Способ тепловой обработки древесины

Изобретение относится к деревообрабатывающей технике строительного производства и может использоваться для просушивания материалов и изделий из древесины. В способе тепловой обработки древесины на сушильной установке, состоящей из закрытой камеры, вентилятора, калорифера, воздуховодов, системы сбора и удаления влаги и регенерационной системы, закрытую камеру выполняют в виде отдельно стоящих секций, оснащенных однотипными вентиляторами, калориферами и воздуховодами с узлами переключения потоков энергоносителя, обеспечивая его цикличную рециркуляцию, предусматривая при этом постепенное снижение рабочей мощности калориферов в направлении движения энергоносителя в интервале от 90 до 10% их номинальной мощности в зависимости от числа секций в установке, температуры и влажности наружного воздуха, а также сорта, объема, конфигурации, внешних габаритов, температуры и влажности обрабатываемой древесины, причем каждый цикл работы отдельной секции состоит из периодов, количество которых соответствует числу секций в установке, например для двухсекционной установки такой период составляет 7-10 суток при продолжительности цикла 14-20 суток, для семисекционной же установки такой период работы отдельной секции составляет 2-3 суток при продолжительности цикла 14-21 суток с чередованием процесса полного отбора отработанного энергоносителя из секции с его частичным отбором, составляющим 60-80% от поступления исходного энергоносителя, с одновременным выпуском оставшейся части отработанного энергоносителя в объеме 20-40% в атмосферу. Техническим результатом изобретения является повышение эффективности, бесперебойности и экономичности процесса тепловой обработки древесины. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к деревообрабатывающей технике строительного производства и может использоваться для просушивания материалов и изделий из древесины.

Известны сушильные установки периодического и непрерывного действия, в которых передача тепловой энергии осуществляется конвективным или контактным, радиационным и смешанным методами с использованием электрического тока высокой частоты; с периодическим сбросом давления; с движением энергоносителя по прямоточной, противоточной или комбинированной схеме с рециркуляцией и реверсивной циркуляцией; распылительные и газослоевые; с сушкой строительных материалов изделий в фильтрующем, кипящем и виброкипящем слое; одно- и многосекционные; барабанные, шнековые, туннельные и конвейерные (Перегудов В.В., Роговой М.И. Тепловые процессы и установки в технологии строительных изделий и деталей. - М.: Стройиздат, 1983. - С.208-232).

В то же время, несмотря на то, что строительные материалы из древесины находят в современном строительном производстве все более широкое применение, создание принципиально новых технологий их тепловой обработки существенно отстает от общего уровня развития техники и в опубликованных информационных источниках раскрыто недостаточно.

Известна конвейерная многоярусная сушилка, предназначенная для обработки плитообразных изделий по патенту RU на изобретение №2367868 (F 26 15/12, F26В 21/02, патентообл.: ЛИНДАУЭР ДОРНИР ГЕЗЕЛЬШАФТ, опубл.: 20.09.2009), в секционных ярусах которой циркулирует сушильный энергоноситель, причем каждый ярус содержит свой источник тепла и несколько осевых вентиляторов, выполненных с возможностью подачи энергоносителя в приточные отверстия над и под транспортным средством соответствующего яруса для обдува изделий и всасывания отработанного энергоносителя, а также шахты, камеры регенерации и связывающие каналы.

Однако известная сушилка недостаточно приспособлена для тепловой обработки древесины, изделия из которой частично выпускаются также в виде плит, отличается сложностью и трудоемкостью в изготовлении, сборке, наладке и обслуживании при низкой работоспособности, ненадежности и недолговечности ее основных конструктивных узлов и элементов.

Известен способ определения потребности в энергоносителе для сушки древесины по патенту RU на изобретение №2451254 (F26В 3/04, F26В 25/22, патентооблад.: ВАЛУТЕК АБ, опубл.: 20.05.2012), заключающийся в том, что древесину помещают в закрытую сушильную камеру и пропускают через нее сушильный энергоноситель, измеряя температуру «мокрого» и «сухого» термометров, а также их психрометрическую разность и контролируя влагосодержание обрабатываемой древесины в течение всего процесса ее тепловой обработки.

Известным способом можно контролировать состояние обрабатываемой древесины, однако в нем не предусматриваются меры по управлению процессом сушки, а также по экономии энергоносителя и его повторному использованию.

Известна сушильная установка по патенту RU на изобретение №2362100 (F26В 9/06, патентообл.: ТОУ ВПО «Военный инженерно-технический университет», опубл.: 20.07.2009), состоящая из закрытой камеры, вентилятора, калорифера, воздуховодов, системы сбора и удаления влаги и регенерационной системы.

Сушильный энергоноситель в такой установке под воздействием регенерационной системы, содержащей рециркуляционный канал с оребрением и дугообразные трубопроводы, по которым пропускается второй энергоноситель, в качестве которого служит вода, должен после его отработки использоваться повторно, а процесс сушки интенсифицироваться. Однако отсутствие выпуска отработанного энергоносителя в известной установке наружу играет при этом негативную роль, т.к. обусловливает обдувание высушиваемой древесины отработанным влажным воздухом, что приводит к ее вторичному увлажнению и вызывает неоправданное затягивание и дестабилизацию процесса тепловой обработки, сопровождаемого перебоями и отказами в работе.

Технической задачей предлагаемого изобретения является повышение эффективности, бесперебойности и экономичности процесса тепловой обработки древесины, уменьшение его энергоемкости и обеспечение малоотходности. Такая задача решается тем, что в способе тепловой обработки древесины на сушильной установке, состоящей из закрытой камеры, вентилятора, калорифера, воздуховодов, системы сбора и удаления влаги и регенерационной системы, закрытую камеру выполняют в виде отдельно стоящих секций, оснащенных однотипными вентиляторами, калориферами и воздуховодами с узлами переключения потоков энергоносителя, обеспечивая его цикличную рециркуляцию, предусматривая при этом постепенное снижение рабочей мощности калориферов в направлении движения энергоносителя в интервале от 90 до 10% их номинальной мощности в зависимости от числа секций в установке, температуры и влажности наружного воздуха, а также сорта, объема, конфигурации, внешних габаритов, температуры и влажности обрабатываемой древесины, причем каждый цикл работы отдельной секции состоит из периодов, количество которых соответствует числу секций в установке, например для двухсекционной установки такой период составляет 7-10 суток при продолжительности цикла 14-20 суток, для семисекционной же установки такой период работы отдельной секции составляет 2-3 суток при продолжительности цикла 14-21 суток с чередованием процесса полного отбора отработанного энергоносителя из секции с его частичным отбором, составляющим 60-80% от поступления исходного энергоносителя, с одновременным выпуском оставшейся части отработанного энергоносителя в объеме 20-40% в атмосферу. Кроме того, загрузку каждой партии обрабатываемой древесины в отдельную секцию так же, как и выгрузку из нее, ведут в течение 3-6 ч, а для стабилизации возврата отработанного энергоносителя в процесс тепловой обработки древесины в установках с числом секций более пяти обводной воздуховод оборудуют дополнительным вентилятором.

Заявляемый способ является при этом по существу креативной модернизацией известных процессов тепловой обработки древесины, получивших широкое распространение в отечественной и зарубежной практике и реализованных преимущественно в многосекционных сушильных установках циклического действия с передачей тепла комбинированным радиационно-конвективным методом по прямоточной схеме с рециркуляцией энергоносителя. Особенности практического использования предлагаемого изобретения в условиях реального производства описываются двумя примерами, в первом из которых рассматривается работа двухсекционной технологической линии циклической обработки древесины, а во втором - работа семисекционной линии, на базе которой можно рассматривать также особенности функционирования таких отдельно взятых производственных единиц, как трехсекционная, четырех-, пяти- и шестисекционная установки.

Реализация заявляемого способа иллюстрируется на чертежах, где на фиг.1 показана работа двухсекционной, а на фиг.2 и 3 - семисекционной сушильной установки, в состав которых входят сами герметически закрытые секции, объединенные в единый комплекс с помощью всасывающих и нагнетательных воздуховодов, узлов переключения потоков энергоносителя, вентиляционного и отопительного оборудования, причем все элементы таких установок, находящиеся на данный момент времени в процессе тепловой обработки древесины, показаны с использованием утолщенных линий, а находящиеся в процессе простоя - тонкими линиями. Как уже отмечалось, функционирование всех секций осуществляется в цикличном режиме с разделением каждого цикла на периоды, количество которых соответствует числу секций в рассматриваемой установке.

Так, для двухсекционной установки период работы каждой секции составляет 7-10 суток, а продолжительность цикла 14-20 суток, для трехсекционной соответственно - 5-7 суток и 15-21 сутки, для четырехсекционной - 4-5 суток и 16-20 суток, для пятисекционной - 3-4 суток и 15-20 суток, для шестисекционной - 2,5-3,5 суток и 15-21 сутки, для семисекционной установки соответственно 2-3 суток и 14-21 сутки. В то же время указанная продолжительность периодов и циклов в реальных производственных условиях может быть откорректирована с учетом фактических температурно-влажностных данных состояния окружающей воздушной среды и обрабатываемой древесины, а также сорта, внешних габаритов, объема и конфигурации обрабатываемых изделий. После завершения полного цикла работы каждой отдельной секции ее останавливают для механизированной выгрузки высушенной партии древесины и такой же загрузки следующей партии, продолжительность каждой из которых принимают в интервале от 3 до 6 ч.

Как видно из фиг.1, 2 и 3, каждая секция описываемых установок, а именно (С1), (С2), (С3), (С4), (С5), (С6) и (С7), оснащается располагаемыми под ними вентиляторами (В1), (В2), (В3), (В4), (В5), (В6) и (В7) и калориферами (К1), (К2), (К3), (К4), (К5), (К6) и (К7) с использованием дополнительных вентиляторов (К8) и (К9), воздуховодами, а также системой сбора и удаления влаги, воздухораспределительным устройством из перфорированных труб, воздухозабором (на чертежах не показаны) и воздуховыпуском (показан стрелкой в верхнем правом углу отдельных работающих секций). Нагнетательные, всасывающие и ветви обводных (возвращающих отработанный энергоноситель для повторного использования) работающих воздуховодов представлены на чертежах также утолщенными линиями со стрелкой.

Пример 1. Двухсекционная сушильная установка работает следующим образом. Как видно из фрагмента «а» фиг.1, в начале в работу включается первая секция (С1), предварительно загруженная первой партией обрабатываемой древесины, для которой начинается 1-ый период действия ее 1-го цикла, для чего включается первый вентилятор (В1) и первый калорифер (К1). В течение этого периода 20-40% отработанная часть от поступающего извне свежего исходного энергоносителя выпускается наружу, а оставшаяся 60-80% его отработанная часть отсасывается вторым вентилятором (В2) и через нижнюю ветвь обводного воздуховода возвращается во всасывающий патрубок первого вентилятора (В1). Вторая фаза работы установки показана на фрагменте «б» фиг.1, где секция (С1) действует в режиме 2-го периода 1-го цикла ее работы, а секция (С2) вступает в 1-ый период ее 1-го цикла. При этом вентилятор (В1) и калорифер (К1) продолжают подавать и нагревать свежий исходный воздух, поступающий в секцию (С1), а вентилятор (В2) начинает забирать отработанный в ней энергоноситель и через калорифер (К2) наполнять секцию (С2), откуда его меньшая часть в количестве 20-40% от поступления выбрасывается наружу, а большая часть в количестве 60-80% вентилятором (В3) откачивается через верхнюю ветвь обводного воздуховода во всасывающий патрубок вентилятора (В2). В этой фазе заканчивается полный цикл работы первой секции (С1), составляющий 7+7=14 суток или 10+10=20 суток, и ее останавливают на перегрузку древесины, а вторая секция продолжает работать. Третья фаза работы установки показана на фрагменте «в» фиг.1. Для проведения этой фазы секция (С1) начинает работать в 1-ом периоде своего 2-го цикла, а секция (С2) вступает во 2-ой период ее 1-го цикла работы. При этом весь отработанный в секции (С2) энергоноситель через вентилятор (В3), обе ветви обводного воздуховода, вентилятор (В1) и калорифер (К1) поступает в секцию (С1), откуда энергоноситель после его отработки в полном объеме выбрасывается наружу. Одновременно вентилятор (В2) начинает забирать свежий исходный воздух и через калорифер (К2) наполнять секцию (С2). В этой фазе заканчивается полный цикл работы второй секции (С1), составляющий 7+7=14 суток или 10+10=20 суток, и ее останавливают на перегрузку древесины, а первая секция продолжает действовать в рабочем режиме. Четвертая фаза работы установки показана на фрагменте «г» фиг.1. Для проведения этой фазы секция (С1) начинает работать в 2-ом периоде своего 2-го цикла, а секция (С2) во 1-ом периоде своего 2-го цикла. Свежий исходный энергоноситель при этом подается вентилятором (В1) через калорифер (К1) в секцию (С1), а отработанный в ней энергоноситель вентилятором (В2) через калорифер (К2) отводится в секцию (С2), откуда он после отработки частично выпускается наружу, а частично с помощью вентилятора (ВЗ) по верхней ветви обводного воздуховода возвращается для повторного использования во всасывающий патрубок вентилятора (В2). В этой фазе заканчивается 2-ой период 2-ого цикла работы секции (С1) и ее останавливают на перезагрузку древесины. Пятая фаза работы установки иллюстрируется фрагментом «д» фиг.1, где показано, что идет 1-ый период 3-его цикла работы секции (С1) и 2-ой период 2-ого цикла работы секции (С2), причем эта фаза работы установки идентична третьей фазе, показанной на фрагменте «в» фиг.1.

Таким образом, четвертая фаза является повтором второй фазы, пятая - повтором третьей фазы, шестая фаза - повтором четвертой фазы и т.д.

Кроме того, для обеспечения равномерной, стабильной и экономичной выработки тепловой энергии калориферы (К1)и (К2) попеременно переключают на пониженную мощность через каждый цикл, например на использование 80-60% их номинальной мощности.

Пример 2. Рассмотрим процесс тепловой обработки древесины на семисекционной установке, принцип действия которой может быть использован и для установок с меньшим или большим числом секций. Порядок последовательного включения в работу всех секций установки от (С1) до (С7) показан на фрагментах «а», «б», «в», «г» «д» и «е» фиг.2 и, как на продолжении этого чертежа, фрагментах «ж», «з», «и», «к», «л», «м» и «н» фиг.3. Так на фрагменте «а» описывается начальная фаза приведения установки в действие, для чего ее секция (С1), предварительно загруженная первой партией обрабатываемой древесины, начинает получать исходный энергоноситель, поступающий из внешней среды через включенные для этого вентилятор (В1) и калорифер (К1). Таким образом, начинается первый период работы секции (С1), длящийся 2-3 суток. В это время 20-40% отработанного энергоносителя выпускается наружу, а 60-80% отсасывается вентилятором (В2) и по нижней ветви обводного воздуховода поступает во всасывающий патрубок вентилятора (В1). Далее в работу включается следующая секция (С2), первый период действия которой полностью повторяет работу секции (С1) в ее первый период. Сама секция (С1) в это время весь объем образующегося в ее полости отработанного энергоносителя с помощью вентилятора (В2) перепускает в секцию (С2). А секция (С2) в своем первом периоде так же, как и в предыдущем случае, 20-40% отработанного энергоносителя выбрасывает наружу, а 60-80% его объема с помощью вентилятора (В3) отводит в режиме возврата во всасывающий патрубок вентилятора (В2). Как видно из фрагмента «а», в первый период работы секции (С1) включен только калорифер (К1), а из фрагмента «б» - и калорифер (К1), и калорифер (К2). Из следующих фрагментов «в», «г», «д», и «е» фиг.2 следует, что постепенно и последовательно начинают включаться в работу секции (С3), (С4), (С5)и (С6), причем выпуск наружу части отработанного энергоносителя и возвращение оставшейся его части для повторного использования осуществляется только в рамках самой верхней секции, включаемой в работу последней. Из фрагмента «ж» фиг.3 видно, что полный первый цикл функционирования секции (С1), составляющий (2-3)×7=14-21 сутки, закончился, и ее следует останавливать на выгрузку и повторную загрузку древесины, причем продолжительность каждой такой операции принимается равной 3-6 ч, а остальные секции продолжают при этом работать в режиме высушивания. Из этого же фрагмента «ж» следует, что установка начинает работать в режиме возврата отработанного энергоносителя из последней секции (С7) в первую секцию (С1), для чего включены все вентиляторы (В1)-(В8) плюс вентилятор (В9), все калориферы (К1)-(К7) и все ветви обводного воздуховода, причем секция (С1) работает в режиме частичного выпуска отработанного энергоносителя (20-40%) в атмосферу, а секция (С2) - в режиме забора свежего исходного энергоносителя с помощью вентилятора (В2). Затем согласно фрагментам «з», «и», «к», «л», «м», и «н» заканчивается полный первый цикл работы секций (С2), (СЗ), (С4), (С5), (С6) и (С7) и их также останавливают на 3-6 ч для перегрузки обрабатываемой древесины. Из этих же фрагментов следует, что роль первой секции (С1), выполняемая ей согласно фрагменту «ж» фиг.3, последовательно переходит к вышерасположенным по направлению движения энергоносителя секциям. Так, на фрагменте «м» показано, что выпуск части отработанного энергоносителя в атмосферу осуществляется уже секцией (С6), а забор исходного свежего энергоносителя из атмосферы выполняет вентилятор (В7). Последним фрагментом «н» фиг.3 описывается завершение полного первого цикла работы последней секции (С7) с последующей ее остановкой на перегрузку древесины, во время которой все остальные секции продолжают работать в режиме высушивания. В этот период обводной воздуховод отключается и свежий исходный энергоноситель поступает только в секцию (С1), работают все вентиляторы, кроме (В9), все калориферы, а выпуск отработанного энергоносителя наружу производится только через вентилятор (В8).

В примере 2 так же, как и в примере 1, используется принцип постепенного понижения мощности калориферов по направлению движения энергоносителя, но уже в большем интервале, а именно от 90 до 10% их номинальной мощности. Кроме того, для многосекционных (с четырьмя и большим количеством секций) установок для обеспечения их компактности и экономии площади размещения секций предлагается располагать не в одну линию, а параллельными рядами в плане, например по 2,3,4 и более рядов.

Важнейшую роль в обеспечении стабильного бесперебойного и безотказного функционирования всех узлов и элементов сушильной установки заявляемого типа играет система регулирования потоками энергоносителя, состоящая обычно из размещаемых на отдельных участках воздуховодов шиберных затворов с ручным управлением. Однако работу такой системы можно автоматизировать, для чего каждый шиберный затвор следует оборудовать сервомотором с использованием надсистемы программного управления, включающей соответствующие реле времени и таймеры.

1. Способ тепловой обработки древесины на сушильной установке, состоящей из закрытой камеры, вентилятора, калорифера, воздуховодов, системы сбора и удаления влаги и регенерационной системы, отличающийся тем, что закрытую камеру выполняют в виде отдельно стоящих секций, оснащенных однотипными вентиляторами, калориферами и воздуховодами с узлами переключения потоков энергоносителя, обеспечивая его цикличную рециркуляцию, предусматривая при этом постепенное снижение рабочей мощности калориферов в направлении движения энергоносителя в интервале от 90 до 10% их номинальной мощности в зависимости от числа секций в установке, температуры и влажности наружного воздуха, а также сорта, объема, конфигурации, внешних габаритов, температуры и влажности обрабатываемой древесины, причем каждый цикл работы отдельной секции состоит из периодов, количество которых соответствует числу секций в установке, например для двухсекционной установки такой период составляет 7-10 суток при продолжительности цикла 14-20 суток, для семисекционной же установки такой период работы отдельной секции составляет 2-3 суток при продолжительности цикла 14-21 суток с чередованием процесса полного отбора отработанного энергоносителя из секции с его частичным отбором, составляющим 60-80% от поступления исходного энергоносителя, с одновременным выпуском оставшейся части отработанного энергоносителя в объеме 20-40% в атмосферу.

2. Способ по п.1, отличающийся тем, что загрузку каждой партии обрабатываемой древесины в отдельную секцию так же, как и выгрузку из нее, ведут в течение 3-6 ч, а для стабилизации возврата отработанного энергоносителя в процесс тепловой обработки древесины в установках с числом секций более пяти обводной воздуховод оборудуют дополнительным вентилятором.



 

Похожие патенты:

Изобретение относится к способу сушки пиломатериалов хвойных и лиственных пород и может быть использовано на деревообрабатывающих предприятиях. Сущность изобретения заключается в том, что способ сушки пиломатериалов в конвективных сушильных камерах предусматривает выдерживание заданных параметров циркулирующего агента сушки.

Изобретение относится к деревообработке, а именно к деревянному домостроению, и может быть использовано при изготовлении домов из круглых, в том числе оцилиндрованных лесоматериалов.

Изобретение относится к способу сушки теплоизоляционных материалов, например пеноваты, для использования в строительстве. Способ сушки теплоизоляционного материала осуществляют в сушильной камере, выполненной с возможностью вмещения нескольких партий теплоизоляционного материала вдоль камеры, с подачей теплоносителя на выходе камеры сушки и с отводом газов на ее входе при сушке, процесс сушки проводят поэтапно, для чего на вход камеры во входной, первой зоне сушки устанавливают первую партию теплоизоляционного материала, в сторону теплоизоляционного материала непрерывно подают теплоноситель, осуществляя одновременный вывод отходящих газов из входной зоны сушильной камеры наружу в вытяжную вентиляцию, сушку первого этапа продолжают в течение части времени сушки, по прошествии которого партию теплоизоляционного материала поэтапно передвигают в сторону выходной зоны, а на ее место при необходимости устанавливают последующую партию теплоизоляционного материала, далее последующие этапы сушки повторяют в том же режиме.

Изобретение относится к способам покрытия внутренней и внешней поверхностей пятистороннего контейнера, а также к способам и системам сушки таких контейнеров. Способ включает в себя нанесение краски на водной основе на внутренние поверхности и внешние поверхности контейнера и подачу под давлением нагретого воздуха через открытую сторону контейнера для по меньшей мере частичного высушивания краски на внутренних поверхностях и внешних поверхностях контейнера.

Изобретение относится к технологии сушки крупномерной древесины и может быть использовано в деревообрабатывающей и других отраслях промышленности при изготовлении изделий из крупномерной древесины.

Изобретение относится к технологическим процессам сушки керамических изделий. Техническим результатом предлагаемого способа является повышение энергетической эффективности процесса сушки.

Изобретение относится к технике сушки древесины (бревен в коре), в специальных сушильных камерах и может быть использовано на деревообрабатывающих предприятиях. .

Изобретение относится к способу и устройству для сушки материала. .

Изобретение относится к теплотехнической технологии сушки самых разнообразных сыпучих материалов. .

Изобретение относится к деревообрабатывающей промышленности и может быть использовано для интенсификации камерной сушки древесины. .

Изобретение относится к области сушки твердых материалов или предметов с применением тепла и касается способа сушки 5(6)-амино-2-(4-аминофенил)бензимдазола, используемого в качестве мономера в производстве высокопрочных термостойких волокон и пленок. Способ заключается в том, что сушку водной пасты 5(6)-амино-2-(4-аминофенил)бензимидазола нагреванием в токе инертного газа при ступенчатом режиме повышения температуры ведут на первой ступени в температурном интервале 100-120°С до содержания остаточной воды в пасте не более 4% массовых и на второй ступени сушку ведут в температурном интервале 130-150°С до содержания остаточной воды не более 0,2% масс. Процесс можно вести под вакуумом. Способ позволяет усовершенствовать процесс сушки 5(6)-амино-2-(4-аминофенил)бензимдазола, предотвратить комкование и спекание его частиц в твердые агломераты, повысить его качество, сократить продолжительность процесса. 1 з.п. ф-лы, 2 ил.

Изобретение относится к сушке древесины. Способ сушки древесины заключается в воздействии на древесину в камере (1) предварительной сушки подогретым, всасываемым через теплообменник (8) с перекрестными движениями потоков приточным воздухом (11), в камере (2) основной сушки - циркуляционным воздухом (3), поступающим по циркуляционному контуру (6) через нагревательный элемент (5), от которого отделяют частичный поток в качестве отводимого воздуха (7) и заменяют приточным воздухом, подогреваемым с помощью отводимого воздуха (7) в теплообменнике (8) с перекрестными движениями потоков. Предлагается подавать отделенный от циркуляционного воздуха (3) отводимый воздух (7) в общий, расположенный перед камерой (1) предварительной сушки и камерой (2) основной сушки теплообменник (8) с перекрестными движениями потоков и, одну часть приточного воздуха подавать на предварительную сушку древесины с помощью потока (11) приточного воздуха, нагретого в этом теплообменнике (8) с перекрестными движениями потоков, а другой частью приточного воздуха восполнять отводимый воздух (7), отделенный от циркуляционного воздуха (3) камеры (2) основной сушки. Изобретение обеспечивает эффективное использование отходящего тепла. 3 з.п. ф-лы, 5 ил.

Изобретение может быть использовано при строительстве и капитальном ремонте магистральных газопроводов после испытаний для их осушки. Способ отличается тем, что с целью повышения эффективности осушки в условиях отрицательных температур осушаемой среды полость газопровода вакуумируют и в процессе вакуумирования через заданные равные интервалы времени измеряют параметры, характеризующие термодинамическое состояние среды в полости газопровода. Измеренные параметры сравнивают с заданными допусками и при достижении в полости газопровода минимального абсолютного давления заданной величины отключают вакуумные насосы. Вакуумирование останавливают и газопровод выдерживают под минимальным абсолютным давлением в течение времени до достижения 100% насыщения паровоздушной смеси над поверхностью льда в полости газопровода. После достижения заданной величины температуры точки росы включают вакуумные насосы и из полости газопровода откачивают пары воды. Откачку паров воды и осушку полости газопровода завершают после достижения заданной величины температуры точки росы во всем объеме газопровода. В процессе вакуумирования при температуре среды в полости газопровода, равной температуре начала кристаллизации воды, полость газопровода продувают азотом. Продувку полости газопровода азотом ведут на открытый конец газопровода при атмосферном давлении. Продувку азотом и осушку полости газопровода завершают после достижения заданной величины температуры точки росы во всем объеме газопровода. 1 з.п. ф-лы, 4 ил., 1 табл.
Изобретение относится к области деревообрабатывающей промышленности, в частности к технологии сушки древесины путем обработки ее в герметичной камере давлением воздуха в 10-40 атмосфер с нагреванием до требуемой температуры энергией СВЧ-излучения с последующим сбросом давления. Этот способ решает задачу повышения производительности и снижения энергоемкости процесса сушки, способ эффективен для сушки короткомерного круглого леса, который будет использован для изготовления оцилиндрованных бревен неограниченной длины, что востребовано в бревенчатом домостроении.

Изобретение относится к области термической обработки влажных материалов, в частности к сушке органического сырья при подготовке к сжиганию и/или переработке отходов. В энергетике сушка влажного топлива повышает эффективность его использования. Способ и устройство интенсивной сушки и термической обработки влажного материала перегретым паром при повышенном давлении, который генерируется за счет испаренной влаги в теплообменнике внешнего нагрева и используется при дополнительном перегреве для привода паровой турбины, работающей по циклу Ренкина, с целью производства механической работы или электроэнергии. Для повышения параметров пара, определяющих термодинамическую эффективность устройства сушки с производством полезной работы, предлагается двухкорпусная конструкция камеры сушки с внутренним корпусом из жаропрочного сплава, выдерживающего высокую температуру пара при относительно невысокой разности давлений внутри и снаружи, и внешним корпусом, выдерживающим высокое внутреннее давление при больших габаритах камеры, но при нормальных условиях эксплуатации при установленной теплоизоляции между корпусами, возможно, с наддувом нейтрального газа между ними. Предусмотрен сбор смолистых фракций, выделяющихся из многих органических материалов при высокотемпературной обработке. Кроме того, предложен способ, дающий возможность исключить в паре для турбины нежелательные загрязнения твердой или жидкой фазы, реализуемый за счет того, что пар, несущий энергию для турбины, после его вывода из камеры сушки и перегрева направляют в разделительный теплообменник для генерирования посредством теплообмена пара чистой воды для турбины. Это значительно увеличивает надежность всей системы. Предложенная энергосберегающая технология пригодна не только для интенсивной сушки горючих материалов, термической обработки сырья со смолистыми фракциями, но и обеспечивает полную защиту атмосферы от выбросов неприятных газов при сушке, и стерилизацию стоков. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к области теплотехники, в том числе к теплообмену излучением и конвекцией, а также к технологии сушки. Реализация способа позволяет осуществлять в автоматическом режиме сушку постельного белья, нижней и верхней одежды, обуви, сыпучих продуктов или материалов. В способе сушки высушиваемый материал помещают внутрь емкости, один над другим в емкостях, и создают внутри емкости потоки нагретого воздуха, нагревая его внутри емкости от нижнего днища, которое нагревают направленно-фокусированным излучением в ближней инфракрасной области снаружи, регулируя температуру и скорость потоков автоматически, а после сушки материал вынимают из емкости. Нижнее днище емкости выполняют из двух параллельных и расположенных одна над другой сеток без зазоров, при этом размеры ячеек верхней сетки делают изначально меньшими, чем эти же размеры нижней сетки, кроме этого в верхнем днище делают сквозное центральное отверстие, в которое вставляют неподвижно трубу с двумя коаксиальными трубе вентиляторами, а воздух внутри емкости либо непрерывно вытягивают наружу из емкости через сквозное осевое отверстие в верхнем днище, либо непрерывно затягивают воздух внутрь емкости снаружи через это отверстие, либо запирают воздух внутри емкости, задавая и контролируя заданную температуру воздуха внутри емкости. Изобретение должно обеспечить расширение функциональных возможностей процесса сушки - осуществлять в одной и той же емкости сушку дисперсных сыпучих материалов, постельных принадлежностей, одежды и обуви, уменьшить энергоемкость, повысить удобство обслуживания, снизить трудоемкость сушки. 12 ил.

Изобретение может быть использовано в деревообрабатывающей промышленности при импульсной сушке пиломатериалов хвойных и лиственных пород древесины. Способ импульсной сушки пиломатериалов включает предварительный нагрев материала, сушку, осуществляемую циклично, чередуя операции Работа и операции Пауза, после чего производят дополнительную выдержку, Предварительный нагрев материала и дополнительную выдержку материала после сушки осуществляют циклично, чередуя операцию Работа и операцию Пауза, причем продолжительность операции Работа и Пауза на всех этапах устанавливают в зависимости от характеристик высушиваемого материала и требуемых показателей качества, а процесс сушки осуществляют с постепенным повышением температуры в операциях Работа до окончания сушки материала, при этом в процессе предварительного нагрева материала и его выдержки также осуществляют постепенное повышение температуры при подаче энергоносителя в калорифер и циркуляции нагретого воздуха в сушильном объеме. Способ позволяет повысить производительность, улучшить качество высушиваемого материала. 3 табл., 3 пр.

Изобретение относится к способам сушки керамических изделий и может быть использовано в производстве изделий из глины, преимущественно кирпича, черепицы, посуды, сувениров. Сушку осуществляют в сушильной камере, оснащенной автоматизированной системой управления технологическим процессом (АСУТП) сушки, с постоянным контролем изменяющегося во времени состояния изделия-сырца с помощью погруженных в изделие-сырец локальных кондуктометрических датчиков и автоматическим регулированием с использованием АСУТП процесса сушки путем подачи в сушильную камеру ускоряющего либо замедляющего сушку компонента сушильного агента. Кондуктометрические датчики погружают в приповерхностный, промежуточный и срединный слои изделия-сырца, включают подачу сушильного агента, регистрируют убывающие по мере сушки электрические токи между электродами датчиков, нормируют текущие значения токов на их начальное значение, протоколируют процесс сушки построением зависимостей нормированных значений токов от времени сушки, сопоставляют наблюдаемые разности показаний датчиков с возникновением дефектов в изделии и экспериментально определяют допустимые для бездефектной сушки максимальные разности показаний датчиков, с использованием обеспечивающих бездефектную сушку разностей показаний датчиков составляют программу автоматического регулирования процесса сушки. Осуществляют управляемую сушку изделия-сырца в сушильной камере с использованием АСУТП, работающей по составленной на экспериментальной основе программе регулирования процесса сушки. Техническим результатом является повышение скорости и качества сушки керамических изделий, снижение брака, энергетических и временных затрат, повышение производительности труда при производстве керамических изделий. 4 ил., 2 пр.

Изобретение может быть использовано в деревообрабатывающей промышленности при импульсной сушке пиломатериалов хвойных и лиственных пород древесины. Сушку пиломатериалов осуществляют в несколько этапов, включающих предварительный нагрев, сушку и дополнительную выдержку. Процесс импульсной сушки пиломатериалов осуществляют циклично, он включает предварительный нагрев и дополнительную выдержку. Производят чередование режима подачи свежего воздуха в сушильный объем и энергоносителя в калорифер при циркуляции нагретого воздуха в сушильном объеме, что соответствует операции «работа», с режимом полного прекращения подачи свежего воздуха, энергоносителя в калорифер и циркуляции нагретого воздуха в сушильном объеме, что соответствует операции «пауза». В операциях «пауза» определяют температуру по сухому термометру и относительную влажность агента сушки, по которым находят равновесную влажность высушиваемого пиломатериала, а среднюю текущую влажность высушиваемого пиломатериала определяют по его равновесной влажности в конце операции «пауза». Способ позволяет повысить производительность, улучшить качество высушиваемого пиломатериала при снижении трудозатрат. 1 ил., 3 табл.

Изобретение может использоваться для сушки пиломатериалов древесины всех пород при любой толщине, любых значениях длины и ширины досок, от любой начальной до заданной конечной влажности. Способ вакуумной сушки заключается в создании в зоне нахождения пиломатериалов пониженного давления в пределах от 5 до 150 мм рт.ст. и температуры в пределах на 5-25°С больше, чем температура вскипания влаги при заданном пониженном давлении. Перед сушкой древесный пиломатериал 1 помещают в герметичную продолговатую оболочку 2, открытую с одной из торцевых сторон горловину 3. После этого пиломатериал, размещенный в оболочке, помещается в термокамеру, которая может работать как на СВЧ излучениях, так и по конвекционному принципу (термокамера на чертеже не показана). Через горловину 3 внутренняя полость оболочки 2 соединяется с вакуум-насосом. С одновременным включением термокамеры включается вакуум-насос (последний на чертеже не показан). Время сушки определяется влажностью древесины, после чего термокамера выключается. Герметичная оболочка 2 с ее содержимым вынимается из термокамеры и освобождается от пиломатериала. Техническим результатом изобретения является повышение кпд. 1 ил.
Наверх