Гелеобразующий состав для изоляции водопритоков в скважину

Изобретение относится к области нефтедобывающей промышленности, в частности к гелеобразующим составам для изоляции водопритоков в нефтяные и газодобывающие скважины, а также может быть использовано для регулирования профилей приемистости в нагнетательных скважинах. Состав включает компоненты при следующем их соотношении, мас.%: реагент РИКОР - 3,0-4,0; ЛАПРОКСИД ДЭГ-1 - 1,5-2,0; вода - остальное. Приготовление состава заключается в предварительном растворении реагента РИКОР в расчетном количестве воды. Затем в полученном растворе растворяют ЛАПРОКСИД ДЭГ-1 до получения однородного состава. Техническим результатом является повышение эффективности изоляции водопритоков в скважину за счет повышения термостойкости образующегося геля во времени при взаимодействии его с маломинерализованной пластовой водой и увеличения длительности изоляции. 10 пр., 1 табл.

 

Изобретение относится к нефтегазодобывающей промышленности, в частности к гелеобразующим составам для изоляции водопритоков в нефтяные и газодобывающие скважины, а также может быть использовано для регулирования профилей приемистости в нагнетательных скважинах.

Известен гелеобразующий состав для ограничения водопритоков в скважину, содержащий водорастворимый реагент Комета, гелеобразователь - ацетат хрома и воду [Патент РФ №2182645, МКИ E21B 33/138, 2001].

Недостатком состава является его небольшая термостойкость во времени при взаимодействии с пластовой водой.

Наиболее близким к изобретению по технической сущности является гелеобразующий состав для изоляции водопритоков в скважину, содержащий водорастворимый реагент Комета, гелеобразователь - водорастворимую алифатическую эпоксидную смолу и воду [Патент РФ №1176063, МКИ E21B 33/138, 1983 (прототип)].

Недостатком известного состава является низкая термостойкость образующегося геля во времени при взаимодействии его с маломинерализованной пластовой водой, что приводит к уменьшению объема тампонирующей массы и, как следствие, к снижению длительности эффекта изоляции в результате прорыва воды к забою добывающих скважин.

В предложенном изобретении решается задача повышения эффективности изоляции водопритоков в скважине за счет повышения термостойкости образующегося геля во времени при взаимодействии его с маломинерализованной пластовой водой и увеличения длительности эффекта изоляции.

Задача решается тем, что гелеобразующий состав для изоляции водопритоков в скважину, включающий водорастворимый полимер, гелеобразователь и воду, содержит в качестве водорастворимого полимера реагент РИКОР, а в качестве гелеобразователя - ЛАПРОКСИД ДЭГ-1 при следующем соотношении компонентов, масс.%:

Реагент РИКОР 3,0-4,0
ЛАПРОКСИД ДЭГ-1 1,5-2,0
Вода остальное

Признаками изобретения «Гелеобразующий состав для изоляции водопритоков в скважину» являются:

1. Водорастворимый полимер.

2. Гелеобразователь.

3. Вода.

4. В качестве водорастворимого полимера состав содержит реагент РИКОР.

5. В качестве гелеобразователя состав содержит ЛАПРОКСИД ДЭГ-1.

6. Соотношение компонентов в составе, масс.%:

Реагент РИКОР 3,0-4,0
ЛАПРОКСИД ДЭГ-1 1,5-2,0
Вода остальное

Признаки 1-3 являются общими с прототипом, признаки 4-6 являются существенными отличительными признаками изобретения.

Сущность изобретения

Для изоляции водопритоков в нефтяных и газодобывающих скважинах используют известные гелеобразующие составы, имеющие низкую термостойкость образующегося геля во времени при взаимодействии его с маломинерализованной пластовой водой.

В итоге уменьшается объем тампонирующей массы (геля) и снижается длительность эффекта изоляции в результате прорыва воды к забою скважин.

Для повышения эффективности изоляции водопритоков в скважину в известном составе, включающем водорастворимый полимер, гелеобразователь и воду, в качестве водорастворимого полимера используется реагент РИКОР, а в качестве гелеобразователя - ЛАПРОКСИД ДЭГ-1 при следующем соотношении компонентов, масс.%:

Реагент РИКОР 3,0-4,0
ЛАПРОКСИД ДЭГ-1 1,5-2,0
Вода остальное

Это приводит к повышению термостойкости образующегося геля во времени при взаимодействии с маломинерализованной пластовой водой и увеличению длительности эффекта изоляции.

Техническая характеристика используемых реагентов.

1. Реагент РИКОР (ТУ 2458-029-25690359-2013) представляет собой композиционный материал на основе реагента КОМЕТА-Р (карбоксилсодержащий метакриловый сополимер, ТУ 2458-019-25690359-99) и гликоля.

2. ЛАПРОКСИД ДЭГ-1 (ТУ 2225-374-10488057-2005) представляет собой диглицидиловый эфир диэтиленгликоля.

Для выявления оптимальных соотношений компонентов были проведены опыты с конкретными составами, результаты которых приведены в таблице.

Примеры конкретных составов

Пример 1. Готовится 2%-ный раствор реагента РИКОР. Затем в полученном растворе растворяют расчетное количество ЛАПРОКСИД ДЭГ-1. Полученный состав термостатируется при 70°C, время гелеобразования определяется визуально. Как видно из таблицы, при данном соотношении компонентов время гелеобразования данного состава составляет 90 мин. Навеску схватившегося геля помещают в лабораторный стакан, заливают маломинерализованной пластовой водой (плотность - 1,014 г/см3; минерализация - 23,75 г/л), соответствующей пластовой воде, характерной для многих месторождений Западной Сибири, и ставят в термостат при 70°C. Через 30 суток пластовая вода сливается, и взвешивается навеска геля. Определяется процентное соотношение массы навески к первоначальной массе по формуле:

,

где m - масса навески геля через 30 суток, г; m0 - начальная масса навески геля, г.

Из таблицы видно, что при данных соотношениях компонентов состава масса получаемого геля через 30 суток при 70°C увеличивается, то есть он набухает (увеличивается в объеме) в маломинерализованной пластовой воде, но не превышает данные по прототипу.

Примеры 2-4, аналогичны примеру 1, только берутся, соответственно, 3%-ный, 4%-ный и 5%-ный растворы реагента РИКОР. Как видно из таблицы, при данных соотношениях компонентов состава масса получаемого геля через 30 суток при 70°C увеличивается, то есть он набухает (увеличивается в объеме) в пластовой воде, что приводит к повышению эффекта изоляции по сравнению с прототипом.

Примеры 5-7, аналогичны примеру 3, при различном содержании ЛАПРОКСИД ДЭГ-1. Время гелеобразования при 70°C и термостойкость (устойчивость геля в маломинерализованной пластовой воде при 70°C через 30 суток) составов приведены в таблице.

Пример 8. Готовится 4%-ный раствор реагента Комета-Р. Затем в полученный раствор добавляют расчетное количество ЛАПРОКСИД ДЭГ-1. Полученный состав термостатируют при 70°C, время гелеобразования при этом составляет 190 минут. Через 30 суток контактирования с маломинерализованной пластовой водой при 70°C навеска полученного геля набухает на 142% от своей первоначальной массы (см. таблицу).

Пример 9. Готовится 4%-ный раствор реагента РИКОР. Затем в полученный раствор добавляют расчетное количество алифатической эпоксидной смолы ТЭГ-1. Полученный состав термостатируют при 70°C, время гелеобразования при этом составляет 130 минут. Через 30 суток контактирования с маломинерализованной пластовой водой при 70°C навеска полученного геля набухает на 150% от своей первоначальной массы (см. таблицу).

Пример 10 (прототип). Готовится 4%-ный раствор реагента Комета-Р. Затем в полученный раствор добавляют расчетное количество алифатической эпоксидной смолы ТЭГ-1. Полученный состав термостатируют при 70°C, время гелеобразования при этом составляяет 120 минут. Через 30 суток контактирования с маломинерализованной пластовой водой при 70°C навеска полученного геля набухает на 140% от своей первоначальной массы (см. таблицу).

Как видно из таблицы, составы №1 и 6 не превосходят прототип по эффективности водоизоляции. Причем состав №1 имеет слишком малое время гелеобразования, поэтому практическое его использование затруднительно и даже опасно, ввиду возможности получения прихвата подземного оборудования

при проведении работ на скважине. Увеличение содержания реагента РИКОР не приводит к существенному увеличению эффективности водоизоляции (состав №4). Увеличение содержания ЛАПРОКСИД ДЭГ-1 в составе свыше 2,0% не приводит к существенному повышению положительного результата, но заметно сокращает сроки схватывания (состав №7). Использование в составе в качестве водорастворимого полимера реагента Комета-Р (состав №8) или в качестве сшивателя - алифатической эпоксидной смолы ТЭГ-1 (состав №9) не приводит к существенному изменению термостойкости образовавшегося геля в маломинерализованной пластовой воде по сравнению с прототипом.

Из таблицы следует, что составы №№2-3 и 5 обладают достаточным временем гелеобразования (т.е. таким, при котором состав остается текучим, чтобы успеть закачать его в пласт до начала гелеобразования) и более высокой термостойкостью образовавшегося геля во времени при взаимодействии его с маломинерализованной пластовой водой по сравнению с прототипом. Таким образом, пределы концентраций в заявляемом составе составляют: реагент РИКОР - 3,0-4,0%; ЛАПРОКСИД ДЭГ-1 - 1,5-2,%; вода - остальное.

Наличие большего количества тампонирующего материала в заявляемом техническом решении по сравнению с прототипом через 30 суток постоянного воздействия на гели маломинерализованной пластовой водой и температурой 70°C позволяет сделать вывод о том, что длительность эффекта изоляции предлагаемым составом будет соответственно выше, чем прототипом.

Использование заявляемого изобретения позволит повысить эффективность работ по изоляции водопритоков в скважину за счет создания более надежной и долговременной блокады на путях продвижения маломинерализованной пластовой воды.

Гелеобразующий состав для изоляции водопритоков в скважину, содержащий водорастворимый полимер, гелеобразователь и воду, отличающийся тем, что он содержит в качестве водорастворимого полимера реагент РИКОР, а в качестве гелеобразователя - ЛАПРОКСИД ДЭГ-1 при следующем соотношении компонентов, мас. %:

Реагент РИКОР 3,0-4,0
ЛАПРОКСИД ДЭГ-1 1,5-2,0
Вода остальное



 

Похожие патенты:

Изобретение относится к области добычи нефти и газа и может быть использовано для снижения выноса песка в скважину. Технический результат - увеличение межремонтного пробега работы скважины и повышение добычи углеводородов.

Изобретение относится к нефтедобыче. Технический результат - интенсификация добычи нефти из горизонтальной скважины, увеличение дебита нефти в 1,5-2 раза, снижение обводненности добываемой продукции на 30-50%.

Изобретение относится к нефтегазовой отрасли промышленности, в частности к тампонажным растворам, используемым для крепления слабосцементированных рыхлых пород и цементирования обсадных колонн нефтегазовых, геотермальных и специальных скважин, а также для восстановления призабойной зоны пласта при капитальном ремонте скважин.

Изобретение относится к способам текущего ремонта подземных скважин. Способ включает нагнетание суспензии частиц кремнезема, которая сама по себе не имеет цементирующих свойств, в полости в поврежденной цементной оболочке или рядом с нею.

Изобретение относится к способам ликвидации притока подземных вод в горные выработки при доработке месторождений подземным способом, к примеру, для условий криолитозоны Западной Якутии.

Группа изобретений относится к нефтегазодобывающей промышленности, в частности к способам проведения ремонтно-изоляционных работ в добывающих скважинах, а также тампонирования промытых зон в нагнетательных скважинах.

Настоящее изобретение относится к нефтегазодобывающей промышленности и может быть использовано при строительстве нефтяных и газовых скважин. В способе устранения заколонных перетоков и межколонных давлений, включающем приготовление аэрированных облегченного и нормальной плотности тампонажных растворов, их последовательное нагнетание в обсадную колонну и продавку в заколонное и межколонное пространства продавочной жидкостью, в качестве аэрированных облегченного и нормальной плотности тампонажных растворов используют седиментационно-устойчивые мелкодисперсно-аэрированные растворы с плотностями не выше 1650 кг/м3 и не ниже 1800 кг/м3, содержащие бездобавочный портландцемент и термостойкую пластифицирующе-расширяющую добавку, включающую каолиновую глину, термически активированную при температуре 900÷1000°C с удельной поверхностью 300÷400 м2/кг, сульфат алюминия, борную кислоту и воздухововлекающую добавку Аэропласт, исключающую образование устойчивой пены, и жидкость затворения при следующем соотношении компонентов, масс.%: бездобавочный портландцемент 85-75, каолиновая глина 10-18, сульфат алюминия 4,7-6,1, борная кислота 0,2-0,5, воздухововлекающая добавка Аэропласт 0,1-0,4, жидкость затворения сверх 100% до получения водосмесевых отношений 0,63÷0,65 м3/т и 0,40÷0,50 м3/т, при этом сначала нагнетают седиментационно-устойчивый аэрированный облегченный тампонажный раствор с регулируемой плотностью не более 1650 кг/м3, затем аэрированный тампонажный раствор нормальной плотности не более 1950 кг/м3, причем необходимые плотности тампонажных растворов обеспечивают изменением водосмесевого отношения, интенсивностью и продолжительностью перемешивания, а продавку ведут до частичного вытеснения аэрированного облегченного тампонажного раствора из заколонного (межколонного) пространства продавочной жидкостью, нагретой до 50÷60°C в зимний период и при цементировании низкотемпературных скважин.

Изобретение относится к технологии повышения продуктивности скважины. Технический результат - повышение эффективности большеобъемной селективной кислотной обработки (БСКО) карбонатных коллекторов.
Изобретение относится к нефтегазодобывающей промышленности и может найти применение при изменении фильтрационных характеристик пластов, при проведении гидроразрыва, разделении потоков жидкостей в скважине, очистке ствола скважин и других ремонтных работах.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам приготовления составов для ликвидации заколонных перетоков в скважине. Технический результат - повышение технологичности и эффективности ликвидации заколонных перетоков в скважине за счет увеличения прочности и расширения диапазона времени отверждения состава на основе микроцемента.

Изобретение относится к нефтедобыче, точнее к способам увеличения дебита нефти в добывающих скважинах. В способе повышения добычи нефти, включающем закачку через добывающую скважину в пласт водной суспензии полиакриламида, обработанного ионизирующим излучением, суспензию получают смешением 1 вес.

Группа изобретений относится к горному делу и может быть применена для гидравлического разрыва пласта. Скважинный флюид включает жидкость-носитель на водной основе, гидрофобные волокна, суспендированные в нем, гидрофобный зернистый материал, также суспендированный в жидкости-носителе и газ для смачивания поверхности частиц и связывания их вместе в агломераты.

Изобретение относится к области добычи углеводородов и может быть использовано при проведении подземного ремонта эксплуатационных нефтяных и газовых скважин. Состав для ремонта нефтяных и газовых скважин, включающий уретановый предполимер, углеводородный растворитель и отвердитель, содержит в качестве уретанового предполимера гидрофобный уретановый предполимер, в качестве отвердителя - оксидированное растительное масло, в качестве углеводородного растворителя - органический растворитель, растворимый в ацетоне, или ацетон, или их смесь при следующем соотношении компонентов, мас.

Изобретение относится к нефтегазодобывающей промышленности, в частности к сухим смесям для приготовления жидкости глушения, используемой при капитальном ремонте скважин, в том числе при низких климатических температурах до минус 40°С.
Изобретение относится к области сельского хозяйства и мелиорации. Способ включает глубокое рыхление почвы, внесение удобрений и раствора сульфата железа и полив повышенной оросительной нормой.

Изобретение относится к нефтедобывающей промышленности, в частности к сухим термотропным составам, водные растворы которых образуют гель за счет пластовой температуры после введения в нефтяной пласт.

Изобретение относится к составу тампонажного раствора.Тампонажный раствор, содержит 46,0-75,0 мас.% вяжущего материала, в качестве которого используется портландцемент тампонажный класса G, или цементная смесь ЦС БТРУО “Микро”, или смесь глиноземистого цемента ГЦ-40 и микроцемента ЦС БТРУО “Микро” в массовом соотношении 3:7, или смесь глиноземистого цемента ГЦ-40 и портландцемента ПЦТ 50 в массовом соотношении 1:4; 1,0-4,0 мас.% ПАВ, в качестве которого используется смесь эмульгатора МР-150 с алкилбензосульфонатом кальция и эмульгатором ОП-4 в массовом соотношении, равном 1:4:9; или смесь эмульгатора МР-150 с алкилбензосульфонатом кальция, гидрофобизатором АБР и нефтенолом ВКС-Н в массовом соотношении, равном 4:4:3:3; 9,0-27,0 мас.% дизельного топлива; 0,0-0,5 мас.% хлористого кальция; 0,0-2,0 мас.% микрокремнезема конденсированного МК-85 и пресную воду - остальное.

Изобретение относится к композициям и способам обработки буровой скважины. Технический результат изобретения заключается в улучшении связывания цемента в затрубном пространстве между обсадной трубой и поверхностью горной породы.

Изобретение относится к составам для обработки скважин для применения в нефтедобывающей области. Состав для обработки скважины, содержащий реагент для обработки скважины, адсорбированный на водонерастворимом адсорбенте, где состав получают осаждением реагента для обработки скважины из жидкости, при этом реагент для обработки скважины адсорбируют на водонерастворимом адсорбенте, и где реагент для обработки скважины осаждают в присутствии металлической соли.

Изобретение относится к тампонажным растворам, используемым для цементирования обсадных колонн нефтяных, газовых и газоконденсатных скважин, осложненных наличием пластов с низким давлением гидроразрыва.

Изобретение относится к нефтегазовой промышленности, а именно к производству проппантов для гидроразрыва пласта. В способе получения проппанта, используемого при добыче нефти и газа, из измельченного алюмосиликатного сырья и связующего, включающем предварительный обжиг алюмосиликатного сырья, его помол и гранулирование при введении связующего в смеситель-гранулятор, сушку полученных гранул, их рассев и обжиг, охлаждение обожженных гранул и рассев их на товарные фракции, алюмосиликатное сырье измельчают до среднего размера 3-5 мкм, подвергают его сепарации с выделением фракции менее 1,0 мкм, при этом используют фракцию более 1,0 мкм для грануляции, а фракцию менее 1,0 мкм - для получения связующего смешением с 3%-ным водным раствором органического связующего карбоксиметилцеллюлозы, или метилцеллюлозы, или лигносульфонатов технических. Проппант характеризуется тем, что имеет пикнометрическую плотность 2,5-2,9 г/см3, размеры 0,2-4,0 мм, и получен указанным выше способом. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение долговременной проводимости скважин при гидроразрыве пласта при упрощении технологии получения проппанта. 2 н. и 8 з.п. ф-лы, 1 табл., 9 пр.
Наверх