости вращения холостого хода. После того как температура охлаждающей жидкости двигателя превышает или становится равной предварительно определенной температуре, целевая скорость вращения холостого хода удерживается в нормальной скорости вращения холостого хода.

На этапе S3, следом за оценкой на этапе S1, что операция переключения с N-диапазона на D-диапазон выполнена, объединенный контроллер 10 переключает целевую скорость вращения с целевой скорости вращения в управлении скоростью вращения мотора, когда выбран N-диапазон (переменная скорость вращения), на входную скорость вращения коробки передач во время операции переключения с N-диапазона на D-диапазон (фиксированная скорость вращения), и затем процесс переходит к этапу S4 (средство управления поддерживает входную скорость вращения). А именно, после операции переключения с N-диапазона на D-диапазон управление скоростью вращения мотора выполняется с тем, чтобы удерживать входную скорость вращения коробки передач во время операции переключения с N-диапазона на D-диапазон.

На этапе S4, следом за переключением целевой скорости вращения в управлении скоростью вращения мотора на этапе S3, объединенный контроллер 10 подсчитывает время таймера, прошедшее после ND-переключения, которое указывает период времени, прошедший после операции переключения с N-диапазона на D-диапазон, и затем процесс переходит к этапу S5.

На этапе S5, следом за подсчетом времени таймера, прошедшего после ND-переключения на этапе S4, объединенный контроллер 10 выполняет операцию вычисления для вычисления величины изменения входной скорости вращения, которая является величиной уменьшения скорости вращения от входной скорости вращения коробки передач во время операции переключения с N-диапазона на D-диапазон, и затем процесс переходит к этапу S6.

На этапе S6, следом за операцией вычисления величины изменения входной скорости вращения на этапе S5, объединенный контроллер 10 определяет, превышает или нет время таймера, прошедшее после ND-переключения, или становится равным временному периоду запрета вычисления оценки выбирания зазора. Когда ответ - да (время таймера, прошедшее после ND-переключения, ≥ временного периода запрета вычисления оценки выбирания зазора), процесс переходит к этапу S7. Когда ответ - нет (время таймера, прошедшее после ND-переключения, < временного периода запрета вычисления оценки выбирания зазора), процесс возвращается к этапу S4. Временной период запрета вычисления оценки выбирания зазора устанавливается во временной период, когда возможна некорректная оценка выбирания зазора, поскольку возможно, что степень изменения входной скорости вращения (этапы S7) и величина изменения крутящего момента мотора (этап S8), которые используются для оценки выбирания зазора, вычислены как избыточные в абсолютном значении.

На этапе S7, следом за оценкой, что время таймера, прошедшее после ND-переключения, ≥ временного периода запрета вычисления оценки выбирания зазора на этапе S6, объединенный контроллер 10 выполняет операцию вычисления для вычисления степени изменения входной скорости вращения, которая является степенью изменения скорости вращения входного вала Input коробки передач, и затем процесс переходит к этапу S8. Степень изменения входной скорости вращения может быть получена посредством дифференцирования входной скорости вращения относительно времени.

На этапе S8, следом за операцией вычисления для степени изменения входной скорости вращения на этапе S7, объединенный контроллер 10 выполняет операцию вычисления для вычисления величины изменения крутящего момента мотора, которая является величиной изменения нагрузки мотор-генератора MG, которая изменяется вместе с управлением скоростью вращения мотора для поддержания входной скорости вращения коробки передач, и затем процесс переходит к этапу S9. Величина изменения крутящего момента мотора определяется не от времени операции переключения с N-диапазона на D-диапазон, а минимальное значение крутящего момента мотора постоянно обновляется и запоминается от момента времени, когда началась оценка начала сцепления. Затем величина изменения крутящего момента мотора вычисляется посредством вычитания запомненного минимального значения STMG_MIN крутящего момента мотора из полученного в настоящее время крутящего момента мотора (например, в форме значения тока мотора).

На этапе S9, следом за операцией вычисления для величины изменения крутящего момента мотора на этапе S8, объединенный контроллер 10 оценивает, превысило или нет время таймера, прошедшее после ND-переключения, или стало равным минимальному временному периоду управления ходом поршня. Когда ответ - да (время таймера, прошедшее после ND-переключения, ≥ минимального временного периода управления ходом поршня), процесс переходит к этапу S10. Когда ответ - нет (время таймера, прошедшее после ND-переключения, < минимального временного периода управления ходом поршня), процесс возвращается к этапу S4. Минимальный временной период управления ходом поршня определяется на основе экспериментальных данных о временном периоде от начала управления ходом поршня до окончания управления ходом поршня, которые получаются вместе с переменной входной скоростью вращения коробки передач, температурой масла и т.д. Например, минимальный временной период управления ходом поршня устанавливается в минимальное из экспериментальных значений временного периода к концу управления ходом поршня.

На этапе S10, следом за оценкой, что время таймера, прошедшее после ND-переключения, ≥ минимального временного периода управления ходом поршня на этапе S9, объединенный контроллер 10 оценивает, больше или нет абсолютное значение для последнего значения степени изменения входной скорости вращения, вычисленной на этапе S7, или равно абсолютному значению порогового значения степени изменения входной скорости вращения. Когда ответ - да (|степень изменения входной скорости вращения| ≥ |порогового значения степени изменения входной скорости вращения|), процесс переходит к этапу S15. Когда ответ - нет (|степень изменения входной скорости вращения| < |порогового значения степени изменения входной скорости вращения|), процесс переходит к этапу S11. Абсолютное значение порогового значения степени изменения входной скорости вращения устанавливается большим, когда возможно оценить вращательные колебания двигателя Eng как большие (например, в условиях высокой скорости вращения холостого хода в холодном состоянии), чем когда возможно оценить вращательные колебания двигателя Eng как небольшие (например, в условиях нормальной скорости вращения холостого хода после прогрева). В частности, как показано на фиг.7, абсолютное значение порогового значения степени изменения входной скорости вращения устанавливается постепенно возрастающим в отрицательном направлении, когда входная скорость вращения в автоматической коробке AT передач увеличивается.

На этапе S11, следом за решением о том, что |степень изменения входной скорости вращения| < |порогового значения степени изменения входной скорости вращения| на этапе S10, объединенный контроллер 10 оценивает, больше или нет последнее значение величины изменения крутящего момента мотора, вычисленное на этапе S8, или равно пороговому значению величины изменения крутящего момента мотора. Когда ответ - да (величина изменения крутящего момента мотора ≥ порогового значения величины изменения крутящего момента мотора), процесс переходит к этапу S15. Когда ответ - нет (величина изменения крутящего момента мотора < порогового значения величины изменения крутящего момента мотора), процесс переходит к этапу S12. Пороговое значение величины изменения крутящего момента устанавливается большим, когда возможно оценить вращательные колебания двигателя Eng как большие (например, когда управление скоростью вращения мотора выполняется для поддержания высокой скорости вращения холостого хода в холодном состоянии), чем когда возможно оценить вращательные колебания двигателя Eng как небольшие (например, когда управление скоростью вращения мотора выполняется для поддержания нормальной скорости вращения холостого хода после прогрева). В частности, как показано на фиг.8, пороговое значение величины изменения крутящего момента мотора устанавливается в постоянное значение прежде, чем входная скорость вращения в автоматической коробке AT передач достигнет заданной скорости Nin1 вращения, и устанавливается так, что пороговое значение величины изменения крутящего момента мотора увеличивается постепенно, по мере того как входная скорость вращения увеличивается после превышения заданной скорости Nin1 вращения.

На этапе S12, следом за оценкой того, что величина изменения крутящего момента мотора < порогового значения величины изменения крутящего момента мотора на этапе S11, объединенный контроллер 10 оценивает, больше или нет абсолютное значение последнего значения величины изменения входной скорости вращения, вычисленное на этапе S5, или равно абсолютному значению порогового значения величины изменения входной скорости вращения. Когда ответ - да (|величина изменения входной скорости вращения| ≥ |порогового значения величины изменения входной скорости вращения|), процесс переходит к этапу S15. Когда ответ - нет (|величина изменения входной скорости вращения| < |порогового значения величины изменения входной скорости вращения|), процесс переходит к этапу S13. Абсолютное значение порогового значения величины изменения входной скорости вращения задается посредством измерения величины уменьшения входной скорости вращения экспериментальным путем или т.п., при этом входная скорость вращения уменьшается вследствие увеличения нагрузки трансмиссии посредством начала сцепления второго тормоза B2 (а именно, тормоза LOW/B низших передач).

На этапе S13, следом за оценкой того, что |величина изменения входной скорости вращения| < |порогового значения величины изменения входной скорости вращения| на этапе S12, объединенный контроллер 10 оценивает, меньше или нет абсолютное значение входной скорости вращения в автоматической коробке AT передач (а именно, скорость Nm вращения мотора от датчика 21 скорости вращения мотора) или равно абсолютному значению порогового значения входной скорости вращения. Когда ответ - да (|входная скорость вращения| ≤ |порогового значения входной скорости вращения|), процесс переходит к этапу S15. Когда ответ - нет (|входная скорость вращения| > |порогового значения входной скорости вращения|), процесс переходит к этапу S14. Абсолютное значение порогового значения входной скорости вращения задается посредством определения значения входной скорости вращения экспериментальным путем или т.п., при этом входная скорость вращения уменьшается вследствие увеличения нагрузки трансмиссии посредством начала сцепления второго тормоза B2 (а именно, тормоза LOW/B низших передач).

На этапе S14, следом за оценкой того, что |входная скорость вращения| > |порогового значения входной скорости вращения| на этапе S13, объединенный контроллер 10 оценивает, действительно или нет время таймера, прошедшее после ND-переключения, становится больше или равно максимальному временному периоду управления ходом поршня. Когда ответ - да (время таймера, прошедшее после ND-переключения, ≥ максимального временного периода управления ходом поршня), процесс переходит к этапу S15. Когда ответ - нет (время таймера, прошедшее после ND-переключения, < максимального временного периода управления ходом поршня), процесс возвращается к этапу S4. Максимальный временной период управления ходом поршня определяется на основе экспериментальных данных о временном периоде от начала управления ходом поршня до окончания управления ходом поршня, которые получаются вместе с переменной входной скоростью вращения коробки передач, температурой масла и т.д. Например, максимальный временной период управления ходом поршня устанавливается в максимальное из экспериментальных значений временного периода в конце управления ходом поршня.

На этапе S15 объединенный контроллер 10 выводит флаг оценки начала сцепления в ответ на оценку того, что на одном из этапов S10-S14, в качестве этапов оценки начала сцепления, условие для оценки начала сцепления удовлетворяется и процесс переходит к окончанию. Когда второй тормоз B2 (а именно, тормоз LOW/B низших передач) оценивается как начавший сцепляться, объединенный контроллер 10 начинает управление WSC-режима посредством сцепления с возможностью проскальзывания для компенсации дифференциального вращения между двигателем Eng и левым и правым задними колесами RL, RR, в то же время управляя регулированием перегрузочной способности по сцеплению для получения передаваемого крутящего момента согласно требуемому крутящему моменту приведения в движение.

Последующее описание описывает действия устройства управления для FR-гибридного транспортного средства согласно первому варианту осуществления в отдельных разделах "Причина необходимости точной оценки начала сцепления", "Действие при оценке начала сцепления при операции переключения с N-диапазона на D-диапазон", "Действие настройки порогового значения степени изменения входной скорости вращения и порогового значения величины изменения крутящего момента мотора" и "Действие управления WSC-режима на основе оценки начала сцепления в условиях высокого холостого хода".

Причина необходимости точной оценки начала сцепления

В случае оценки начала сцепления во время операции переключения с N-диапазона на D-диапазон, управление WSC-режима с указанием нулевого крутящего момента начинается в ответ на оценку начала сцепления в качестве триггера. Соответственно, настоящая логика оценки необходима для точной оценки начала сцепления.

В частности, второй тормоз B2 (а именно, тормоз LOW/B низших передач), который начинает сцепляться в ответ на операцию переключения с N-диапазона на D-диапазон, управляется в WSC-режиме, после того как второй тормоз B2 оценен как начавший сцепляться. В этом управлении WSC-режима требуемый крутящий момент приведения в движение равен нулю, когда транспортное средство неподвижно с включенным тормозом, так что крутящий момент, передаваемый вторым тормозом B2, управляется, чтобы быть очень маленьким. В этих условиях гидравлическое давление должно быть больше или равно гидравлическому давлению, предоставляющему возможность управляемому поршню удерживаться в условиях завершения хода, и быть ниже или равно гидравлическому давлению, предотвращающему значительное падение рабочего ресурса второго тормоза B2 вследствие проскальзывания. А именно, необходимо сохранять состояние готовности с более низким гидравлическим давлением, чем гидравлическое давление, используемое для оценки завершения хода поршня.

Поскольку второй тормоз B2 сцепляется с возможностью проскальзывания согласно требуемому крутящему моменту приведения в движение после оценки начала сцепления, длительный период времени необходим, чтобы выполнить ход поршня, даже после начала управления WSC-режима, если второй тормоз B2 некорректно оценен как начавший сцепляться, хотя второй тормоз B2 еще не начал сцепляться. Когда водитель запрашивает начало движения транспортного средства посредством операции выключения тормоза и нажатия на педаль акселератора, в то время как выполняется ход поршня, перегрузочную способность по крутящему моменту сцепления второго тормоза B2 не удается повысить даже с повышением гидравлического давления, так что может возникать толчок вследствие временного запаздывания или быстрого сцепления до повышения крутящего момента. Это заставляет водителя чувствовать дискомфорт вследствие временной задержки или толчка, поскольку чувствительность водителя к перегрузкам высока в условиях, когда транспортное средство начинает движение из неподвижного состояния.

С другой стороны, если второй тормоз B2 некорректно оценен как начавший сцепляться после фактического начала сцепления, гидравлическое давление стало выше в начале управления WSC-режима, чем предписанное гидравлическое давление, используемое для оценки выполнения хода поршня. Соответственно, даже если гидравлическое давление понижено для состояния готовности после начала управления WSC-режима, гидравлическое давление в состоянии готовности для второго тормоза B2 поддерживается в гидравлическом давлении, вызывающем максимальный крутящий момент. Соответственно, если временной период от времени операции переключения с N- в D-диапазон до времени начала движения транспортного средства становится длительным, продолжение сцепления с возможностью проскальзывания второго тормоза B2, в котором пластины второго тормоза B2 прижаты, формирует тепло трения и, таким образом, неблагоприятно влияет на рабочий ресурс и надежность второго тормоза B2. Поскольку скорость вращения левого и правого задних колес RL, RR равна нулю, когда транспортное средство неподвижно с состоянием готовности гидравлического давления, скорость вращения двигателя Eng непосредственно равна дифференциальной скорости вращения второго тормоза B2, которая должна быть компенсирована посредством сцепления с возможностью проскальзывания.

Соответственно, точная оценка начала сцепления (оценка выбирания зазора) необходима для улучшения регулируемости в управлении WSC-режима после оценки начала сцепления.

Действие оценки начала сцепления при операции переключения с N-диапазона на D-диапазон

Действие оценки начала сцепления при операции переключения с N-диапазона на D-диапазон согласно первому варианту осуществления, которая предоставляется с помощью текущей логики оценки, способной точно оценивать начало сцепления, со ссылкой на блок-схему последовательности операций показано на фиг.6.

Когда транспортное средство неподвижно с выбранным N-диапазоном, последовательность операций от этапа S1 через этап S2 до конца многократно выполняется в блок-схеме последовательности операций на фиг.6. А именно, на этапе S2 управление скоростью вращения мотора выполняется с целевой скоростью вращения, установленной в целевую скорость вращения холостого хода (переменную скорость вращения) двигателя Eng. В этом управлении скоростью вращения мотора целевая скорость вращения устанавливается по одному из следующих трех шаблонов.

(a) В холодном состоянии, когда температура охлаждающей жидкости двигателя находится в очень низком диапазоне, например, когда транспортное средство запускается в холодную погоду, целевая скорость вращения устанавливается в высокую скорость вращения холостого хода, которая выше нормальной скорости вращения холостого хода, чтобы содействовать прогреву двигателя Eng.

(b) Когда температура охлаждающей жидкости двигателя растет вследствие процесса прогрева двигателя Eng на основе управления высокой скоростью вращения холостого хода, целевая скорость вращения устанавливается постепенно уменьшающейся от высокой скорости вращения холостого хода до нормальной скорости вращения холостого хода.

(c) Когда температура охлаждающей жидкости двигателя выше или равна предварительно определенной температуре после операции прогрева двигателя Eng, целевая скорость вращения устанавливается удерживаемой в нормальной скорости вращения холостого хода.

Впоследствии, когда водитель выполняет операцию переключения с N-диапазона на D-диапазон, процесс переходит от этапа S1 к этапу S3 в блок-схеме последовательности операций на фиг.6. На этапе S3 управление скоростью вращения мотора выполняется, чтобы изменять целевую скорость вращения управления скоростью вращения мотора во время выбора N-диапазона (переменная скорость вращения) на входную скорость вращения коробки передач во время операции переключения с N-диапазона на D-диапазон (фиксированная скорость вращения) и затем удерживать целевую скорость вращения на постоянной входной скорости вращения.

Следом за этапом S3 процесс переходит от этапа S4 через этап S5 к этапу S6 в блок-схеме последовательности операций на фиг.6. На этапе S6 оценивается, действительно или нет время таймера, прошедшее после ND-переключения, превышает или становится равным предварительно определенному временному периоду запрета вычисления оценки выбирания зазора. Пока оценивается, что время таймера, прошедшее после ND-переключения, < предварительно определенного временного периода запрета вычисления оценки выбирания зазора, последовательность операций от этапа S4 через этап S5 к этапу S6 повторяется. А именно, на этапе S4 подсчитывается время таймера, прошедшее после ND-переключения, указывающее прошедший временной период от времени операции переключения с N-диапазона на D-диапазон, а на этапе S5 вычисляется величина изменения входной скорости вращения, при этом величина изменения входной скорости вращения является величиной уменьшения скорости вращения с входной скорости вращения коробки передач во время операции переключения с N-диапазона на D-диапазон.

Затем, когда время таймера, прошедшее после ND-переключения, превышает или становится равным временному периоду запрета вычисления оценки выбирания зазора, процесс переходит от этапа S6 через этап S7 и этап S8 к этапу S9. На этапе S9 оценивается, действительно или нет время таймера, прошедшее после ND-переключения, ≥ минимального временного периода управления ходом поршня. Пока оценивается, что время таймера, прошедшее после ND-переключения, < минимального временного периода управления ходом поршня, последовательность операций от этапа S4 через этап S5, этап S6, этап S7 и этап S8 до этапа S9 повторяется. А именно, на этапе S7 вычисляется степень изменения входной скорости вращения, где степень изменения входной скорости вращения является степенью изменения скорости вращения входного вала Input коробки передач, а на этапе S8 вычисляется величина изменения крутящего момента мотора, где величина изменения крутящего момента мотора является величиной изменения нагрузки мотор-генератора MG.

Впоследствии, когда время таймера, прошедшее после ND-переключения, превышает или становится равным временному периоду запрета вычисления оценки выбирания зазора и, более того, превышает или становится равным минимальному временному периоду управления ходом поршня, начинается операция оценки, состоящая из следующих пяти стадий на и после этапа S10.

(Первое условие оценки начала сцепления на этапе S10) Первое условие оценки начала сцепления является условием того, что абсолютное значение степени изменения входной скорости вращения больше или равно пороговому значению степени изменения входной скорости вращения. Когда на этапе S10 оценивается, что |степень изменения входной скорости вращения| < |порогового значения входной скорости вращения|, процесс переходит к следующему этапу S11. Когда на этапе S10 оценивается, что |степень изменения входной скорости вращения| ≥ |порогового значения изменения входной скорости вращения|, процесс переходит к следующему этапу S15, где выводится флаг оценки начала сцепления.

(Второе условие оценки начала сцепления на этапе S11) Второе условие оценки начала сцепления является условием того, что величина изменения крутящего момента мотора больше или равна пороговому значению величины изменения крутящего момента мотора. Когда на этапе S11 оценивается, что величина изменения крутящего момента мотора < порогового значения величины изменения крутящего момента мотора, процесс переходит к этапу S12. Когда на этапе S11 оценивается, что величина изменения крутящего момента мотора ≥ порогового значения величины изменения крутящего момента мотора, процесс переходит к этапу S15, где выводится флаг оценки начала сцепления.

(Третье условие оценки начала сцепления на этапе S12) Третье условие оценки начала сцепления является условием того, что абсолютное значение величины изменения входной скорости вращения больше или равно абсолютному значению порогового значения величины изменения входной скорости вращения. Когда на этапе S12 оценивается, что |величина изменения входной скорости вращения| < |порогового значения величины изменения входной скорости вращения|, процесс переходит к этапу S13. Когда на этапе S12 оценивается, что |величина изменения входной скорости вращения| ≥ |порогового значения величины изменения входной скорости вращения|, процесс переходит к этапу S15, где выводится флаг оценки начала сцепления.

(Четвертое условие оценки начала сцепления на этапе S13) Четвертое условие оценки начала сцепления является условием того, что абсолютное значение входной скорости вращения ниже или равно абсолютному значению порогового значения входной скорости вращения, другими словами, условием того, что величина уменьшения входной скорости вращения относительно целевой скорости вращения в качестве "параметра, который изменяется вместе с вращательными колебаниями источника приведения в движение" больше или равна пороговому значению. Когда на этапе S13 оценивается, что |входная скорость вращения| > |порогового значения входной скорости вращения|, процесс переходит к этапу S14. Когда на этапе S13 оценивается, что |входная скорость вращения| ≤ |порогового значения входной скорости вращения|, процесс переходит к этапу S15, где выводится флаг оценки начала сцепления.

(Пятое условие оценки начала сцепления на этапе S14) Пятое условие оценки начала сцепления является условием того, что время таймера, прошедшее после ND-переключения, стало больше или равно максимальному временному периоду управления ходом поршня. Когда на этапе S14 оценивается, что время таймера, прошедшее после ND-переключения, < максимального временного периода управления ходом поршня, процесс возвращается к этапу S4. Когда на этапе S14 оценивается, что время таймера, прошедшее после ND-переключения, ≥ максимального временного периода управления ходом поршня, процесс переходит к этапу S15, где выводится флаг оценки начала сцепления.

Таким образом, действие оценки начала сцепления при операции переключения с N-диапазона на D-диапазон согласно первому варианту осуществления применяет логику оценки, имеющую следующие признаки (1) и (2).

(1) В качестве решения для предотвращения некорректной оценки для случая, когда выполняется операция переключения в D-диапазон, когда целевая скорость вращения холостого хода в N-диапазоне уменьшается постепенно с высокой скорости вращения холостого хода до нормальной скорости вращения холостого хода, начало оценки запрещается до тех пор, пока предварительно определенный временной период не пройдет после операции переключения с N-диапазона на D-диапазон. А именно, момент начала оценки, который был во время операции переключения с N-диапазона на D-диапазон, задерживается от времени операции переключения с N-диапазона на D-диапазон.

(2) В качестве решения для предотвращения некорректной оценки для случая, когда операция переключения в D-диапазон выполняется в условиях высокого холостого хода на основе высокой скорости вращения холостого хода, абсолютное значение для порогового значения степени изменения входной скорости вращения и порогового значения величины изменения крутящего момента мотора устанавливаются по-разному согласно входной скорости вращения (а именно, скорости вращения холостого хода). А именно, пороговые значения оценки, которые были установлены в постоянные значения, устанавливаются в переменные значения, которые являются переменными согласно входной скорости вращения (а именно, скорости вращения холостого хода).

Действие установки порогового значения степени изменения входной скорости вращения и порогового значения величины изменения крутящего момента мотора

В условиях высокого холостого хода вращательные колебания двигателя Eng являются большими, так что вероятность некорректной оценки относительно начала сцепления высока. В таких условиях высокого холостого хода также необходимо предотвращать некорректную оценку относительно начала сцепления. Последующее описание описывает действие установки порогового значения степени изменения входной скорости вращения и порогового значения величины изменения крутящего момента мотора со ссылкой на фиг.9-11.

Что касается степени изменения входной скорости вращения, которая является параметром для оценки начала сцепления, абсолютное значение порогового значения степени изменения входной скорости вращения устанавливается постепенно возрастающим в отрицательном направлении, по мере того как входная скорость вращения в автоматической коробке AT передач увеличивается, на этапе S10 на фиг.6 (см. фиг.7).

А именно, степень изменения входной скорости вращения представляет степень изменения входной скорости вращения (а именно, наклон изменения входной скорости вращения) вследствие колебания скорости вращения холостого хода (в дальнейшем называемой колебанием холостого хода). Когда эксперимент относительно оценки начала сцепления был выполнен по отношению к входной скорости вращения, были получены экспериментальные данные, которые показывают характеристики изменения, что степень изменения входной скорости вращения вследствие колебания холостого хода увеличивается, когда входная скорость вращения в автоматической коробке AT передач (а именно, скорость вращения холостого хода) увеличивается, как показано на фиг.9. А именно, как показано сплошной линией на фиг.9, необходимо предотвращать выполнение оценки начала сцепления, даже когда степень изменения входной скорости вращения вследствие колебания холостого хода максимизируется.

Таким образом, когда входная скорость вращения увеличивается, степень изменения входной скорости вращения, когда элемент фрикционного сцепления начинает сцепляться (отрицательное значение), уменьшается (увеличивается в абсолютном значении). Соответственно, когда этот параметр (степень изменения входной скорости вращения) используется в качестве информации для оценки начала сцепления, абсолютное значение порогового значения степени изменения входной скорости вращения устанавливается большим в условиях высокой скорости вращения холостого хода и больших колебаний холостого хода, когда двигатель находится в холодном состоянии, чем в условиях нормальной скорости вращения холостого хода и небольших колебаний холостого хода, после того как двигатель прогрелся. Это служит для предотвращения некорректной оценки относительно начала сцепления в условиях высокого холостого хода, когда входная скорость вращения является высокой, и служит для точной оценки начала сцепления второго тормоза B2 на основе степени изменения входной скорости вращения в качестве параметра.

Что касается величины изменения крутящего момента мотора, которая является параметром для оценки начала сцепления, пороговое значение величины изменения крутящего момента мотора устанавливается постоянным до тех пор, пока входная скорость вращения для автоматической коробки AT передач не достигнет заданной скорости Nin1 вращения, и устанавливается, после превышения заданной скорости Nin1 вращения, постепенно увеличивающейся, когда входная скорость вращения увеличивается (см. фиг.8).

А именно, когда эксперимент для оценки начала сцепления был выполнен относительно входной скорости вращения, были получены экспериментальные данные, которые показывают характеристики изменения, что величина изменения крутящего момента мотора вследствие колебания холостого хода увеличивается, когда входная скорость вращения для автоматической коробки AT передач (а именно, скорость вращения холостого хода) увеличивается, как показано на фиг.10. А именно, как показано сплошной линией на фиг.10, необходимо предотвращать выполнение оценки начала сцепления, даже когда степень изменения входной скорости вращения вследствие колебания холостого хода максимизируется. Соответственно, пороговое значение величины изменения крутящего момента мотора, показанное на фиг.8, определяется посредством комбинации характеристики максимума величины крутящего момента мотора вследствие колебания холостого хода и постоянного порогового значения величины изменения крутящего момента мотора согласно сравнительному примеру и добавления величины ошибки.

Таким образом, когда колебания холостого хода являются большими, когда управление скоростью вращения мотора выполняется, чтобы удерживать целевую скорость вращения постоянной, крутящий момент мотора становится большим, чтобы удерживать скорость вращения в постоянной целевой скорости вращения с пресечением колебаний холостого хода, так что величина изменения крутящего момента мотора увеличивается пропорционально величине колебаний холостого хода. Соответственно, когда этот параметр (величина изменения крутящего момента мотора) используется в качестве информации для оценки начала сцепления, пороговое значение величины изменения крутящего момента мотора устанавливается большим в условиях высокой скорости вращения холостого хода и больших колебаний холостого хода, когда двигатель находится в холодном состоянии, чем в условиях нормальной скорости вращения холостого хода и небольших колебаний холостого хода, после того как двигатель прогрелся. Это служит для предотвращения некорректной оценки относительно начала сцепления в условиях высокого холостого хода, когда входная скорость вращения является высокой, и служит для точной оценки начала сцепления второго тормоза B2 на основе величины изменения крутящего момента мотора в качестве параметра.

Действие управления WSC-режима на основе оценки начала сцепления в условиях высокого холостого хода

Оценка начала сцепления и начало WSC-режима находятся в тесной взаимосвязи друг с другом, поскольку управление WSC-режима начинается после оценки начала сцепления, когда операция переключения с N-диапазона на D-диапазон выполняется в условиях высокой скорости вращения холостого хода. Последующее описание описывает действие управления WSC-режима на основе оценки начала сцепления в условиях высокого холостого хода, которое отражает соотношение, описанное выше, со ссылкой на фиг.12.

Например, когда выбирается N-диапазон, когда двигатель находится в холодном состоянии, когда температура охлаждающей жидкости двигателя находится в очень низком диапазоне, целевая скорость вращения устанавливается в высокую скорость вращения холостого хода, более высокую, чем нормальная скорость вращения холостого хода, и в этих условиях фактическая скорость вращения показывает характеристику колебаний холостого хода, которая колеблется вверх и вниз, чтобы поддерживать высокую скорость вращения холостого хода, как показано характеристикой входной скорости вращения перед моментом t1 времени на фиг.12.

В момент t1 времени в условиях высокого холостого хода, когда выполняется операция переключения с N-диапазона на D-диапазон, как показано характеристикой командного давления на фиг.12, командное давление устанавливается максимизированным посредством резкого повышения давления в течение периода от момента t1 времени до момента t2 времени. Затем, во время периода от момента t2 времени до момента t3 времени, командное давление устанавливается немного более низким посредством предварительной накачки, чем максимальное командное давление, и затем уменьшается в момент t3 времени и затем устанавливается постепенно увеличивающимся от пониженного командного давления. При таком управлении командным давлением фактическое давление, которое является давлением сцепления второго тормоза B2, плавно растет, как показано характеристикой фактического давления на фиг.12.

Когда проходит время от момента t3 времени до момента t4 времени, входная скорость вращения уменьшается вследствие нагрузки сцепления второго тормоза B2, так что крутящий момент мотора (нагрузка мотора) повышается, чтобы увеличивать входную скорость вращения из пониженного состояния до высокой скорости вращения холостого хода. Затем, в момент t4 времени, когда величина изменения крутящего момента мотора становится больше или равна пороговому значению величины изменения крутящего момента мотора, оценивается, что сцепление второго тормоза B2 началось (выбирание зазора второго тормоза B2 оценивается как выполненное). При такой оценке начала сцепления пороговое значение величины изменения крутящего момента мотора устанавливается большим, когда скорость вращения холостого хода является высокой в холодном состоянии, чем когда скорость вращения холостого хода является нормальной после прогрева, так что начало сцепления второго тормоза B2 оценивается точно.

После момента t4 времени управление WSC-режима начинается на основе сцепления с возможностью проскальзывания, которое компенсирует дифференциальное вращение между двигателем Eng и левым и правым задними колесами RL, RR, в то же время управляя перегрузочной способностью по сцеплению для получения передаваемого крутящего момента согласно требуемому крутящему моменту приведения в движение. А именно, после момента t4 времени, когда транспортное средство неподвижно с включенным тормозом, требуемый крутящий момент приведения в движение равен нулю, так что командное значение управляется, чтобы уменьшаться постепенно до момента t5 времени для того, чтобы вынуждать крутящий момент, передаваемый через второй тормоз B2, быть очень маленьким. В этих условиях, посредством точной оценки начала сцепления второго тормоза B2 гидравлическое давление управляется до гидравлического давления в режиме готовности, которое больше или равно гидравлическому давлению, предоставляющему возможность удержания управляемого поршня второго тормоза B2 в условиях завершения хода, и ниже или равно гидравлическому давлению, предотвращающему значительное падение рабочего ресурса второго тормоза B2 вследствие проскальзывания.

Это предотвращает то, что временная задержка или толчок доставляют водителю дискомфорт, как в случае, когда начало сцепления второго тормоза B2 оценивается некорректно, хотя сцепление второго тормоза B2 не началось. А именно, после момента t5 времени, например, если командное давление повысилось согласно росту требуемого крутящего момента приведения в движение, когда водитель выполняет операцию включения акселератора после операции выключения тормоза, чтобы запрашивать начало движения транспортного средства, перегрузочная способность по крутящему моменту сцепления второго тормоза B2 растет с быстрым откликом, тем самым предотвращая возникновение толчка вследствие временной задержки до повышения крутящего момента или вследствие быстрого сцепления.

С другой стороны, предотвращается неблагоприятное влияние на рабочий ресурс и надежность второго тормоза B2, как в случае, когда начало сцепления второго тормоза B2 оценено некорректно, хотя сцепление второго тормоза B2 уже началось. А именно, после момента t5 времени, например, когда водитель сохраняет состояние включенного тормоза, состояние сцепления с возможностью проскальзывания продолжается за счет гидравлического давления режима готовности, которое не вызывает сцепления пластин второго тормоза B2, когда подавляется возникновение теплоты трения.

Соответственно, во время операции переключения с N-диапазона на D-диапазон в условиях высокой скорости вращения холостого хода точная оценка начала сцепления второго тормоза B2 (а именно, оценка относительно выбирания зазора) служит для улучшения регулируемости при управлении WSC-режима после оценки начала сцепления.

Последующее описание описывает результаты, полученные посредством устройства управления для FR-гибридного транспортного средства согласно первому варианту осуществления.

(1) Устройство управления транспортного средства включает в себя: источник приведения в движение, включающий в себя, по меньшей мере, двигатель Eng; элемент фрикционного сцепления (второй тормоз B2), предусмотренный на пути передачи движущей силы от источника приведения в движение (двигателя Eng) к ведущему колесу (левому и правому задним колесам RL, RR), при этом элемент фрикционного сцепления сцепляется, когда выбирается диапазон приведения в движение (D-диапазон или т.п.); и средство оценки начала сцепления (фиг.6), которое оценивает, в ответ на условие, что элемент фрикционного сцепления (второй тормоз B2) начал сцепляться, при этом условие является условием того, что параметр (степень изменения входной скорости вращения, величина изменения крутящего момента мотора и т.д.) превысил или стал равным предварительно определенному пороговому значению в начальной области управления сцеплением элемента фрикционного сцепления (второго тормоза B2), при этом параметр изменяется вместе с вращательными колебаниями источника приведения в движение (двигателя Eng); при этом средство оценки начала сцепления (фиг.6) устанавливает абсолютное значение предварительно определенного порогового значения большим, когда возможно оценить, что вращательные колебания источника приведения в движение (двигателя Eng) большие, чем когда возможно оценить, что вращательные колебания источника приведения в движение (двигателя Eng) небольшие (этап S10, этап S11). Это служит для предотвращения некорректной оценки относительно начала сцепления элемента фрикционного сцепления (второго тормоза B2), когда возможно оценить вращательные колебания источника приведения в движение (двигателя Eng) как большие.

(2) Средство оценки начала сцепления (фиг.6) оценивает вращательные колебания как большие, когда двигатель Eng находится в процессе прогрева, и оценивает вращательные колебания как небольшие, когда двигатель Eng находится в нормальном процессе холостого хода после процесса прогрева. Это служит для предотвращения некорректной оценки относительно начала сцепления элемента фрикционного сцепления (второго тормоза B2), когда двигатель Eng находится в процессе прогрева, так что вращательные колебания двигателя Eng являются большими вследствие установки целевой скорости вращения двигателя Eng в высокую скорость вращения холостого хода.

(3) Средство оценки начала сцепления (фиг.6) применяет в качестве параметра степень изменения входной скорости вращения, которая является степенью изменения скорости вращения входного вала элемента фрикционного сцепления (второго тормоза B2), при этом степень изменения входной скорости вращения изменяется вместе с вращательными колебаниями источника приведения в движение (двигателя Eng) (этап S10). Это служит для предотвращения некорректной оценки относительно начала сцепления в условиях высокого холостого хода, где входная скорость вращения является высокой, и служит для точной оценки начала сцепления элемента фрикционного сцепления (второго тормоза B2) на основе степени изменения входной скорости вращения в качестве параметра, в дополнение к результату (1) или (2).

(4) Источник приведения в движение включает в себя мотор (мотор-генератор MG) в дополнение к двигателю Eng; устройство управления транспортного средства включает в себя средство управления поддержанием входной скорости вращения (этап S3 на фиг.6), которое выполняет, посредством управления скоростью вращения мотора (мотор-генератора MG), управление для поддержания входной скорости вращения элемента фрикционного сцепления (второго тормоза B2) в целевой скорости вращения, которая равна входной скорости вращения в начале управления сцеплением; и средство оценки начала сцепления (фиг.6) применяет в качестве параметра величину изменения крутящего момента мотора, которая является величиной изменения нагрузки мотора (мотор-генератора MG), которая изменяется согласно управлению поддержанием входной скорости вращения (этап S11). Это служит для предотвращения некорректной оценки относительно начала сцепления в условиях высокого холостого хода, где входная скорость вращения является высокой, и служит для точной оценки начала сцепления элемента фрикционного сцепления (второго тормоза B2) на основе величины изменения крутящего момента мотора в качестве параметра, в дополнение к результату (1) или (2).

(5) Источник приведения в движение включает в себя мотор (мотор-генератор MG) в дополнение к двигателю Eng; устройство управления транспортного средства включает в себя средство управления поддержанием входной скорости вращения, которое выполняет, посредством управления скоростью вращения мотора (мотор-генератора MG), управление для поддержания входной скорости вращения элемента фрикционного сцепления (второго тормоза B2) в целевой скорости вращения, которая равна входной скорости вращения в начале управления сцеплением (этап S3 на фиг.6); средство оценки начала сцепления (фиг.6) применяет в качестве параметра степень изменения входной скорости вращения, которая является степенью изменения скорости вращения входного вала элемента фрикционного сцепления (второго тормоза B2), при этом степень изменения входной скорости вращения изменяется вместе с вращательными колебаниями источника приведения в движение (двигателя Eng), и величину изменения крутящего момента мотора, которая является величиной изменения нагрузки мотора (мотор-генератора MG), которая изменяется согласно управлению поддержанием входной скорости вращения; и средство оценки начала сцепления устанавливает большее абсолютное значение порогового значения каждой из степени изменения входной скорости вращения и величины изменения крутящего момента мотора, когда возможно оценить, что вращательные колебания источника приведения в движение являются большими, чем когда возможно оценить, что вращательные колебания источника приведения в движение являются небольшими (этап S10, этап S11). Это служит для дополнительного улучшения точности оценки начала сцепления в условиях высокого холостого хода, где входная скорость вращения высока, посредством оценки на основе как степени изменения входной скорости вращения, так и величины изменения крутящего момента мотора, в дополнение к результату (1) или (2).

(6) Элемент фрикционного сцепления (второй тормоз B2) является элементом начала движения, при этом управление сцеплением элемента фрикционного сцепления (второго тормоза B2) начинается в ответ на операцию переключения автоматической коробки передач с диапазона без приведения в движение (N-диапазона) в диапазон приведения в движение (D-диапазон); и устройство управления транспортного средства включает в себя средство управления сцеплением с возможностью проскальзывания (средство управления WSC-режима), которое начинает управление сцеплением с возможностью проскальзывания для компенсации дифференциального вращения между источником приведения в движение (двигатель Eng или двигатель Eng + мотор-генератор MG) и ведущим колесом (левое и правое задние колеса RL, RR) с выполнением управления перегрузочной способностью по сцеплению для получения передаваемого крутящего момента согласно требуемому крутящему моменту приведения в движение в ответ на оценку средством оценки начала сцепления (фиг.6) того, что элемент фрикционного сцепления (второй тормоз B2) начал сцепляться. Это служит для улучшения регулируемости при управлении WSC-режима после оценки начала сцепления посредством точной оценки относительно начала сцепления элемента фрикционного сцепления (второго тормоза B2), когда выполняется операция переключения с N-диапазона на D-диапазон, в дополнение к результатам (1)-(3).

Хотя устройство управления транспортного средства согласно настоящему изобретению описано со ссылкой на первый вариант осуществления, конкретная конфигурация не ограничивается первым вариантом осуществления, а может быть применена с модификацией конструкции или дополнением конструкции, пока она не выходит за пределы предмета изучения настоящего изобретения, определенные формулой изобретения.

В первом варианте осуществления условие, когда возможно оценить вращательные колебания источника приведения в движение как большие, реализуется посредством примера, где они оцениваются на основе того, находится или нет двигатель в процессе прогрева. Более конкретно, это условие реализуется посредством примера условия того, что скорость вращения ведущего вала коробки передач является высокой. Однако условие, когда возможно оценить вращательные колебания источника приведения в движение как большие, а именно находится или нет двигатель в состоянии прогрева, может быть реализовано посредством примера условия того, что температура охлаждающей жидкости двигателя является низкой, при этом абсолютное значение порогового значения устанавливается увеличивающимся, когда температура охлаждающей жидкости двигателя понижается.

В первом варианте осуществления показан пример управления при операции переключения с N-диапазона на D-диапазон. Однако изобретение применимо к операции переключения с N-диапазона на R-диапазон и операции быстрого переключения во время операции переключения с D-диапазона на R-диапазон или операции переключения с R-диапазона на D-диапазон. Изобретение не ограничено условием операции переключения диапазона, а может быть применено к системе, в которой оценивается выбирание зазора элемента фрикционного сцепления, при этом элемент фрикционного сцепления сцепляется во время переключения передач или т.п.

В первом варианте осуществления, что касается степени изменения входной скорости вращения и величины изменения крутящего момента мотора, показан пример, в котором абсолютное значение порогового значения степени изменения входной скорости вращения и абсолютное значение порогового значения величины изменения крутящего момента мотора устанавливаются возрастающими, когда входная скорость вращения увеличивается. Однако абсолютное значение только одного из порогового значения степени изменения входной скорости вращения и порогового значения величины изменения крутящего момента мотора может быть установлено возрастающим, когда входная скорость вращения увеличивается. Более того, также, что касается пороговых значений величины изменения входной скорости вращения и входной скорости вращения, абсолютное значение порогового значения может быть установлено возрастающим, когда входная скорость вращения увеличивается.

В первом варианте осуществления показан пример, в котором устройство управления транспортного средства настоящего изобретения применено к FR-гибридному транспортному средству. Однако устройство управления транспортного средства настоящего изобретения может быть применено к FF-гибридному транспортному средству или транспортному средству с двигателем. В общих словах, оно применимо к любому транспортному средству, которое включает в себя двигатель в качестве источника приведения в движение и включает в себя элемент фрикционного сцепления на пути передачи движущей силы.

Второй вариант осуществления изобретения

Последующее описание описывает второй вариант осуществления настоящего изобретения. Описание, общее с первым вариантом осуществления, описанным выше, опущено, и, главным образом, описывается часть, отличная от первого варианта осуществления. В гибридном транспортном средстве второго варианта осуществления вспомогательный маслонасос S-O/P удален из конфигурации первого варианта осуществления, показанной на фиг.1, для того, чтобы упрощать конфигурацию посредством уменьшения числа частей. Поскольку конфигурация не включает в себя вспомогательный маслонасос S-O/P, главный маслонасос M-O/P вращается за счет управления скоростью вращения мотор-генератора MG, чтобы обеспечивать подачу гидравлического давления к автоматической коробке AT передач в условиях того, что первая муфта CL1 (второй элемент фрикционного сцепления) расцеплена (например, не находится в состоянии операции прогрева), при этом первая муфта CL1 предусмотрена на пути передачи мощности между двигателем Eng и мотор-генератором MG. С другой стороны, также в случае конфигурации без вспомогательного маслонасоса S-O/P, когда SOC аккумулятора 4 находится на низком уровне в условиях того, что транспортное средство неподвижно, выбирается режим выработки электрической энергии, в котором первая муфта CL1 сцеплена, и выработка электрической энергии выполняется с помощью движущей силы двигателя Eng.

В качестве управления скоростью вращения холостого хода для поддержания входной скорости вращения коробки передач на предварительно определенной целевой скорости вращения холостого хода в режиме работы на холостом ходу, режим работы мотора на холостом ходу выполняется посредством управления скоростью вращения мотор-генератора MG, когда первая муфта CL1 расцеплена, тогда как режим работы двигателя на холостом ходу выполняется посредством управления скоростью вращения двигателя Eng (или мотор-генератора MG), когда первая муфта CL1 сцеплена. Поскольку регулируемость мотор-генератора MG лучше, чем регулируемость двигателя Eng, вращательные колебания меньше в условиях работы мотора на холостом ходу, чем в условиях работы двигателя на холостом ходу. А именно, когда первая муфта CL1 сцеплена, входная мощность от двигателя Eng ведет себя как возмущение по отношению к вращательным колебаниям, так что вращательные колебания становятся больше, чем когда первая муфта CL1 расцеплена.

Соответственно, во втором варианте осуществления, что касается установки пороговых значений для оценки начала сцепления во время операции переключения с N-диапазона на D-диапазон, в условиях работы мотора на холостом ходу, а именно в условиях того, что первая муфта CL1 расцеплена, вращательные колебания оцениваются как меньшие, и пороговые значения для оценки начала сцепления устанавливаются меньшими, чем в условиях работы двигателя на холостом ходу, а именно в условиях того, что первая муфта CL1 сцеплена.

Фиг.13 - это блок-схема, показывающая последовательность операций процесса установки пороговых значений оценки согласно второму варианту осуществления, описанному выше. На этапе S21 оценивается, сцеплена или нет первая муфта CL1. Когда первая муфта CL1 сцеплена, а именно, в условиях работы двигателя на холостом ходу, пороговые значения для оценки устанавливаются большими на последующих этапах S22-S25, чем когда первая муфта CL1 расцеплена. В частности, на этапе S22 пороговое значение степени изменения входной скорости вращения на этапе S10 на фиг.6 устанавливается в значение, которое найдено посредством таблицы с аргументом входной скорости вращения AT (автоматической коробки передач) для условия, что первая муфта CL1 сцеплена, что показано пунктирной линией на фиг.14A. На этапе S23 пороговое значение величины изменения крутящего момента мотора на этапе S11 на фиг.6 устанавливается в значение, которое найдено посредством таблицы с аргументами для аргумента входной скорости вращения AT (автоматической коробки передач) для условия, что первая муфта CL1 сцеплена, что показано пунктирной линией на фиг.14B. На этапе S24 пороговое значение величины изменения входной скорости вращения на этапе S12 на фиг.6 устанавливается в значение, которое найдено посредством таблицы с аргументами для аргумента входной скорости вращения AT (автоматической коробки передач) для условия, что первая муфта CL1 сцеплена, которое показано пунктирной линией на фиг.14C. На этапе S25 пороговое значение входной скорости вращения на этапе S13 на фиг.6 устанавливается в значение, которое найдено посредством таблицы с аргументами для аргумента входной скорости вращения AT (автоматической коробки передач) для условия, что первая муфта CL1 сцеплена, что показано пунктирной линией на фиг.14D.

С другой стороны, когда первая муфта CL1 расцеплена, а именно, в условиях работы мотора на холостом ходу, пороговые значения для оценки устанавливаются меньшими на последующих этапах S26-S29, чем когда первая муфта CL1 сцеплена. В частности, на этапе S26 пороговое значение степени изменения входной скорости вращения на этапе S10 на фиг.6 устанавливается в значение, которое найдено посредством таблицы с аргументами для аргумента входной скорости вращения AT (автоматической коробки передач) для условия, что первая муфта CL1 расцеплена, что показано сплошной линией на фиг.14A. На этапе S27 пороговое значение величины изменения крутящего момента мотора на этапе S11 на фиг.6 устанавливается в значение, которое найдено посредством таблицы с аргументами для аргумента входной скорости вращения AT (автоматической коробки передач) для условия, что первая муфта CL1 расцеплена, что показано сплошной линией на фиг.14B. На этапе S28 пороговое значение величины изменения входной скорости вращения на этапе S12 на фиг.6 устанавливается в значение, которое найдено посредством таблицы с аргументами для аргумента входной скорости вращения AT (автоматической коробки передач) для условия, что первая муфта CL1 расцеплена, что показано сплошной линией на фиг.14C. На этапе S29 пороговое значение входной скорости вращения на этапе S13 на фиг.6 устанавливается в значение, которое найдено посредством таблицы с аргументами для аргумента входной скорости вращения AT (автоматической коробки передач) для условия, что первая муфта CL1 расцеплена, что показано сплошной линией на фиг.14D.

Пороговое значение для скорости вращения входного вала, показанной на фиг.14D, устанавливается меньшим, когда первая муфта CL1 сцеплена, чем когда первая муфта CL1 расцеплена. Параметр, соответствующий входной скорости вращения, а именно пороговое значение величины уменьшения входной скорости вращения относительно целевой скорости вращения в качестве параметра, который изменяется вместе с вращательными колебаниями источника приведения в движение, устанавливается меньшим, когда первая муфта CL1 сцеплена, чем когда первая муфта CL1 расцеплена.

Таким образом, во втором варианте осуществления, когда первая муфта CL1 сцеплена, так что вращательные колебания являются большими вследствие возмущения двигателя Eng и других устройств, пороговые значения для оценки устанавливаются большими, чтобы пресекать или предотвращать некорректную оценку относительно начала сцепления элемента фрикционного сцепления (второго тормоза B2) вследствие возмущения и улучшать точность оценки относительно начала сцепления элемента фрикционного сцепления (второго тормоза B2).

Автоматическая коробка передач не ограничена ступенчатыми коробками передач как в первом варианте осуществления и втором варианте осуществления, описанных выше, а может быть бесступенчатой трансмиссией (CVT).

1. Устройство управления транспортного средства, содержащее: источник приведения в движение, включающий в себя, по меньшей мере, двигатель; элемент фрикционного сцепления, расположенный в пути передачи движущей силы от источника приведения в движение к ведущему колесу, при этом элемент фрикционного сцепления сцепляется, когда выбирается диапазон приведения в движение; и средство оценки начала сцепления, которое оценивает, в ответ на условие, что элемент фрикционного сцепления начал сцепляться, при этом условие является условием того, что параметр превысил или стал равным предварительно определенному пороговому значению в начальной области управления сцеплением элемента фрикционного сцепления, причем параметр изменяется вместе с вращательным колебанием источника приведения в движение; при этом средство оценки начала сцепления устанавливает абсолютное значение предварительно определенного порогового значения большим, когда возможно оценить, что вращательное колебание источника приведения в движение является большим, чем когда возможно оценить, что вращательное колебание источника приведения в движение является небольшим.

2. Устройство по п.1, в котором средство оценки начала сцепления оценивает вращательное колебание как большое, когда двигатель находится в процессе прогрева, и оценивает вращательное колебание как небольшое, когда двигатель работает на нормальном холостом ходу после процесса прогрева.

3. Устройство по п.1 или 2, в котором средство оценки начала сцепления применяет в качестве параметра степень изменения входной скорости вращения, которая является степенью изменения скорости вращения входного вала элемента фрикционного сцепления, при этом степень изменения входной скорости вращения изменяется вместе с вращательным колебанием источника приведения в движение.

4. Устройство по п.1 или 2, в котором источник приведения в движение включает в себя мотор в дополнение к двигателю; устройство управления транспортного средства включает в себя средство управления поддержанием входной скорости вращения, которое выполняет, посредством управления скоростью вращения мотора, управление для поддержания входной скорости вращения элемента фрикционного сцепления в целевой скорости вращения, которая равна входной скорости вращения в начале управления сцеплением; и средство оценки начала сцепления применяет в качестве параметра величину изменения крутящего момента мотора, которая является величиной изменения нагрузки мотора, которая изменяется согласно управлению поддержанием входной скорости вращения.

5. Устройство по п.1 или 2, в котором источник приведения в движение включает в себя мотор в дополнение к двигателю; устройство управления транспортного средства включает в себя средство управления поддержанием входной скорости вращения, которое выполняет, посредством управления скоростью вращения мотора, управление для поддержания входной скорости вращения элемента фрикционного сцепления в целевой скорости вращения, которая равна входной скорости вращения в начале управления сцеплением; средство оценки начала сцепления применяет в качестве параметра степень изменения входной скорости вращения, которая является степенью изменения скорости вращения входного вала элемента фрикционного сцепления, при этом степень изменения входной скорости вращения изменяется вместе с вращательными колебаниями источника приведения в движение, и величину изменения крутящего момента мотора, которая является величиной изменения нагрузки мотора, которая изменяется согласно управлению поддержанием входной скорости вращения; и средство оценки начала сцепления устанавливает большее абсолютное значение порогового значения каждой из степени изменения входной скорости вращения и величины изменения крутящего момента мотора, когда возможно оценить, что вращательное колебание источника приведения в движение является большим, чем когда возможно оценить, что вращательное колебание источника приведения в движение является небольшим.

6. Устройство по п.1, в котором источник приведения в движение включает в себя мотор в дополнение к двигателю; второй элемент фрикционного сцепления расположен в пути передачи движущей силы между двигателем и мотором; по меньшей мере, когда второй элемент фрикционного сцепления расцеплен, входная скорость вращения элемента фрикционного сцепления в начальной области управления сцеплением поддерживается в целевой скорости вращения посредством управления скоростью вращения мотора; и когда второй элемент фрикционного сцепления сцеплен, средство оценки начала сцепления оценивает вращательное колебание источника приведения в движение как большее и устанавливает абсолютное значение порогового значения большим, чем когда второй элемент фрикционного сцепления расцеплен.

7. Устройство по п.6, в котором средство оценки начала сцепления оценивает вращательное колебание как большое, когда двигатель находится в процессе прогрева, и оценивает вращательное колебание как небольшое, когда двигатель работает на нормальном холостом ходу после процесса прогрева.

8. Устройство по п.6 или 7, в котором средство оценки начала сцепления применяет в качестве параметра степень изменения входной скорости вращения, которая является степенью изменения скорости вращения входного вала элемента фрикционного сцепления, при этом степень изменения входной скорости вращения изменяется вместе с вращательным колебанием источника приведения в движение.

9. Устройство по п.6 или 7, в котором средство оценки начала сцепления применяет в качестве параметра величину изменения крутящего момента мотора, которая является величиной изменения нагрузки мотора, которая изменяется согласно управлению поддержанием входной скорости вращения.

10. Устройство по любому из пп.1, 2, 6, 7, в котором элемент фрикционного сцепления является элементом начала движения, при этом управление сцеплением элемента фрикционного сцепления начинается в ответ на операцию переключения автоматической коробки передач из диапазона без приведения в движение в диапазон приведения в движение; и устройство управления транспортного средства включает в себя средство управления сцеплением с возможностью проскальзывания, которое начинает управление сцеплением с возможностью проскальзывания для компенсации дифференциального вращения между источником приведения в движение и ведущим колесом с выполнением управления перегрузочной способностью по сцеплению для получения передаваемого крутящего момента согласно требуемому крутящему моменту приведения в движение, в ответ на оценку средством оценки начала сцепления того, что элемент фрикционного сцепления начал сцепляться.



 

Похожие патенты:

При определении значений контрольной точки скорости v r e f для системы управления транспортного средства принимают выбор режима, выбранный водителем из двух выбираемых режимов езды, каждый из которых содержит уникальный набор настроек, влияющих на вычисление v r e f .

Изобретение относится к устройству управления для гибридного транспортного средства. Устройство управления для гибридного транспортного средства содержит двигатель; мотор, функционирующий для вывода движущей силы транспортного средства и выполнения запуска двигателя; первый элемент сцепления, вставленный между двигателем и электромотором; второй элемент сцепления, вставленный между электромотором и ведущим колесом.

Изобретение относится к управлению гибридным транспортным средством. Устройство управления гибридного транспортного средства содержит источник приведения в движение; элемент фрикционного сцепления, сцепляющийся, когда выбирается диапазон приведения в движение; средство управления поддержанием входной скорости вращения и средство оценки начала сцепления, которое оценивает в ответ на условие, что элемент фрикционного сцепления начал сцепляться.

Группа изобретений относится к системе, ассистирующей водителю транспортного средства. Транспортное средство содержит систему, ассистирующую водителю.

Изобретение относится к транспортным средствам с автоматически управляемым сцеплением. Способ определения точки контакта для сцепления транспортного средства, в котором сцепление передает мощность между двигателем и ведущим колесом, при этом определение точки контакта включает размыкание сцепления и когда транспортное средство находится в движении, определяют точку контакта.

Изобретение может быть использовано в системах управления двигателей внутреннего сгорания. Система управления для двигателя внутреннего сгорания ограничивает выходную мощность двигателя (1) внутреннего сгорания и содержит средство определения степени задействования акселератора для определения величины задействования педали (23) акселератора, средство определения задействования тормоза для определения задействования тормоза вследствие нажатия педали (25) тормоза и дроссельный клапан, расположенный в канале для всасываемого воздуха (11).

Определяют изменение циклической вариации S скорости ω вращения двигателя. Циклическую вариацию S используют для задания запрашиваемому крутящему моменту M гасящей колебания характеристики.

Изобретение относится к зарядке аккумуляторных батарей гибридных автомобилей. Система зарядки аккумуляторных батарей для гибридного электрического транспортного средства содержит высоковольтную батарею; генератор; преобразователь напряжения; низковольтную батарею и зарядный генератор с приводом от двигательной установки.

Изобретение относится к области электротехники и может быть использовано в системах управления мотор-генераторными устройствами транспортных средств с двигателями внутреннего сгорания.

Изобретение относится к устройству распределения крутящего момента. Устройство (1) распределения содержит управляемый привод (13), средства (30) вычисления скорости транспортного средства и разности скорости между передним мостом (2) и задним мостом (5) и средства (31) формирования команды распределения момента.

Изобретение относится к военным гусеничным машинам, в частности к системам дорожной сигнализации военных гусеничных машин. Устройство для обеспечения безопасности движения военной гусеничной машины включает систему дорожной сигнализации. Система дополнительно содержит пульт управления для включения устройства, излучатели, направляющие сигнал до препятствия, приемники излучения, принимающие сигнал и передающие его в блок контроля и выдачи команд для обработки и вычисления расстояния до препятствия, собственной скорости с тахогенератора и номера включенной передачи с устройства переключения передач и передачи сигнала через аппаратуру встроенной связи и коммутации на прибор наблюдения механика-водителя и на устройство для подтормаживания, или на устройство для переключения передач, или на механизм остановки двигателя. Достигается возможность обеспечения безопасности движения и предупреждения столкновения боевых машин в колонне. 1 ил.

Изобретение относится к системе приведения в движение транспортного средства. Система приведения в движение для транспортного средства содержит выходные валы двигателя внутреннего сгорания и коробки передач; электрическую машину со статором и ротором; планетарную передачу с солнечным зубчатым колесом, кольцевой шестерней и водилом. Выходной вал двигателя соединен с солнечным зубчатым колесом так, что они вращаются как одно целое с первой скоростью. Входной вал коробки передач соединен с водилом планетарной передачи так, что они вращаются как одно целое со второй скоростью. Ротор электрической машины соединен с кольцевой шестерней планетарной передачи так, что кольцевая шестерня вращается с третьей скоростью. Система также содержит блок управления, оценивающий требуемую скорость входного вала коробки передач, принимающий информацию о скорости выходного вала двигателя и управляющий электрической машиной так, что она сообщает кольцевой шестерне скорость, которая в сочетании со скоростью выходного вала двигателя приводит к достижению входным валом коробки передач требуемой скорости. Достигается изменение скорости входного вала коробки передач требуемым образом. 8 з.п. ф-лы, 3 ил.

Изобретение относится к технологии управления переключением режима движения гибридного транспортного средства. Контроллер переключения режима движения гибридного электрического транспортного средства, которое перемещается, переключая режимы движения, содержит блок детектирования состояния заряда; блок детектирования выходной мощности, запрашиваемой водителем; блок коррекции выходной мощности, запрашиваемой водителем и блок управления переключением. Блок управления переключением устанавливает пороговое значение выходной мощности низкого уровня, по мере понижения состояния заряда, изменяя, таким образом, условия для переключения первого режима движения на второй режим движения. Достигается оптимизация потребления топлива. 3 з.п. ф-лы, 3 ил.

Изобретение относится к гибридным транспортным средствам с электромеханической трансмиссией. Способ согласованного управления электромеханической трансмиссией гибридного транспортного средства заключается в том, что в каждый момент времени реализуют режим максимальной экономичности или максимальной динамичности работы трансмиссии. В режиме максимальной экономичности определяют энергию движения транспортного средства и коэффициент полезного действия рекуперации энергии в накопителе. В режиме максимальной динамичности задают пороговое значение требуемого суммарного электромагнитного момента тяговых электродвигателей или параметра движения/управления транспортного средства. Дополнительно определяют энергию, запасенную в накопителях, и регулируют задание суммарной мощности. Расширяются функциональные возможности управления. 8 з.п. ф-лы, 1 ил.

Изобретение относится к области транспортного машиностроения. Устройство управления приводом ведущих колес транспортного средства с расширенными функциональными возможностями содержит две обратимые электрические машины, два тяговых инвертора, блоки преобразования и накопления энергии, тепловой двигатель с генератором и трансмиссией с приводом на ведущую ось, инвертором генератора и блоком управления энергоустановкой. В качестве генератора установлен мотор-генератор на один и тот же поток мощности с трансмиссией. В качестве трансмиссии установлены коробка передач с главной передачей и дифференциалом. Каждая обратимая электрическая машина содержит планетарный редуктор с индивидуальной кинематической связью каждой из двух обратимых электрических машин с соответствующим редуктором и ведущим колесом, которые образуют отдельное исполнительное устройство противобуксовочной системы и системы курсовой устойчивости, который создает несимметричность сил тяги на колесах, образующаяся как совокупность одной обратимой электрической машины в режиме генератора и другой обратимой электрической машины в режиме электромотора. Улучшается проходимость и управляемость транспортного средства. 1 з.п. ф-лы, 1 ил.
Изобретение относится к устройствам управления трансмиссией автомобиля. Для управления механизмами сцепления, КПП, карбюратором применяется система электромагнитов, работающая по командам, которые вырабатываются контроллером в соответствии с показаниями датчиков, отслеживающих условия движения автомобиля. Достигается упрощение конструкции и повышение надежности устройства.

Изобретение относится к управлению двигателем. В устройстве управления запуском двигателя для гибридного транспортного средства, когда двигатель запускается в состоянии, в котором второй цилиндр из множества цилиндров спозиционирован в верхней мертвой точке, число оборотов двигателя повышается посредством образования первой вспышки в первом цилиндре. Первый цилиндр находится в ходе расширения и его выпускной клапан не открыт. Посредством впрыска топлива в первый цилиндр и воспламенения топлива содействие в увеличении числа оборотов двигателя начинается посредством передачи крутящего момента, выводимого из вращающейся машины в двигатель через муфту в пиковом участке, сразу после того, как начинает увеличиваться число оборотов двигателя. Пиковый участок указывает число оборотов двигателя, которое не меньше значения, имеющего предписанную долю относительно максимального значения между участком увеличения числа оборотов двигателя и участком снижения, следующим за участком увеличения числа оборотов двигателя. Повышается эффективность запуска двигателя. 7 з.п. ф-лы, 8 ил.

Бортовая информационная система транспортного средства содержит электронный блок (1), миниатюрные видеокамеры (2, 3, 4, 5), коммутатор (6), блок хранения цифровой информации (7), блок распознавания знаков (8) и радар (9), спутниковый навигатор (10), блок памяти (11), устройство управления скоростью движения (12), устройство управления направлением движения (13), устройство управления тормозной системой (14), передающее устройство (15). Достигается автоматизация процесса движения транспортного средства. 1 ил.

Изобретение относится к способу и системе моделирования дорожных характеристик в регионе, где движется транспортное средство. Техническим результатом является повышение эффективности обнаружения движения транспортного средства. При движении транспортного средства с заданной скоростью генерируют последовательность характеристических значений, где каждое характеристическое значение соответствует своему заданному диапазону, обнаруживаемому транспортным средством. Модель марковской цепи для дорожных характеристик обновляют при смене последовательных характеристических значений, причем модель представляет соответствующие элементы вероятности в матрице событий перехода от каждого заданного диапазона к следующему в последовательности диапазону. Каждый элемент матрицы имеет значение πi,j, представляющее собой взвешенную частоту событий перехода от первого характеристического значения ко второму соответствующему характеристическому значению, деленную на взвешенную частоту событий перехода, начавшихся от первого характеристического значения, в результате чего матрица последовательно аппроксимирует дорожные характеристики в этом регионе. 2 н. и 6 з.п. ф-лы, 6 ил.

Группа изобретений относится к оценке или расчету приводных параметров систем управления дорожными транспортными средствами. Устройство обработки информации отслеживает оперативную информацию, полученную в ответ на соответствующие действия по управлению транспортным средством в соответствии с местоположением. Причем устройство отслеживает существует или нет повторяемость идентичного типа оперативной информации в идентичном местоположении в соответствии с числом раз, когда идентичный тип оперативной информации получается последовательно в этом местоположении. Устройство обработки информации предоставляет информацию, когда идентичный тип действия по управлению транспортным средством выполняется водителем последовательно предварительно определенное число раз в идентичном местоположении. Способ обработки заключается в том, что отслеживают оперативную информацию, полученную в ответ на соответствующие действия, выполненные водителем в соответствии с местоположением. Подсчитывают число раз, когда идентичный тип оперативной информации получается последовательно в идентичном местоположении. Отслеживают существует или нет повторяемость идентичного типа информации в местоположении в соответствии с подсчитанным числом раз. Технический результат изобретений заключается в том, что информация о действиях водителя отслеживается более оптимально. 3 н. и 10 з.п. ф-лы, 12 ил.
Наверх