Способ проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных и отдельных устройствах. Технический результат изобретения заключается в расширении функциональных возможностей способа, позволяющего определять водосодержание вертикальной испытуемой колонны в режиме реального времени. Способ включает измерение давления, температуры, расхода вещества на установившихся режимах работы. В контур установки нагнетают газ до рабочего давления, запускают центробежный газовый нагнетатель и путем регулирования частоты вращения ротора устанавливают требуемую величину расхода газа. С помощью жидкостного насоса в испытуемую колонну подают воду, обеспечивая в ней установившийся режим за счет монотонного во времени роста потерь давления до ее заполнения газожидкостным потоком и постоянного уровня потерь давления в ее нижнем участке. По результатам проведенных измерений на установившемся режиме определяют объем жидкости Vж в исследуемом газожидкостном потоке, как:Vж=qж·(t2-t1), где: t1 - время начала поступления в испытуемую колонну воды; t2 - время начала установившегося режима в испытуемой колонне; qж - объемный расход жидкости при рабочих условиях; и скорость жидкости, приведенную к сечению трубы колонны:, где D - внутренний диаметр вертикальной испытуемой колонны; а также объемное водосодержание φ в исследуемом газожидкостном потоке. При этом среднюю истинную скорость жидкости w определяют исходя из того, что занимаемая в сечении трубы колонны площадь жидкой фазы пропорциональна объемному водосодержанию φ. 4 ил.

 

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах.

Из уровня техники известен способ проведения газогидродинамических исследований скважин (см. Ю.П. Коротаев, Избранные труды, в трех томах, том 1, под ред. академика Р.И. Вяхирева, Москва, Недра, 1996, стр. 36-39, рис. 1). В известном способе проводят исследования влияния жидкости на сопротивление при движении газа по трубам. При проведении исследований осуществляют измерения давления и температуры через определенные промежутки времени до тех пор, пока показания не становились неизменными. При этом количество воды измеряли объемным способом дважды: до входа в смеситель и после выхода из сепаратора. Причем воды на входе в смеситель было несколько больше, чем на выходе. При определении расхода воды принималось среднее значение. Известный способ имеет существенный недостаток, заключающийся в трудоемкости проведения исследований и невысокой точности получения результата.

Наиболее близким к предлагаемому решению является способ проведения газогидродинамических исследований (см. патент РФ №2515622 C2, E21B 47/00, 20.05.2014). Известный способ может быть использован для проведения газогидродинамических исследований движения газожидкостных потоков с включением механических примесей в вертикальных, наклонных трубопроводах и отдельных устройствах. Известный способ обеспечивает возможность наблюдения количественных изменений и улучшение качества визуализации происходящих в объеме и по высоте лифтовой колонны труб процессов и проводимых газогидродинамических экспериментов. Источник излучения в известном решении установлен с возможностью освещения лифтовой колонны труб, у которой один участок изготовлен из прозрачного материала с нанесенными на этом участке делениями. В известном способе возможно осуществлять фоторегистрацию и запись панорамных изображений в память блока обработки информации, а также проводить измерения и фоторегистрацию результатов эксперимента в синхронном режиме. Известный способ позволяет идентифицировать и определять размеры газожидкостных и/или сухих пробок, и/или расстояний между ними, и/или отдельных частиц, выявленных в лифтовой колонне труб. Однако с помощью известного способа не представляется возможным определить водосодержание вертикальной колонны в режиме реального времени.

Задача, решаемая изобретением, заключается в разработке способа проведения исследований газожидкостного потока, позволяющего изучать трубную многофазную гидродинамику путем измерения содержания жидкости в вертикальном газожидкостном потоке, используя для изучения двухфазной гидродинамики лифтовые трубы диаметром от 73 до 168 мм при давлениях до 3,0 МПа и водогазовом факторе в диапазоне 10-6-10-2.

Технический результат, на достижение которого направлено предлагаемое изобретения, заключается в расширении функциональных возможностей предлагаемого способа, обеспечивающего возможность определения водосодержания вертикальной колонны в режиме реального времени.

Сущность предлагаемого способа заключается в том, что способ проведения исследований газожидкостного потока включает измерение давления, температуры, расхода вещества на установившихся режимах работы. Обработку результатов измерений испытания проводят на установке, содержащей испытываемую колонну, предназначенную для заполнения рабочим веществом с газожидкостным составом. В контур установки нагнетают газ до рабочего давления, запускают центробежный газовый нагнетатель и путем регулирования частоты вращения ротора нагнетателя с помощью частотного преобразователя устанавливают требуемую величину расхода газа. С помощью жидкостного насоса в испытуемую колонну подают воду, обеспечивая в колонне установившийся режим за счет монотонного во времени роста потерь давления до ее заполнения газожидкостным потоком и постоянного уровня потерь давления в ее нижнем участке. По результатам проведенных измерений на установившемся режиме определяют объем жидкости Vж в исследуемом газожидкостном потоке, как:

Vж=qж·(t2-t1),

где:

t1 - время начала поступления в испытуемую колонну воды;

t2 - время начала установившегося режима в испытуемой колонне;

qж - объемный расход жидкости при рабочих условиях;

и скорость жидкости, приведенную к сечению трубы колонны:

,

где D - внутренний диаметр вертикальной испытуемой колонны;

а также объемное водосодержание φ в исследуемом газожидкостном потоке, как:

.

где Vтр1 - объем участка трубы колонны, в котором установился процесс движения газожидкостного потока.

При этом среднюю истинную скорость жидкости w определяют исходя из того, что занимаемая в сечении трубы колонны площадь жидкой фазы пропорциональна объемному водосодержанию φ:

.

Предлагаемый способ проведения исследований газожидкостного потока поясняется чертежами. На фиг. 1 представлена измерительная схема устройства для проведения исследований газожидкостного потока, поясняющая предлагаемый способ. На фиг. 2 продемонстрированы результаты измерения параметров, потерь давления ΔP, расхода газа G через колонну при рабочем давлении и объема жидкости Vж в сепараторе газожидкостного потока в режиме реального времени. На фиг. 3 отображены результаты определения времени заполнения колонны газожидкостной смесью. На фиг. 4 приведен пример распределения газожидкостной смеси по плотности в установившемся вертикальном газожидкостном потоке.

Устройство для проведения исследований газожидкостного потока (фиг. 1) может содержать:

- испытуемую колонну (1), выполненную из прозрачного материала и устанавливаемую в вертикальном положении;

- у основания колонны установлен смеситель газа и жидкости (2);

- в устройстве предусмотрен кран впуска и выпуска газа (3), подключенный трубопроводом к выходу газа сепаратора (4) с одной стороны и к входу центробежного газового нагнетателя (5) с другой;

- на выходе жидкостного потока сепаратора установлен жидкостный насос (6), подключенный к расходомеру жидкости (7);

- центробежный газовый нагнетатель связан через расходомер газа (8) со смесителем газа и жидкости;

- на испытуемой колонне могут быть установлены блок датчиков перепада давления (9) и блок датчиков давления и температуры (10);

- показания с блока датчиков перепада давления (9) и блока датчиков давления и температуры (10), а также с расходомера газа поступают через блок аналого-цифрового преобразования (11) в блок обработки данных и визуализации результатов наблюдения (12).

Для осуществления предлагаемого изобретения используется стандартное оборудование. Для заполнения колонны может использоваться любая жидкость.

В процессе экспериментальных исследований проводится контроль физических параметров изучаемого процесса с помощью цифровых каналов передачи информации , обработка которой осуществляется в блоке 12.

Для осуществления изобретения

- в качестве датчиков перепада давления и датчиков давления и температуры могут быть использованы датчики с токовым выходом 4-20 мА;

- блок обработки данных и визуализации результатов наблюдения может быть реализован на базе персонального компьютера (ПК) с установленным драйвером обмена, с помощью которого производят сбор, отображение и хранение полученных значений технологических параметров всей системы датчиков, например, в файле формата Microsoft Excel.

Сигналы с датчиков давления и температуры передаются на аналогово-цифровой преобразователь, который связан с ПК по протоколу RS-232.

При проведении эксперимента первоначально в контур стенда нагнетается газ до рабочего давления P. Затем в момент времени t=0 (фиг. 2, 3) включается центробежный газовый нагнетатель (5); регулированием частоты вращения ротора нагнетателя с помощью частотного преобразователя устанавливается требуемая величина расхода газа G. После включения жидкостного насоса (6) в момент времени t1 (фиг. 3) в испытуемую колонну (1) начинает поступать вода, одновременно за счет возникновения столба газожидкостной смеси начинается рост потерь давления ΔP в испытуемой колонне, которые замеряются датчиками, установленными в ее верхней части, например, на высоте 30 м. В исходном состоянии в уровнемере сепаратора присутствует некоторое количество воды V (в рассматриваемом эксперименте эта величина равна 1,2 л).

Существенными условиями поведения газожидкостного потока в экспериментальных исследованиях являются (см. фиг. 2):

1) потери давления в колонне вплоть до ее заполнения, которые должны монотонно возрастать во времени, обеспечивая при этом установившийся режим;

2) уровень потерь давления в нижнем участке колонны после достижения столбом газожидкостной смеси уровня 1,3 м должен поддерживаться постоянным.

Выполнение указанных условий свидетельствует о равномерном, почти поршнеобразном, поднятии столба двухфазной смеси и постоянной величине локального водосодержания практически по всей высоте колонны. Исключение составляет небольшой верхний участок колонны, заполняемый после момента времени t>t2 (см. фиг. 3), на котором локальное водосодержание и локальные потери давления несколько меньше, чем по всей остальной высоте столба газожидкостной смеси в испытуемой колонне.

Осуществление изобретения подтверждается проведенными экспериментами. На фиг. 2 представлены результаты измерений, полученные во время проведения эксперимента на экране монитора блока обработки данных и визуализации результатов наблюдения в режиме on-line. Эксперимент в рассматриваемом примере проводился на вертикальной колонне длиной L=29,59 м с внутренним диаметром D=100 мм, при рабочем давлении P=1,04 МПа, расходе жидкости qж=11,4 л/час, расходе газа G=146 м3/час. В качестве компонентов газожидкостной смеси использовались вода и воздух. На фиг. 2 обозначено: ΔP (30 м) - результаты измеренных потерь давления в верхней части колонны, (см водного столба); кривая С отражает расход газа через колонну при рабочем давлении, (м3/час); кривая V отражает объем жидкости в сепараторе, (л). Параллельно проводились измерения потерь давления на нижнем участке трубы испытуемой колонны на высоте 1,3 м с целью определения влияния на характеристики газожидкостного потока растущего вышележащего столба смеси. Все полученные данные после аналого-цифрового преобразования в блоке 11 поступают в блок обработки данных и визуализации результатов наблюдения 12. С помощью блока 12 осуществляется обработка полученных от блока 9 датчиков перепада давления и от блока 10 датчиков давления и температуры данных.

На фиг. 3 отмечены различные фазы проведенного эксперимента. На начальном этапе, после установления расхода газа на уровне G=146 м3/час, потери давления на трение для однофазного газа по всей высоте колонны (30 м) составили 8,6 см вод. ст. В момент времени t1=10,5 мин в испытуемой колонне стала появляться жидкость, что инициировало возникновение и рост столба газожидкостной смеси, сопровождаемого монотонным ростом потерь давления.

В момент времени t2=55 мин столб газожидкостной смеси (фиг. 4) достиг уровня H1, выше которого на участке H2 плотность смеси несколько уменьшается по сравнению с нижним участком (фиг. 4). Пренебрегая этим концевым эффектом в условиях проведенного эксперимента, были определены средняя скорость движения жидкости в трубе колонны, то есть скорость заполнения колонны газожидкостной смесью. Окончание периода заполнения колонны завершается в момент времени t3=64 мин (фиг. 3).

После заполнения испытуемой колонны газожидкостной смесью до ее верхней части жидкость из нее сливается в сепаратор (4) (см. кривая V на фиг. 2). Через некоторое время режим устанавливается во всех участках устройства. На фиг. 4 представлено распределение газожидкостной смеси по плотности в установившемся вертикальном газожидкостном потоке. В течение времени (t2-t1) столб газожидкостной смеси поднимается до высоты H1, в течение времени (t3-t2) столб поднимается по верхнему участку трубы колонны II до верхней части трубы колонны высотой L=H1+H2. После установления режима плотность смеси на участке I практически постоянна (или меняется весьма слабо), а на участке II с высотой уменьшается. Принимая равенство (1)

и, решая уравнение с учетом приведенных временных параметров, получаем H1/L=0,84.

Объем жидкости Vж в колонне на участке I после ее заполнения можно рассчитать исходя из балансового соотношения (2):

где qж - объемный расход жидкости при рабочих условиях.

Учитывая, что объем участка трубы колонны составляет Vmp1=194 л, объемное водосодержание φ в исследуемом газожидкостным потоке на установившемся режиме (участок I фиг. 4) определяется как:

Результаты проведенных экспериментов позволяют определить среднюю истинную скорость жидкости течения w. Обозначим v - скорость жидкости, приведенную к сечению трубы колонны. В рассмотренном эксперименте она равна

Тогда, считая, что занимаемая в сечении колонны площадь жидкой фазы пропорциональна объемному водосодержанию φ, можно определить среднюю истинную скорость жидкости w

или w=9 мм/сек. Таким образом, со средней скоростью движения жидкости в колонне в процессе рассматриваемого эксперимента происходит заполнение ее газожидкостной смесью, что отражается углом наклона α графика ΔP (30 м) на фиг. 3.

По описанной методике была проведена серия экспериментов на колоннах, диаметр труб которых составляет 62 и 100 мм. Целью исследований является изучение гидродинамики двухфазных потоков применительно к условиям эксплуатации сеноманских скважин на поздней стадии.

Сравнение измеренных значений объемного водосодержания в вертикальных колоннах с расчетными по существующим соотношениям показало, что предлагаемое решение определения характеристик восходящих газожидкостных потоков позволяет проводить актуальные для практики исследования двухфазной гидродинамики в слабо изученных диапазонах физических параметров, характерных для поздней стадии разработки газовых месторождений.

Из анализа экспериментальных результатов следует, что локальные потери давления, объемное водосодержание и скорость жидкой фазы в вертикальном газожидкостном потоке являются однозначными функциями диаметра трубы колонны, расхода жидкости, расхода газа и давления. По замеренным на устье скважины давлению, дебиту газа и дебиту воды можно определить давление и объемное водосодержание в любой точке работающей скважины от забоя до устья. Кроме того, открывается возможность разработки новых математических моделей для определения как стационарных, так и нестационарных режимов работы обводненных газовых скважин (включая, например, задавливание и продувку).

Способ проведения исследований газожидкостного потока, включающий измерение давления, температуры, расхода вещества на установившихся режимах работы, при этом обработку результатов измерений испытания проводят на установке, содержащей испытываемую колонну, установленную вертикально и предназначенную для заполнения рабочим веществом с газожидкостным составом, отличающийся тем, что в контур установки нагнетают газ до рабочего давления, запускают центробежный газовый нагнетатель и путем регулирования частоты вращения ротора устанавливают требуемую величину расхода газа, с помощью жидкостного насоса в испытуемую колонну подают воду, обеспечивая в ней установившийся режим за счет монотонного во времени роста потерь давления до ее заполнения газожидкостным потоком и постоянного уровня потерь давления в ее нижнем участке, по результатам проведенных измерений на установившемся режиме определяют объем жидкости Vж в исследуемом газожидкостном потоке, как:
Vж=qж·(t2-t1),
где:
t1 - время начала поступления в испытуемую колонну воды;
t2 - время начала установившегося режима в испытуемой колонне;
qж - объемный расход жидкости при рабочих условиях;
и скорость жидкости, приведенную к сечению трубы колонны:
,
где D - внутренний диаметр вертикальной испытуемой колонны;
а также объемное водосодержание φ в исследуемом газожидкостном потоке, как:
.
где Vтр1 - объем участка трубы колонны, в котором установился процесс движения газожидкостного потока;
при этом среднюю истинную скорость жидкости w определяют исходя из того, что занимаемая в сечении трубы колонны площадь жидкой фазы пропорциональна объемному водосодержанию φ:



 

Похожие патенты:

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для измерения дебита продукции нефтяных и газовых скважин. Технический результат заключается в повышении точности измерения фазового расхода в режиме реального времени за счет обеспечения однородности измеряемого потока газожидкостной смеси.

Группа изобретений относится к вариантам блока регулирования и учета добычи флюида из многопластовой скважины. Блок по первому варианту содержит корпус, ограниченный снизу стыковочным узлом с каналами потоков пластовых флюидов и сверху стыковочным узлом с установленными на нем регулируемыми клапанами в количестве, равном числу эксплуатируемых пластов скважины.

Изобретение относится к области нефтедобывающей промышленности, в частности к переносным поверочным установкам для оперативного измерения массы жидкости, объема свободного газа, температуры, содержания воды в нефти, а также для контроля состава продукции скважины.

Изобретение относится к измерительной технике, используемой в нефтедобывающей промышленности для замера и учета продукции нефтяных скважин. Технический результат: повышение точности и качества замера дебита нефтяных скважин, подключенных к групповой замерной установке за счет эффективности суммарного и поочередного измерения дебита каждой скважины, а также обеспечение достаточного времени для достоверного замера дебита каждой скважины.

Изобретение относится к области добычи нефти и к измерительной технике и может быть использовано для измерений дебита продукции нефтегазодобывающих скважин. Технический результат заключается в упрощении конструкции, возможности измерения чрезвычайно малых дебитов не только жидкости, но и газа.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для автоматического определения объемов закачиваемых в скважину по напорной магистрали буровых и тампонажных жидкостей.

Изобретение относится к добыче скважинного флюида, в частности к способу измерения мультифазного потока флюида с использованием расходомера. Техническим результатом является повышение точности измерения мультифазного потока флюида.

Изобретение относится к области геофизики и может быть использовано при контроле за разработкой месторождений углеводородов. Техническим результатом является упрощение технической реализации способа за счет исключения необходимости проведения в геофизических исследованиях каротажных измерений.

Изобретение относится к технике, используемой в нефтедобывающей промышленности, и предназначено для замера и учета продукции нефтяных скважин. Технический результат направлен на повышение качества и эффективности измерения дебита продукции нефтяных скважин.

Изобретение относится к нефтедобыче, а именно к технологиям промыслово-геофизических исследований добывающих эксплуатационных скважин. Технический результат направлен на повышение точности определения работающих интервалов пласта в горизонтальных скважинах.

Изобретение относится к области исследования характеристик скважин, а именно к способу экспресс-определения характеристик призабойной зоны малодебитных скважин, применяемому при освоении скважин, и системе его реализующей. Технический результат, достигаемый заявленным решением, заключается в обеспечении возможности проведения оперативного контроля скважины одновременно с этапом ее освоения и снижении затрат на освоение за счет сокращения сроков освоения скважины. Способ содержит этапы, на которых при освоении скважины осуществляют снижение давления в скважине до давления ниже пластового. Осуществляют измерение кривой восстановления уровня. Измеряются следующие параметры скважины: плотность жидкости, полученной при откачке во время цикла освоения (ρ, кг/см3); вязкость жидкости, полученной при откачке во время цикла освоения (µ, сПз); нефтенасыщенная толщина (h, см); конечная отметка цикла откачки жидкости (HK, м); отметка уровня при восстановлении уровня через час (H1, м); начальная отметка следующего цикла освоения (НН, м); время восстановления уровня (t, час); объем полученной жидкости при откачке за последний цикл освоения (V1, м3); проницаемость удаленной зоны пласта (k, Д). На основании указанных выше измеренных параметров скважины вычисляют скин-фактор. Если значение скин-фактора положительное, то приостанавливают освоение скважины и принимается решение о приостановке применения данной обработки скважины на других объектах с идентичными характеристиками пласта, если значение скин-фактора отрицательное, то продолжают освоение скважины и вводят ее в эксплуатацию, а также принимается решение о возможности применения данной обработки скважины на других объектах с идентичными характеристиками пласта. Система содержит средства для снижения давления в скважине, средства для измерения вышеуказанных параметров, средство принятия решения о приостановке или продолжении освоения скважины. 2 н. и 7 з. п. ф-лы, 7 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов поступления свободного газа из пласта в ствол горизонтальной скважины при исследованиях нефтяных скважин с использованием многодатчиковой технологии. Техническим результатом является повышение достоверности исследования действующих горизонтальных скважин с целью выявления интервалов поступления свободного газа в действующую скважину. Способ включает оборудование горизонтального ствола скважины регистрирующими приборами, одновременную регистрацию температуры и давления в нескольких точках горизонтального ствола скважины при изменении давления в скважине, последующее сопоставление отношения изменения температуры к изменению давления в каждой точке регистрации. При этом температура и давление регистрируются в простаивающей скважине при пуске скважины в работу при медленном снижении давления в течение времени выше давления насыщения и при дальнейшем снижении давления в течение времени ниже давления насыщения нефти газом, изменение давления в скважине производится путем его медленного снижения в течение времени относительно уровня давления насыщения нефти газом, поступление свободного газа из пласта в интервале горизонтального ствола скважины определяют исходя из отношения изменения температуры к изменению давления в каждой точке регистрации, при этом из условия неизменности знака отношения при давлении выше и ниже давления насыщения нефти газом. О поступлении свободного газа из пласта по сравнению с разгазированным судят по знаку отношения относительно давления насыщения нефти газом, которое является условно нулевым уровнем. Применение предлагаемого способа в данном случае позволяет однозначно указать интервал поступления свободного газа. 2 ил.

Изобретение относится к измерительной технике, используемой в нефтедобывающей промышленности для замера и учета продукции нефтяных скважин. Технический результат: определение полного компонентного состава жидкости, а именно - воды и нефти за счет конструктивной конфигурации сепаратора, компоновки плотномера, газового и жидкостного сифонов. Устройство для измерения дебита нефтяных скважин, содержащее сепаратор, входную и выходную, в виде сифона, жидкостные линии, газовую линию с установленными на ней датчиками давления и температуры газовой фазы, связанными со счетно-решающим блоком с электронными часами, к которому подключены установленные на общей линии перед впадением ее в сборный коллектор объемный счетчик жидкости и запорный клапан. Сепаратор выполнен в виде двух вертикальных цилиндрических емкостей, которые в нижней части соединены патрубком. На стыке между вертикальными цилиндрическими емкостями смонтирован жидкостный сифон, а верхние части вертикальных цилиндрических емкостей соединены газовым сифоном. На выходе сепаратора установлен плотномер, соединенный со счетно-решающим блоком с электронными часами, содержащим микропроцессор. 7 ил.

Изобретение относится к системе и способу обнаружения и мониторинга эрозии в различных средах, включая окружающую среду нисходящих скважин. Способ, в котором размещают индикаторный элемент в материале скважинного компонента посредством встраивания защитного индикаторного элемента внутрь скважинного компонента, таким образом, что достаточная степень эрозии материала инициирует высвобождение индикаторного элемента. Причем индикаторный элемент встраивают в наполнитель противопесочного фильтра. Обеспечивают работу системы мониторинга воздействия эрозии на индикаторный элемент и, следовательно, для мониторинга эрозии скважинного компонента. Регулируют скорость потока в скважине на основании данных, полученных от системы мониторинга. Система мониторинга расположена таким образом, что обеспечивается ее совместная работа с индикаторным устройством, и определенное воздействие на индикаторное устройство обнаруживается системой мониторинга. Соответствующие выходные данные системы мониторинга, характеризующие степень эрозии, позволяют регулировать интенсивность потока. 3 н. и 15 з.п. ф-лы, 6 ил.

Изобретение относится к системам автоматического контроля и может быть использовано при контроле и управлении процессами добычи продукции скважины в нефтяной, газовой и других отраслях промышленности. Устройство содержит мерную емкость, весоизмеритель, входной трубопровод для продукции скважины, выходной трубопровод для газа и выходной трубопровод для жидкости, оборудованный управляемым запорным органом, соединенным с электрической схемой управления. При этом устройство включает дополнительную мерную емкость. Входной трубопровод оборудован управляемым переключателем потока, к которому подключают обе мерные емкости. Дополнительную мерную емкость, наряду с существующей, соединяют с выходным трубопроводом для газа и, через дополнительный управляемый запорный орган, с выходным трубопроводом для жидкости. В качестве входных и выходных трубопроводов каждой емкости используют консольно-защемленные трубопроводы. Обе мерные емкости оборудованы сигнализаторами уровня жидкости и подвешены на весоизмерители, в качестве которых применяют тензорезисторные датчики. Изобретение направлено на снижение погрешности измерений, расширение потребительских свойств и повышение надежности устройства и позволяет измерять дебит продукции скважин в непрерывном режиме, определять содержание пластовой воды в продукции скважин и вычислять массу «нетто» нефти. 1 ил.

Изобретение относится к способам измерения дебита нефтяных скважин в групповых замерных установках и может быть использовано в информационно-измерительных системах объектов добычи, транспорта и подготовки нефти, газа и воды. Технический результат - создание непрерывности и повышение точности измерения дебита нефтяных скважин. Способ измерения дебита водогазонефтяной эмульсии, собираемой по трубопроводам в групповую замерную установку из нефтяных скважин, с поочередным подключением трубопроводов скважин, транспортирующих водогазонефтяную эмульсию к сепаратору, в котором для повышения точности измерений дебита каждой фазы и обеспечения непрерывности измерений на каждый транспортирующий нефть от скважины к групповой замерной установке трубопровод устанавливают датчик виброакустических колебаний. Измеряют виброакустический шум, создаваемый движением жидкости при протекании ее через известное сечение. Скорость прохождения жидкости определяют по частоте и амплитуде акустических шумов, вызываемых неравномерностью движения жидкости. Предварительно измеряют температуру потока и давление в трубе, плотности каждой из фаз, а затем рассчитывают объемную или массовую долю каждой фазы, записывают их и сравнивают с данными о дебите нефти, газа и воды, полученными при следующем подключении скважины к измерительной системе групповой замерной установки, используя последние как реперные точки. 2 ил.

Изобретение относится к нефтяной промышленности. Способ включает отбор продукции нижнего пласта через приемный патрубок, проходящий через пакер, разделяющий пласты, измерение общего дебита жидкости и ее обводненности на дневной поверхности, измерение давления на приеме и параметров работы насоса с помощью модуля телеметрической системы, установленного под погружным электродвигателем насоса, измерение давления на забое нижнего пласта с помощью глубинного манометра, соединенного кабелем с модулем телеметрической системы, перекрытие поступления продукции одного из пластов с помощью гидравлического пакера с передачей давления по трубке малого диаметра для проведения замеров параметров работы другого пласта, определение дебитов нефти и воды перекрываемого пласта путем вычитания из общих дебитов нефти и воды скважины дебитов работающего пласта. Для проведения замеров перекрытие пласта с меньшим дебитом нефти производят спуском груза в нижнюю часть колонны насосно-компрессорных труб, открывающего за счет собственного веса доступ жидкости высокого давления из колонны труб по трубке малого диаметра в гидравлический пакер. После перекрытия пласта производят уменьшение оборотов погружного двигателя преобразователем частоты тока электропривода для поддержания давления на приеме насоса, равным давлению до перекрытия пласта. Производят замеры дебитов нефти и воды на дневной поверхности. Технический результат заключается в повышении эффективности раздельного замера продукции при одновременно-раздельной эксплуатации скважины. 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов заколонного перетока жидкости из пластов, перекрытых насосно-компрессорными трубами (НКТ). В скважину, в зону предполагаемого заколонного перетока жидкости, спускаются термоизолированные НКТ, снаружи которых крепятся датчики температуры. Осуществляют одновременную регистрацию температуры по стволу скважины в исследуемом интервале. После извлечения термоизолированных НКТ из скважины проводится анализ показаний датчиков в исследуемом интервале через время не менее , где Rk - радиус колонны, а - температуропроводность среды между насосно-компрессорными трубами и колонной после начала работы скважины. Об интервале заколонного перетока судят по аномалиям температуры. Использование способа повышает достоверность определения интервалов заколонного перетока жидкости в скважинах, перекрытых термоизолированными НКТ. 3 з.п. ф-лы, 3 ил.

Изобретение относится к средствам для обнаружения притока газа в скважину в процессе бурения. Техническим результатом является повышение точности определения расположения притока газа в скважине. Предложен способ обнаружения притока газа в буровую скважину, содержащий: развертывание буровой колонны в буровой скважине, проходящей от поверхности земли в пласт; обеспечение бурового раствора в буровой скважине; обеспечение множества акустических датчиков в соответствующих местоположениях по длине буровой колонны для обнаружения в каждом акустическом датчике акустических импульсов, распространяющихся в буровом растворе по длине буровой колонны, причем каждый из акустических датчиков генерирует электрический сигнал, чувствительный к обнаружению каждого из акустических импульсов; определение изменения акустической характеристики бурильного раствора на основании сгенерированных сигналов; и определение наличия притока газа в буровую скважину на основании определенного изменения. Раскрыта также система для осуществления указанного способа. 2 н. и 12 з.п. ф-лы, 3 ил.

Предлагаются система и способ динамической калибровки, предназначенные для измерения дебита скважинного флюида отдельных нефтяных скважин, входящих в состав куста скважин. Отличительной особенностью системы и способа динамической калибровки является то, что они включают в себя средство, предусмотренное для индивидуальной калибровки датчика давления в соответствии с параметрами каждой отдельной скважины. Технический результат - повышение точности результатов измерения дебита флюидов. 2 н. и 15 з.п. ф-лы, 2 ил., 1 табл.
Наверх