Способ прогнозирования конечной фактической прочности бетона

Изобретение относится к способу прогнозирования конечной фактической прочности бетона, включающего кондуктометрическое измерение удельного электрического сопротивления и температуры в процессе твердения образцов бетонных смесей в режиме реального времени с последующей оценкой фактической механической прочности на сжатие образцов бетона заданного класса. Контролируемые технологические параметры: начало твердения бетонной смеси и прочность бетонных образцов в 28-суточном возрасте. Длительность измерений - 100-125 мин от начала заливки бетонной смеси в контейнерный датчик до завершения индукционного периода твердения. В этом интервале производят параллельные измерения удельных электрических сопротивлений образцов бетонных смесей калибровочного и расчетного минимального составов и устанавливают корреляционную зависимость между удельным электрическим сопротивлением и фактической механической прочностью бетона заданного класса в его проектном возрасте, а по результатам анализа изменения удельного электрического сопротивления образца бетонной смеси номинального расчетного состава заданного класса бетона в указанном временном интервале осуществляют контроль раннего твердения образцов бетонной смеси заданного класса бетона и оценивают конечную фактическую механическую прочность бетона на сжатие. 5 ил., 6 табл.

 

Изобретение относится к способам оценки развития состояния цементно-бетонных смесей в процессе их твердения и упрочнения в режиме реального времени и прогнозирования конечной фактической прочности бетона.

В условиях современного монолитного строительства и широкого применения сборного железобетона и бетона в конструкциях зданий и сооружений неразрушающий контроль конечной прочности цементно-бетонных систем является одним из важнейших условий повышения качества изделий на основе минеральных вяжущих, а также интенсификации их изготовления по энерго- и ресурсосберегающей технологии.

Методы неразрушающего контроля бетонных систем, включающие использование для измерений электрофизических величин, преобразуемых в прямые показания, определены в ГОСТ 27005-86. Указанные методы применяются только для контроля изделий и конструкций из бетонов, достигших строительной прочности, при этом данные методы являются длительными по времени (не ранее набора испытуемыми образцами 28-суточной прочности) и достаточно трудоемкими, что не позволяет их применять для оперативной корректировки технологических процессов бетонирования.

Из описания к патенту RU №1742702 A1, 24.07.1989 на «Устройство для измерения потенциала массопереноса материала» известен электрофизический способ контроля твердения вяжущих веществ с использованием акваметрического датчика. В указанном способе производят кондуктометрическое измерение проводимости исследуемых образцов вяжущих в жидкофазном состоянии, которые загружаются в электролитическую ячейку. В процессе измерений фиксируется время твердения и потенциалы массопереноса базовых и исследуемых образцов портландцемента в заданном временном интервале, но получаемые показатели твердения в первые два часа измерений недостаточны для прогнозирования конечной прочности бетона, поскольку в данном способе не предусматривается установление корреляционной зависимости между прочностью бетона и величинами массопереноса.

По своей технической сущности и достигаемому результату наиболее близким аналогом-прототипом к настоящему изобретению является способ контроля технологических параметров и прогнозирования конечной фактической прочности бетона, включающий кондуктометрическое измерение удельного электрического сопротивления и температуры в процессе твердения образцов бетонных смесей в режиме реального времени с последующей оценкой фактической механической прочности на сжатие образцов бетона заданного класса (US №7225682 B2, 05.06.2007).

Известный способ, также как и предложенный, основан на выборе для измерений удельного электрического сопротивления в качестве электрофизической величины. В известном способе интервал реального времени, в котором производятся необходимые измерения, составляет не менее 50-и часов, т.е. более одних суток. Это обстоятельство с учетом того, что каждая цементно-бетонная композиция обладает своими особыми свойствами, определяемыми набором технологических параметров (тип цемента, состав бетонной смеси, условия транспортировки), не позволяет создать метод объективной ускоренной оценки технологических параметров и фактической конечной прочности на сжатие образцов бетона заданного класса и конструкционных железобетонных изделий.

Задачей изобретения является ускоренное прогнозирование фактической конечной прочности бетона, возможность оперативной корректировки технологического процесса бетонирования, а также предпосылки для экономии энергетических затрат и материальных ресурсов.

Указанная задача решается тем, что в способе прогнозирования конечной фактической прочности бетона, включающего кондуктометрическое измерение удельного электрического сопротивления и температуры в процессе твердения образцов бетонных смесей в режиме реального времени с последующей оценкой фактической механической прочности на сжатие образцов бетона заданного класса, производят параллельные измерения удельных электрических сопротивлений образцов бетонных смесей калибровочного и расчетного номинального составов и устанавливают корреляционную зависимость между удельным электрическим сопротивлением и фактической механической прочностью бетона заданного класса в его проектном возрасте, а по результатам анализа изменения удельного электрического сопротивления образца бетонной смеси номинального расчетного состава заданного класса бетона во временном интервале, равном 100-125 мин от момента заливки в датчики контейнерного типа образцов обеих бетонных смесей, осуществляют контроль раннего твердения образцов бетонной смеси заданного класса бетона и оценивают конечную фактическую механическую прочность бетона на сжатие.

Сущность изобретения заключается в следующем.

Как известно, твердение вяжущих веществ, в частности цементов, входящих в состав бетонных смесей, при взаимодействии их с водой основано на уникальном явлении превращения исходного материала в гидратные новообразования различного состава. При этом резко возрастает количество твердой фазы по сравнению с объемом исходного вяжущего (А.В. Волженский. Изменения в абсолютных объемах фаз при взаимодействии неорганических вяжущих с водой и их влияние на свойства образующихся структур. // Строительные материалы, 1989, №8, с.25). Гидратация, т.е. взаимодействие частиц исходного вещества с водой, складывается из физико-химической диспергации (собственно химической реакции образования) гидратов, осложненной для полиминеральных вяжущих реальными условиями протекания процессов, за счет взаимного влияния минералов и явлений адсорбции, диффузии и т.д. и создания структуры с определенными физико-химическими свойствами.

Механизм твердения (упрочнения) минеральных вяжущих материалов и бетонов - это ряд последовательных стадий-переходов системы из одного структурного состояния в другое.

Первая стадия процесса гидратации характеризуется короткой экзотермической реакцией. Длительность этой стадии зависит от вида вяжущего и включает в себя несколько элементарных актов (Н.Б. Урьев. Высококонцентрированные дисперсные системы, М., изд. Химия, 1980, с.320), которые протекают на активных центрах поверхности исходного вяжущего. Концентрация и природа активных центров определяют интенсивность начального взаимодействия вяжущего с водой (М.М. Сычев, Некоторые вопросы химии межцентровой конденсации при твердении цементов. // Цемент, 1982, №8, с.7-9).

Второй стадией гидратообразования является индукционный период, характеризующийся образованием капиллярно-пористого коллоидного тела; в цементно-бетонных композициях этот период определяется развитием процессов схватывания и для которого характерна малая скорость взаимодействия вяжущего с водой (Birchall J.D., Howard A.J., Double D.D. Some general considerations of membrane/osmosis model for portland cement hydration // Cement and Concrete Research, 1980, v.10, p.145-155). Длительность индукционного периода от начала затворения бетонной смеси до его завершения обычно составляет от полутора до двух часов и он имеет важное практическое значение, поскольку позволяет осуществлять формование изделий на основе цементно-бетонных систем (Midgley H.G., Illstong M. Some comments on the micro structure of hardened cement pastes.// Cement and Concrete Research, 1983, v.13, №2, p.197-206).

Следующая после индукционного периода являются стадия ускорения гидратообразования и ранняя стадия замедления (переходный период) (С.И. Конторович и др. Срастание частиц в пересыщенных растворах при химическом модифицировании их поверхности // Гидратация и твердение вяжущих, Львов, 1981, с.60). На этой стадии образуется коллоидно-кристаллизационная структура - квазитвердое капиллярно-пористое тело; этот этап характерен старением цементного геля и развитием кристаллизационного упрочнения. Здесь массовое образование гидратов обусловливает снижение скорости реакции, которая лимитируется диффузией молекул воды к поверхности вяжущего (Collepardi M. Low-slump-loss superhlasticized concrete. // Transp. Res. Rec, 1979, №720, p.7-12).

Заключительная стадия механизма твердения - это образование капиллярно-пористой структуры - твердого капиллярно-пористого тела, состояние которого определяется закономерностями твердофазных взаимодействий между частицами/агрегатами частиц и интенсивным ростом прочности (Л.Б. Сватовская и др. Диэлектрические измерения на ранних стадиях твердения мономинеральных вяжущих. // Журнал прикладной химии, 1973, т.46, №6, с.1219-1223, а также М.М. Сычев. Роль электронных явлений при твердении цементов. // Цемент, 1984, №7, с.10-13).

Анализ данных экспериментальных измерений, выполненных на базе одной и той же пробы бетона/раствора во временном интервале 100-125 мин, соответствующему окончанию индукционного периода твердения бетонной смеси, подтверждает, что указанный временной интервал является наиболее информативным для построения кинетических кривых «Прочность - Время» и «Электрическое сопротивление - Время», по которым строят искомую корреляционную зависимость между электрическим сопротивлением бетонной смеси через два часа после заливки бетонной смеси в контейнерный датчик и прочностью бетона заданного класса на 28-е сутки.

Способ осуществляется следующим образом.

Методика исследования твердения конструкционных бетонов на цементном вяжущем (далее - бетоны) полного диапазона классов от В7,5 до В80 на возможность прогнозирования их фактической конечной прочности согласно заявленному изобретению - одна и та же, поэтому в описании осуществление способа показано на двух примерах - выбором бетонов класса В40 и класса В15, как наиболее распространенных в строительстве.

Для исследования твердения тяжелых бетонов класса В40 были взяты портландцементы М 500 ДО Мальцовского, Новороссийского и Вольского цементных заводов, а для бетона класса В15 - портландцемент М 400 ДО Воскресенского цементного завода и остальные компоненты - песок, щебень, химические добавки и вода, из которых готовились бетонные смеси класса В40 на цементах разных заводов (Таблица 1) и составы бетонных смесей на цементе Воскресенского завода (Таблица 2). На таблицах 3 и 4 приведены соответственно показатели прочности бетонов классов В40 и В15 в интервале «девять часов - 28 суток».

Способ позволяет осуществлять прогноз (оценку) конечной фактической прочности бетонов (S) в 28-суточном возрасте на основании результатов измерения удельного электрического сопротивления (ℜ) УЭС на раннем этапе твердения бетона в индукционный период гидратообразования (в период от полутора до двух часов).

Прогнозирование прочности базируется на использовании корреляционной зависимости S(τ)=ψ1 (ℜ) (здесь - S(τ) -прогнозные значения прочности в требуемом возрасте: τ=2, 3, 7, 14 и 28 суток, ℜ* - базовые величины УЭС).

Мониторинг (оценка и развитие состояния) цементно-бетонных смесей в процессе их упрочнения неразрушающим методом по ГОСТ Р 53231-2008 в режиме реального времени был использован прибор - измеритель параметров цементно-бетонных смесей ConTest-8, сертифицированный и внесенный в Государственный реестр РФ средств измерений, Регистрационный №45346-10.

Измеритель параметров (измерительная система) конструктивно состоит из многоканального измерительного блока, персонального компьютера и контейнерных датчиков для измерения электрического сопротивления контролируемого материала.

В персональный компьютер измерительной системы заложен комплект управляющих и обрабатывающих программ «Monitor». Для нормального функционирования измерителя была использована операционная система Windows ХР, а также средство обновления программ NetFrame update, являющееся обязательным сопровождением программы «Monitor». И в случае необходимости требуемые элементы программного обеспечения могут быть загружены из Microsoft UpdateCenter (http://windowsupdate.microsoft.com).

Принцип работы измерителя заключается в непрерывном измерении кондуктометрическим способом электрического сопротивления образца, помещаемого в контейнерный датчик.

Для получения зависимости между электрическим сопротивлением образцов и их механической прочностью в соответствии с ГОСТ 22690-88 одновременно с заполнением контейнерного датчика исследуемой цементно-бетонной смесью изготавливаются контрольные образцы по ГОСТ 10180-90. В дальнейшем процесс твердения образцов и контрольных образцов проходит в одинаковых условиях.

В рекомендуемые стандартами времени проводятся измерения прочности контрольных образцов, и результаты измерения служат для определения градуировочной зависимости между электрическим сопротивлением и прочностью бетона, которая применяется при мониторинге и прогнозировании прочности исследуемого бетона.

На практике из полного диапазона классов бетона от В3,5 до В80 корреляционную зависимость S(τ)=ψ1 (ℜ) устанавливают по результатам испытаний калибровочных номинальных расчетных составов обычно бетонов основного диапазона классов В7,5-В40 проектной прочности (нормируемой прочности бетона в возрасте 28 суток по ГОСТ 27006-86), отбираемых из статистически надежных количеств партий бетонов, которые являются наиболее массовыми для предприятий ЖБК - изготовителей бетонных смесей с использованием цемента одной марки.

Для построения корреляционной зависимости «Прочность - УЭС» на базе одной и той же пробы бетона экспериментально устанавливают зависимости изменения прочности S и электрического сопротивления ℜ, т.е. получают базовые кинетические кривые S*=ƒ(τ) и ℜ*=φ(τ). По этим кривым в одни и те же моменты времени τ (τ1, τ2…τn) определяют значения S и ℜ и строят искомую калибровочную кривую зависимости S*(τ)=ψ (ℜ*).

Для бетона каждой испытываемой партии определяют величины ℜ* путем последовательного измерения сопротивления в фиксированный момент времени τ от начала твердения бетона в индукционном периоде и после завершения процессов схватывания - уже на стадии кристаллизационного упрочнения, например, в возрасте 20-ти часов после начала твердения процесса твердения бетона и в эти же фиксированные моменты времени параллельно для каждой испытываемой партии бетона в лаборатории завода стандартным методом определяют прочности бетона S11),…Sn(τn) в установленные сроки τ1…τn.

Полученные калибровочные составы бетонных смесей на основе цементов разных производителей позволяют получать статистические наборы величин электрического сопротивления ℜ* и соответственно значений прочности бетона, что дает возможность графически отобразить в координатах «Прочность (МПа) - Время (ч)» - «Удельное электрическое сопротивление (Ом·м)* - Время (ч)». Далее базовые величины ℜ* коррелируют с соответствующими значениями прочности бетона S(τ) и получают корреляционную зависимость S(τ)=φ (ℜ*) в виде квадратичного уравнения.

По установленной корреляционной зависимости прогнозирование прочности осуществляют либо измерением (ℜ) УЭС в образце испытываемой партии бетона в возрасте 20-ти часов на основе цементов той же марки цемента от других поставщиков с последующей экстраполяцией полученной

На фиг. 1-5 представлены данные испытаний в виде графиков, на которых отображены кривые корреляционных зависимостей между электрическим сопротивлением бетонной смеси через два часа после заливки в контейнерный датчик и прочностью бетона класса В40 на 28-е сутки на цементах разных производителей, в том числе и бетона класса В15.

На фиг. 1 показана корреляция для бетонной смеси на Мальцовском цементе, на фиг. 2 и 3 - корреляции для бетонных смесей соответственно на Новороссийском и Вольском цементах, на фиг. 4 - сводное графическое отображение корреляций для бетонов класса В40 и на фиг. 5 - корреляция для бетонной смеси класса В15 на Воскресенском цементе.

В ходе выполнения серии экспериментов была установлена тесная корреляционная связь между значениями электрического сопротивления бетонной смеси через два часа после загрузки контейнерного датчика и прочностью бетона класса В40 на 28-е сутки на примере Мальцовского цемента (фиг. 1) и прочностью бетона класса В15 на 28-е сутки на примере цемента Воскресенского цемента (фиг. 5).

Для описания полученных экспериментальных данных (возрастающих и убывающих по абсолютной величине) была выбрана полиномиальная линия тренда (полином второй степени). Близкая к единице величина достоверности аппроксимации (>0,97) свидетельствует о хорошем совпадении кривой с полученными экспериментальными данными; измерив электрическое сопротивление бетонной смеси через два часа после заливки бетонной смеси в контейнерный датчик, по приведенному графику или формуле можно оценить конечную прочность бетона.

Этот процесс можно упростить, используя метод стандартного отклонения (C.O.). Указанный метод основан на определении среднеквадратичного отклонения (показателя рассеяния в статистике, STDev) в техническом анализе (В.П. Боровиков. «Statistica-Статистический анализ и обработка данных в среде Windows», Изд-во «Филинъ», СПб, 1997, 608 с.).

В частности, имея статистический набор величин электрического сопротивления бетонной смеси, с одной стороны, и набор значений конечной прочности бетона, с другой стороны, с помощью этого анализа можно установить связь между группами измерений и оценить изменение одного параметра в определенном диапазоне в зависимости от изменения другого параметра в соответствующем диапазоне на примере для бетона класса В40 на Мальцовском цементе (Таблица 5) или для бетона класса В15 на Воскресенском цементе (Таблица 6).

Полученные данные легко использовать для практической оценки прогнозируемой прочности бетона по значениям электрического сопротивления следующим образом. При самой грубой оценке (Av+2STDev) для бетона класса В40 в диапазоне сопротивлений 50 Ом·м - 69 Ом·м значения прочности бетона будут находиться в пределах 49,5 МПа - 56 МПа, а для бетона класса В15 в диапазоне сопротивлений 65-88 Ом·м прогнозируемая прочность будет находиться в пределах 20-28 МПа.

Таким образом, измерив электрическое сопротивление бетонной смеси через два часа после заливки ее в контейнерный датчик, можно оценить величину прочности бетона на 28-е сутки. Более точное значение прочности для бетона класса В40 может быть рассчитано по формуле на фиг. 1, а для бетона класса В15 - по формуле на фиг. 5. Погрешность определения прочности бетона в этом случае (с учетом стандартного отклонения) не превысит 3,5%.

При этом следует иметь ввиду, что конечная прочность бетонов по стандарту определяется на 28-е сутки с коэффициентом вариации (то есть с погрешностью) равным 13%. Это означает, что исходя из вышеуказанной нормы погрешности зачастую неизбежен перерасход цемента, тогда как реализация настоящего изобретения позволяет уменьшить погрешность почти в четыре раза и тем самым существенно экономить как материальные ресурсы, так и энергозатраты в технологии бетона.

Способ прогнозирования конечной фактической прочности бетона, включающий кондуктометрическое измерение удельного электрического сопротивления и температуры в процессе твердения образцов бетонных смесей в режиме реального времени с последующей оценкой фактической механической прочности на сжатие образцов бетона заданного класса, отличающийся тем, что производят параллельные измерения удельных электрических сопротивлений образцов бетонных смесей калибровочного и расчетного номинального составов и устанавливают корреляционную зависимость между удельным электрическим сопротивлением и фактической механической прочностью бетона заданного класса в его проектном возрасте, а по результатам анализа изменения удельного электрического сопротивления образца бетонной смеси номинального расчетного состава заданного класса бетона во временном интервале, равном 100-125 мин от момента заливки в датчики контейнерного типа образцов обеих бетонных смесей, осуществляют контроль раннего твердения образцов бетонной смеси заданного класса бетона и оценивают конечную фактическую механическую прочность бетона на сжатие.



 

Похожие патенты:

Изобретение относится к области технологии строительного производства и заключается в количественном определении аммиака в бетонных конструкциях, используемых в жилом строительстве.

Изобретение относится к строительству, а именно к способу исследования процесса дисперсного армирования и микроармирования бетонов для повышения их трещиностойкости.

Изобретение относится к строительству, в частности к определению параметров деформирования бетона в условиях циклических нагружений до уровня, не превышающего предела прочности бетона на сжатие Rb и на растяжение Rbt.

Изобретение относится к области строительства, в частности к испытанию строительных материалов на прочность при растяжении и сжатии, и может быть использовано для определения параметров деформирования бетона при статическом и динамическом приложении нагрузки.

Способ относится к методам испытаний пористых водонасыщенных тел. Он предусматривает изготовление серии бетонных образцов, насыщение образцов водой, измерение образцов, определение начального их объема, их замораживание-размораживание до нормативных температур и регистрацию при этом деформации.

Изобретение относится к теоретическому и прикладному материаловедению и может быть использовано в различных областях науки и техники в целях создания новых и совершенствования известных методик создания сухих строительных смесей для бетона с заданными эксплуатационными свойствами.

Изобретение относится к способам испытаний прочностных свойств изделий из хрупкого материала путем приложения к ним повторяющихся механических, температурных и иных усилий и может использоваться, в частности, для определения долговечности керамических изделий.

Изобретение относится к области испытаний цементных штукатурных составов на предельную растяжимость при статическом нагружении. Сущность: величину предельной растяжимости определяют испытанием стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением малыми ступенями и фиксацией ступени нагружения, соответствующей моменту трещинообразования, а значение предельной растяжимости рассчитывают по формуле.

Изобретение относится к строительству и может быть использовано при проведении тепловой обработки бетонных конструкций. Способ включает определение температуры твердеющего бетона в заданные моменты времени и расчет прочности, при этом определяют трехсуточную прочность бетона при твердении в нормальных условиях, а прочность бетона определяют по формуле: , где R, % - прочность бетона, набранная за время τ, сут. Kt - температурный коэффициент, определяемый в зависимости от температуры твердения бетона и трехсуточной прочности.

Изобретение относится к области исследования физико-химических свойств бетона в условиях воздействия на образец углекислого газа заданной концентрации. Установка содержит не менее 2-х герметичных камер с заполненной водой U-образной трубкой для сброса избыточного давления в камере, впускным и выпускным газовыми распределительными коллекторами, фильтрами для очистки забираемой из камер газовоздушной среды и с установленными внутри каждой камеры вентилятором и ванной с насыщенным раствором соли для создания и постоянного поддержания заданной относительной влажности воздуха внутри камеры, подсоединенный к герметичным камерам через впускной газораспределительный коллектор и установленные на трубопроводах электромагнитные клапаны источник углекислого газа, автоматический газоанализатор с побудителем расхода газа, газовый распределительный коммутатор для попеременного забора пробы из камер и передачи ее в газоанализатор через побудитель расхода газа, кроме того, газоанализатор соединен с ЭВМ для автоматизации контроля за концентрацией газа в герметичных камерах и подачей в них газа через электромагнитные клапаны.

Изобретение относится к блоку управления для двигателя внутреннего сгорания. Устройство управления для двигателя внутреннего сгорания содержит: датчик твердых частиц, установленный в выхлопном патрубке двигателя внутреннего сгорания, захватывающий частицы фильтр, выполненный с возможностью захватывать твердые частицы, содержащиеся в выхлопном газе, и расположенный в выхлопном патрубке в месте выше по потоку относительно датчика твердых частиц; электронный блок управления, выполненный с возможностью обнаруживать количество частиц в выхлопном газе через выхлопной патрубок в ответ на выходной сигнал датчика твердых частиц; электронный блок управления, выполненный с возможностью подавать напряжение захвата частиц между электродами датчика твердых частиц во время первого периода с тем, чтобы формировать слой частиц на поверхностях электродов датчика твердых частиц; и электронный блок управления, выполненный с возможностью останавливать подачу напряжения захвата частиц во время второго периода для того, чтобы поддерживать слой частиц, и электронный блок управления, выполненный с возможностью исполнять управление обнаружением отказа для того, чтобы определять, имеет место отказ захватывающего частицы фильтра или нет.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для определения концентрации С-реактивного протеина в сыворотке крови в лунках иммунологического планшета.

Изобретение относится к области определения электрофизических параметров порошковых материалов, а также к области определения значений параметров, характеризующих физико-химические свойства материалов, по величине электрического сопротивления.

Использование: для обнаружения утечки гексафторида урана и/или фтористого водорода. Сущность изобретения заключается в том, что детектор состоит из цилиндрической диэлектрической подложки, слоя электропроводного лакокрасочного материала с диспергированным порошкообразным графитовым наполнителем, нанесенного на диэлектрическую подложку, электрических контактов и электропроводов для подключения источника постоянного тока к слою электропроводного лакокрасочного покрытия.

Способ неинвазивного контроля содержания метаболитов в крови, включающий многократное измерение с помощью матрицы датчиков показаний электромагнитного импеданса в эпидермальном слое пациента и в одном из слоев, включающих кожный слой или подкожный слой пациента, пока разность между показаниями не превысит пороговую величину; вычисление величины импеданса, отображающей указанную разность, с использованием модели эквивалентной схемы и данных индивидуального поправочного коэффициента, характерных для физиологической характеристики пациента; и определение уровня содержания метаболитов в крови пациента на основании величины импеданса и алгоритма определения уровня содержания метаболитов в крови, в котором данные уровня содержания метаболитов в крови сопоставляются с соответствующим значением данных электромагнитного импеданса пациента.

Изобретение относится к способу и системе автоматизированного контроля процессов в первичных и вторичных отстойниках или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства.

Изобретение может быть использовано в системах контроля водно-химического режима для тепловой, атомной и промышленной энергетики. Cпособ определения концентрации компонентов смеси высокоразбавленных сильных электролитов включает одновременное измерение удельной электропроводности и температуры анализируемого раствора при разных температурах в количестве, равном количеству компонентов раствора, решение системы уравнений электропроводности в количестве, равном числу измерений, каждое из которых имеет определенный вид, с определением при решении уравнений значений удельной электропроводности при температуре 18°С для каждого из компонентов смеси и нахождение по известным (справочным) данным соответствующей им концентрации.

Изобретение относится к контрольно-измерительной технике и предназначено для использования в нефтедобывающей промышленности для исследования пластов, определения их остаточной водонасыщенности, для оперативного контроля влажности на нефтепромысловых скважинах.

Изобретение относится к измерительной технике, в частности к устройствам определения электрических свойств материалов, и может быть использовано для создания веществ, обладающих требуемыми зависимостями удельной электропроводности от давления, которые применяются, например, при оценке изменения во времени горного давления в породных массивах.

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных редукторов и других изделий, подвергаемых наводороживанию в процессе производства и эксплуатации.

Изобретение относится к метрологии, а именно к средствам для клинических лабораторных исследований. Устройство для определения времени свертывания крови содержит средство для размещения пробы крови, два измерительных металлических электрода, расположенных в зоне размещения пробы крови с возможностью электрического контакта с пробой, и преобразователь сопротивления в электрический сигнал, подключенный к этим электродам. Также устройство содержит счетчик времени, выход которого соединен с дисплеем, логическое устройство, импульсный детектор и вычислитель второй производной электрического сигнала, поступающего с выхода преобразователя сопротивления в электрический сигнал, подаваемый на вход вычислителя и вход логического устройства. Выход вычислителя второй производной через импульсный детектор соединен со вторым входом логического устройства, выход которого соединен со счетчиком времени. Технический результат - повышение точности измерений. 2 з.п. ф-лы, 1 ил.
Наверх