Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние вводят через открытый вход газоструйного резонатора навстречу набегающему потоку под давлением в пульсирующем режиме с частотой более 100 Гц. Модуляция аэродинамического сопротивления способствует устойчивости пограничного слоя в окрестности защищаемых элементов конструкции ЛА. При поглощении энергии набегающего потока и излучения головной ударной волны происходят диссоциация молекул воды и метана и реакции синтеза. Компоненты разложения метангидрата, а также продукты синтеза водорода и ацетилена направляют в камеру сгорания силовой установки ЛА. Технический результат изобретения заключается в снижении пиковых тепловых нагрузок на элементы конструкции ЛА, увеличении срока их службы и повышении топливной эффективности силовой установки ЛА.

 

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок летательного аппарата (ЛА).

При движении летательного аппарата с высокой скоростью в пределах атмосферы возникает проблема теплозащиты теплонапряженных передних кромок ЛА. Важным требованием, которое предъявляют к разрабатываемым системам теплозащиты, является эффективная защита конструкции ЛА от теплового перегрева без существенного ухудшения его массогабаритных характеристик, приводящего к увеличению аэродинамического сопротивления и снижению топливной эффективности ЛА.

Известен способ охлаждения поверхности космического корабля при входе его в плотные слои атмосферы (патент RU №1711438 A1, МПК B64G 1/58, 15.08.89), включающий ввод в набегающий высокоскоростной поток перед защищаемой поверхностью конструкции летательного аппарата теплопоглощающей среды в виде смеси инертного газа и ферромагнитных частиц размером не более 20 мкм и создание условий для поглощения ею избыточной тепловой энергии, поступающей на защищаемую поверхность.

Недостатком известного технического решения является необходимость создания в окрестности защищаемой поверхности магнитного поля с помощью материалоемких и энергоемких магнитных систем.

Наиболее близким из известных технических решений к предлагаемому способу активной теплозащиты и модуляции аэродинамического сопротивления летательного аппарата является принятый за прототип способ теплозащиты и модуляции аэродинамического сопротивления объекта, спускаемого с космического аппарата (патент RU №2219110 C1, МПК B64G 1/58, С09Д 1/02, В64С 1/38, 31.05.2002), включающий ввод в набегающий поток теплоносителя и формирование теплозащитного слоя.

Недостатком известного технического решения является сложная технология формирования испаряемого защитного слоя на поверхности объекта в специфических условиях космоса.

Задачей заявленного изобретения является создание эффективной теплозащиты теплонапряженных передних кромок ЛА и модуляции аэродинамического сопротивления летательного аппарата при его гиперзвуковом полете в пределах атмосферы.

Технический результат, получаемый при осуществлении изобретения, заключается в снижении пиковых тепловых нагрузок на элементы конструкции ЛА, увеличении срока их службы и повышении топливной эффективности силовой установки ЛА.

Решение поставленной задачи и технический результат достигаются тем, что в способе активной теплозащиты и модуляции аэродинамического сопротивления летательного аппарата, включающем ввод в набегающий поток теплоносителя и формирование теплозащитного слоя, в качестве теплоносителя выбирают метангидрат, который преобразуют в смесь паров воды и метана и подают ее под давлением в пульсирующем режиме с частотой более 100 Гц навстречу набегающему потоку через открытый вход газоструйного резонатора, установленного в носовой части летательного аппарата, передняя кромка которого воспринимает пиковые тепловые нагрузки, осуществляют диссоциацию молекул воды и метана с поглощением энергии набегающего высокоскоростного потока и излучения головной ударной волны, создают модуляцию аэродинамического сопротивления, которая способствует устойчивости пограничного слоя в окрестности защищаемых теплонапряженных элементов конструкции летательного аппарата и направляют компоненты разложения молекул воды и метана, а также продуктов синтеза водорода и ацетилена в камеру сгорания силовой установки летательного аппарата для повышения ее топливной эффективности.

Суть предлагаемого способа заключается в том, что в качестве теплоносителя выбирают метангидрат, который размещают в контейнере на летательном аппарате, преобразуют его в смесь паров воды и метана. При этом поглощается значительное количество энергии набегающего высокоскоростного потока, включая излучение ударной волны, на плавление и испарение метангидрата, на диссоциацию молекул воды и метана и синтез водорода и ацетилена. Далее смесь паров воды и метана с помощью газоструйного резонатора, установленного в носовой части летательного аппарата, подают под давлением в пульсирующем режиме с частотой более 100 Гц навстречу набегающему потоку, передняя кромка газоструйного резонатора воспринимает пиковые тепловые нагрузки, формируют теплозащитный слой, снижающий пиковые тепловые нагрузки на элементы конструкции ЛА, осуществляют диссоциацию молекул воды и метана с поглощением энергии набегающего высокоскоростного потока и излучения головной ударной волны, создают модуляцию аэродинамического сопротивления, которая способствует устойчивости пограничного слоя в окрестности защищаемых теплонапряженных элементов конструкции летательного аппарата. Кроме того, данная технология, реализованная по предложенному способу, позволяет использовать компоненты разложения метангидрата на молекулы воды и метана и продукты синтеза водорода и ацетилена при горении топливовоздушной смеси в камере сгорания силовой установки летательного аппарата для повышения его топливной эффективности. Поэтому направляют компоненты разложения молекул воды и метана, а также продуктов синтеза водорода и ацетилена в камеру сгорания силовой установки летательного аппарата.

Таким образом, предлагаемое изобретение позволяет снизить пиковые тепловые нагрузки на элементы конструкции ЛА, увеличить их ресурс и повысить топливную эффективность силовой установки летательного аппарата.

Способ активной теплозащиты и модуляции аэродинамического сопротивления летательного аппарата, включающий ввод в набегающий поток теплоносителя и формирование теплозащитного слоя, отличающийся тем, что в качестве теплоносителя выбирают метангидрат, который преобразуют в смесь паров воды и метана, подают ее под давлением в пульсирующем режиме с частотой более 100 Гц навстречу набегающему потоку через открытый вход газоструйного резонатора, установленного в носовой части летательного аппарата, передняя кромка которого воспринимает пиковые тепловые нагрузки, осуществляют диссоциацию молекул воды и метана с поглощением энергии набегающего высокоскоростного потока и излучения головной ударной волны, создают модуляцию аэродинамического сопротивления, которая способствует устойчивости пограничного слоя в окрестности защищаемых теплонапряженных элементов конструкции летательного аппарата и направляют компоненты разложения молекул воды и метана, а также продуктов синтеза водорода и ацетилена в камеру сгорания силовой установки летательного аппарата для повышения ее топливной эффективности.



 

Похожие патенты:

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА).

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин.

Изобретение относится к тепловой защите элементов конструкции космического аппарата (КА) от воздействия ионизированных газовых потоков, преимущественно стационарных плазменных двигателей.

Изобретение может использоваться в многослойных комбинированных покрытиях зеркальных космических антенн с рефлекторами из полимерного композиционного материала - углепластика.

Изобретение относится к ракетно-космической технике и может быть использовано для креплений разделительных устройств блоков ступеней ракет-носителей, устанавливаемых на теплозащитах двигателей.

Изобретение относится к космической технике и касается создания терморегулирующего материала для нанесения на поверхность космического объекта (КО). Терморегулирующий материал содержит подложку в виде оптически прозрачного стекла, высокоотражающий слой из серебра, защитный слой.

Изобретение относится к терморегулирующим материалам, эксплуатирующимся в составе космической техники, в частности в качестве внешнего слоя экранно-вакуумной теплоизоляции на наружных поверхностях космических аппаратов (КА) с электрическим заземлением на корпус КА или в качестве терморегулирующего покрытия класса "солнечный отражатель" при нанесении его с помощью клеевого электропроводного слоя на наружные поверхности КА.

Изобретение относится к термостойким системам теплозащиты поверхности гиперзвуковых летательных и возвращаемых космических аппаратов. Термостойкая система теплозащиты состоит из теплоизоляционного и теплозащитного слоя, включающего композиты с керамической матрицей, армированной теплостойкими волокнами и содержащей сублимирующее твердое вещество.

Изобретения относятся к вариантам выполнения фюзеляжа воздушного судна и к воздушному судну. Фюзеляж по первому варианту содержит пространство с полом, который содержит одну или несколько панелей для пола.

Изобретение относится к авиационной и ракетно-космической технике и касается тепловой защиты частей корпусов летательных аппаратов (ЛА), совершающих полет со сверх- и гиперзвуковыми скоростями.

Изобретение относится к средствам заправки двигательных установок космических аппаратов газами большой плотности. .

Изобретение относится к средствам заправки газами большой плотности, преимущественно емкостей двигательных установок космических аппаратов. .

Изобретение относится к области авиационной техники, в частности к средствам перекачки и заправки в емкости криогенной жидкости. .

Изобретение относится к самолетостроению, а именно к авиационной технике со средствами заправки топливных баков криогенной жидкостью или сжиженным природным газом (СПГ), и может быть использовано в других отраслях машиностроения.

Изобретение относится к космической технике и предназначено преимущественно для многоразовых космических аппаратов с двигательными установками, топливные баки которых используются по иному, помимо основного назначения, в частности - для торможения аппаратов при полете в атмосфере.

Изобретение относится к топливным системам многодвигательных самолетов, использующих криогенное топливо. .

Изобретение относится к области транспортного машиностроения и может быть использовано преимущественно в авиации для безопасного дренирования паров криогенного топлива с самолета, особенно при использовании в качестве топлива жидкого водорода, метана или сжиженного природного газа.

Изобретение относится к областям техники, использующими криогенные жидкости, в частности к средствам заправки криогенного топлива в авиационной технике и может быть использовано в других отраслях машиностроения.

Изобретение относится к авиационной технике, в частности к средствам обеспечения заправки и дренажа криогенных топливных систем летательных аппаратов со специальными видами топлива, и может быть использовано в других областях машиностроения.

Изобретение относится к авиационной технике и может быть использовано в других отраслях машиностроения. .

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА).
Наверх