Полиорганосилоксан

Изобретение относится к полиорганосилоксанам особой структуры, применяемым для укладки волос. Предложен полиорганосилоксан, получаемый присоединением, по крайней мере, к двум атомам кремния в полиорганосилоксановом сегменте, составляющем основную цепь, сегмента поли(N-ацилалкиленимина), состоящего из повторяющегося звена формулы (1), где R1 означает атом водорода или алкильную группу, имеющую от 1 до 3 атомов углерода, а n равно 2 или 3, посредством алкиленовой группы, содержащей гетероатом, при этом сегмент поли(N-ацилалкиленимина) имеет среднечисловую молекулярную массу 1600-3500; массовое отношение (a/b) полиорганосилоксанового сегмента (a), составляющего основную цепь, к сегменту поли(N-ацилалкиленимина) (b) 42/58-58/42; полиорганосилоксановый сегмент между двумя находящимися по соседству сегментами поли(N-ацилалкиленимина) имеет средневесовую молекулярную массу 1600-3500; и полиорганосилоксановый сегмент, составляющий основную цепь, имеет средневесовую молекулярную массу 7000-100000. Технический результат - получаемый полиорганосилоксан имеет высокий модуль упругости и одновременно способен к большим деформациям, что позволяет создавать укладку волос и обеспечивать ее сохранность под воздействием внешних факторов. 2 з.п. ф-лы, 1 табл., 8 пр.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к полиорганосилоксану, имеющему особую структуру.

Предпосылки к созданию изобретения

Поскольку полиорганосилоксаны обладают многими великолепными свойствами, то полиорганосилоксаны в различной форме часто используют в качестве присадки, улучшающей качество красочного состава или пленкообразующей смолы. Например, в патентном документе 1 раскрывается модифицированный поли(N-ацилалкиленимином) полиорганосилоксан, который обладает большим модулем упругости и не разрывается или не претерпевает пластической деформации в диапазоне определенной растяжимости. Согласно данному документу, указанный полиорганосилоксан демонстрирует превосходные свойства, например, при использовании для укладки волос и для сохранения сделанной прически, по сравнению с обычными пленкообразующими полимерами.

Прототип

Патентная документация

Патентный документ 1: JP-A 07-133352.

Сущность изобретения

В настоящем изобретении предлагается полиорганосилоксан, который получают присоединением, по крайней мере, к двум атомам кремния в полиорганосилоксановом сегменте, составляющем основную цепь, сегмента поли(N-ацилалкиленимина), включающего повторяющееся звено, которое представлено следующей формулой (1):

где R1 означает атом водорода или алкильную группу, имеющую от 1 до 3 атомов углерода, а n равно 2 или 3, посредством алкиленовой группы, содержащей гетероатом, при этом сегмент поли(N-ацилалкиленимина) имеет среднечисловую молекулярную массу в диапазоне от 1600 до 3500; массовое отношение (a/b) полиорганосилоксанового сегмента (a), составляющего основную цепь, к сегменту поли(N-ацилалкиленимина) (b) (далее обозначают просто как “массовое отношение (a/b)”) равно от 42/58 до 58/42; полиорганосилоксановый сегмент между двумя находящимися по соседству сегментами поли(N-ацилалкиленимина) имеет средневесовую молекулярную массу от 1600 до 3500; а полиорганосилоксановый сегмент, составляющий основную цепь, имеет средневесовую молекулярную массу от 7000 до 100000.

Подробное описание изобретения

Когда полиорганосилоксан, раскрытый в патентном документе 1, используют, например, в композиции средства для укладки волос, то полученное средство для укладки волос обладает превосходными эксплуатационными качествами для укладки волос, поскольку имеет большой модуль упругости. Однако указанный полиорганосилоксан не столь хорош с точки зрения способности выдерживать такую величину деформации, при которой деформация не вызывает разрывов или не приводит к пластической деформации, так что сильная деформация волос, вызванная внешними факторами (расчесывание прядей волос пальцами рук, ветер, тряска и т.п.), может привести к разрыву или деформации пленки, сформированной на волосах. Таким образом, композиция средства для укладки волос не обладает достаточными эксплуатационными качествами с точки зрения ее способности закреплять прическу на длительный период времени.

Авторы настоящего изобретения провели интенсивные исследования и обнаружили, что полиорганосилоксан, имеющий особую структуру, обладает большим модулем упругости и способностью выдерживать такую величину деформацию, при которой деформация не приводит к разрыву или к пластической деформации, а потому он проявляет свойства превосходного эластомера.

В настоящем изобретении предлагается полиорганосилоксан с большим модулем упругости, способный также выдерживать такую величину деформацию (далее обозначают как “степень деформируемости”), при которой деформация не приводит к разрыву или к пластической деформации.

Полиорганосилоксан

Полиорганосилоксан по настоящему изобретению представляет собой полимер, полученный присоединением сегмента поли(N-ацилалкиленимина), образованного повторяющимися группами, которые представлены вышеприведенной формулой (1), по крайней мере, к двум атомам кремния полиорганосилоксанового сегмента, который составляет основную цепь, посредством алкиленовой группы, включающей гетероатом.

По меньшей мере, два сегмента поли(N-ацилалкиленимина) присоединены посредством алкиленовой группы, содержащей гетероатом, к любому из атомов кремния, составляющих полиорганосилоксановый сегмент. Предпочтительно, они присоединены посредством алкиленовой группы к одному или нескольким атомам полиорганосилоксанового сегмента, за исключением тех атомов, которые расположены на обоих концах полиорганосилоксанового сегмента, а более предпочтительно, они присоединены посредством алкиленовой группы к двум или большему количеству атомов полиорганосилоксанового сегмента, за исключением тех атомов, которые расположены на обоих концах полиорганосилоксанового сегмента. Это означает, что полиорганосилоксан по настоящему изобретению представляет собой привитой полимер, содержащий в качестве боковой цепи, по крайней мере, два сегмента поли(N-ацилалкиленимина), каждый из которых образован повторяющейся группой, которая представлена в вышеприведенной формуле (1).

Алкиленовая группа, включающая гетероатом, играет роль мостиковой группы для сегмента поли(N-ацилалкиленимина). Примеры подобной алкиленовой группы включают алкиленовые группы, имеющие от 2 до 20 атомов углерода и содержащие от 1 до 3 атомов азота, атомов кислорода или атомов серы. Среди них предпочтительными являются группы, представленные формулами (i)-(vii), из которых более предпочтительными являются группы, представленные формулами (i) или (ii), а наиболее предпочтительными являются группы, представленные формулой (i). В приведенных формулах Anˉ обозначает противоион четвертичной аммониевой соли, и его примеры включают ион этилсульфата, ион метилсульфата, ион хлорида, ион иодида, ион сульфата, ион п-толуолсульфоната и ион перхлората.

В N-ацилалкилениминовой группе, составляющей сегмент поли(N-ацилалкиленимина), алкильная группа, имеющая от 1 до 3 атомов углерода и обозначенная как R1 в формуле (1), представляет собой, например, линейную алкильную группу, содержащую от 1 до 3 атомов углерода, или разветвленную алкильную группу, содержащую от 1 до 3 атомов углерода. Конкретные примеры алкильной группы включают метильную группу, этильную группу, н-пропильную группу и изопропильную группу.

В формуле (1) n обозначает число, равное 2 или 3, и, преимущественно, с точки зрения доступности исходных веществ для получения полиорганосилоксана по настоящему изобретению, равняется 2.

Полиорганосилоксан по настоящему изобретению может иметь большой модуль упругости и большую степень деформируемости при условии, что массовое отношение (a/b) попадает в диапазон от 42/58 до 58/42. С этой точки зрения массовое отношение (a/b), предпочтительно, составляет от 45/55 до 55/45, а более предпочтительно, составляет от 47/53 до 53/47.

Термин “массовое отношение (a/b)” в данном описании обозначает величину, которая определяется отношением полного количества алкильных или фенильных групп в полиорганосилоксановом сегменте к метиленовой группе в сегменте поли(N-ацилалкиленимина), которую определяют, проводя анализ методом ядерного магнитного резонанса (1Н-ЯМР) 5%-ного масс. раствора полиорганосилоксана по настоящему изобретению в дейтерохлороформе. Полиорганосилоксан по настоящему изобретению, который имеет массовое отношение (a/b) в указанных выше пределах, обладает великолепной растворимостью в полярном растворителе, таком как вода, и после растворения полиорганосилоксана в указанном растворителе с ним удобно работать.

В том случае, когда в полиорганосилоксане по настоящему изобретению полиорганосилоксановый сегмент между двумя находящимися по соседству сегментами поли(N-ацилалкиленимина) имеет средневесовую молекулярную массу (в данном описании обозначают просто как “MWg”) в диапазоне от 1600 до 3500, образующийся полиорганосилоксан может обладать большой степенью деформируемости. С этой точки зрения предпочтительное значение для MWg составляет от 1800 до 3200, а еще более предпочтительное значение составляет от 2000 до 3000.

Термин “полиорганосилоксановый сегмент между двумя находящимися по соседству сегментами поли(N-ацилалкиленимина)” в данном описании означает, как показано в формуле (2), сегмент, окруженный пунктирной линией, который расположен между двумя точками: от точки связи (точка связи α) сегмента поли(N-ацилалкиленимина) к полиорганосилоксановому сегменту до точки связи (точка связи β) сегмента поли(N-ацилалкиленимина), находящегося по соседству с вышеуказанным сегментом поли(N-ацилалкиленимина), и составлен одной группой R2SiO, одной группой R6 и группами (R2)2SiO в количестве y+1. Термин “сегмент поли(N-ацилалкиленимина)” означает -W-R7, присоединенный к R6.

В вышеприведенной формуле (2) группа R2 независимо обозначает алкильную группу, имеющую от 1 до 22 атомов углерода, или фенильную группу, R6 обозначает алкиленовую группу, содержащую гетероатом, -W-R7 обозначает сегмент поли(N-ацилалкиленимина), R7 обозначает остаток инициатора полимеризации, а y представляет собой положительное число.

MWg обозначает молекулярную массу сегмента, окруженного пунктирной линией в вышеприведенной формуле (2), и ее можно представить как массу (г/моль) полиорганосилоксанового сегмента на моль сегмента поли(N-ацилалкиленимина). В том случае, когда 100% функциональных групп в модифицированном полиорганосилоксане, который является исходным соединением, замещены поли(N-ацилалкиленимином), то указанное значение равно эквиваленту функциональных групп (г/моль) модифицированного полиорганосилоксана.

Молекулярную массу сегмента поли(N-ацилалкиленимина) можно рассчитать из молекулярной массы и степени полимеризации N-ацилалкилениминовой группы или можно определить с помощью гель-проникающей хроматографии (в данном описании далее обозначают просто как “GPC”). В настоящем изобретении молекулярная масса означает среднечисловую молекулярную массу, которую указывают относительно полистирола (в данном описании далее обозначают просто как “MNox”), и ее определяют методом GPC, который проводят в условиях, описанных позднее в примерах. В том случае, когда MNox попадает в диапазон от 1600 от 3500, может быть получен полиорганосилоксан, имеющий большую степень деформируемости. С этой точки зрения MNox, предпочтительно, составляет от 1800 до 3200, более предпочтительно, от 2000 до 3000 и, еще более предпочтительно, от 2000 до 2500.

MWg можно рассчитать по следующей формуле (I) из содержания (% масс.) (в данном описании далее обозначают просто как “Csi”) полиорганосилоксанового сегмента, который составляет основную цепь

MWg=Csi×MNox/(100-Csi). (I)

Средневесовая молекулярная масса (в данном описании далее обозначают просто как “MWsi”) полиорганосилоксанового сегмента, который составляет основную цепь, равна от 7000 до 100000. С точки зрения растворимости в полярном растворителе, таком как вода, и простоты манипулирования после растворения полиорганосилоксана в полярном растворителе, средневесовая молекулярная масса, предпочтительно, составляет от 10000 до 80000, более предпочтительно, от 20000 до 60000, более предпочтительно, от 20000 до 50000 и, еще более предпочтительно, от 20000 до 40000. Полиорганосилоксан по настоящему изобретению может быть легко включен в различные продукты путем растворения в полярном растворителе, таком как вода. Полиорганосилоксановый сегмент, составляющий основную цепь, имеет скелет, сходный с модифицированным полиорганосилоксаном, который является исходным соединением, так что средневесовая молекулярная масса MWsi практически совпадает со средневесовой молекулярной массой модифицированного полиорганосилоксана, который является исходным соединением. Следует отметить, что средневесовую молекулярную массу модифицированного полиорганосилоксана, который является исходным соединением, определяют с помощью GPC в условиях проведения измерений, которые описаны в примерах, и ее указывают относительно полистирола.

Среднечисловая молекулярная масса (которая в данном описании может дальше обозначаться просто как “MWt”) полиорганосилоксана по настоящему изобретению, предпочтительно, составляет от 20000 до 100000, более предпочтительно, от 30000 до 80000, еще более предпочтительно, от 40000 до 80000, с точки зрения растворимости в полярном растворителе, таком как вода, и простоты манипулирования после растворения полиорганосилоксана в полярном растворителе. MWt определяют с помощью GPC в условиях проведения измерений, описанных в примерах, и ее указывают относительно полистирола.

Полиорганосилоксан по настоящему изобретению, помимо большого модуля упругости и большой степени деформируемости, обладает также специфической термопластичностью, и это означает, что при нагревании до температуры в диапазоне от 50 до 220°С полиорганосилоксан становится гораздо более пластичным и размягчается, однако когда после прекращения нагрева температура возвращается к комнатной температуре, полиорганосилоксан быстро восстанавливает свою эластичность.

Методика получения полиорганосилоксана

Далее будет описан способ получения полиорганосилоксана.

Полиорганосилоксан по настоящему изобретению получают, например, взаимодействием модифицированного полиорганосилоксана, представленного формулой (3):

где R2 имеет значение, которое уже указано выше, R3 и R4 независимо обозначают ту же группу, что и R2, или одновалентную группу, представленную любой из следующих формул (viii)-(xiii):

R5 обозначает одновалентную группу, представленную любой из вышеуказанных формул (viii)-(xiii), d обозначает число от 91,5 до 1255,0, а переменная e обозначает число от 2,0 до 62,5, при этом поли(N-ацилалкиленимин) с реакционноспособной концевой группой получают полимеризацией, сопровождающейся раскрытием цикла циклического иминоэфира, представленного следующей формулой (4):

где R1 и n имеют то же самое значение, что и указанное выше.

В процессе полимеризации, сопровождающейся раскрытием цикла циклического иминоэфира, представленного формулой (4) (в данном описании далее обозначают просто как “циклический иминоэфир (4)”), может применяться инициатор полимеризации. В качестве инициатора полимеризации могут использоваться соединения, обладающие высокой электрофильностью, например алкильные эфиры сильных кислот. Их примеры включают алкилэфирбензолсульфонаты, алкилэфир-п-толуолсульфонаты, алкилэфиртрифторметансульфонаты, алкилэфиртрифторацетаты и диалкилэфирсульфаты. Из них предпочтительными являются диалкилэфирсульфаты.

Примеры растворителя для полимеризации включают сложные эфиры уксусной кислоты, такие как этилацетат и пропилацетат, простые эфиры, такие как диэтиловый эфир, диизопропиловый эфир, диоксан и тетрагидрофуран, кетоны, такие как ацетон и метилэтилкетон, галогенсодержащие растворители, такие как хлороформ и метиленхлорид, растворители на основе нитрилов, такие как ацетонитрил и бензонитрил, и апротонные полярные растворители, такие как N,N-диметилформамид, N,N-диметилацетамид и диметилсульфоксид. Из них предпочтительными являются сложные эфиры уксусной кислоты. Количество используемого растворителя обычно составляет от 20 до 2000 массовых частей на 100 массовых частей циклического иминоэфира (4).

Температура полимеризации обычно составляет от 30 до 170°С, преимущественно, от 40 до 150°С. Время полимеризации меняется в зависимости от температуры полимеризации и т.п. и, как правило, составляет от 1 до 60 час.

При использовании, например, 2-замещенного 2-оксазолина в качестве циклического иминоэфира (4) получают поли(N-ацилэтиленимин), который является соединением по приведенной выше формуле (1), где n равно 2, а при использовании, например, 2-замещенного дигидро-2-оксазолина получают поли(N-ацилпропиленимин), который является соединением по приведенной выше формуле (1), где n равно 3.

Поли(N-ацилпропиленимин), который можно получить полимеризацией с “живой” цепью из циклического иминоэфира (4), содержит на конце реакционноспособную группу. Таким образом, полиорганосилоксан по настоящему изобретению может быть получен взаимодействием реакционноспособной группы на конце поли(N-ацилпропиленимина) с реакционноспособной группой, представленной любой из вышеуказанных выше формул (viii)-(xiii), которую содержит модифицированный полиорганосилоксан, представленный формулой (3).

Способ получения по методу полимеризации с “живой” цепью эффективен, поскольку он позволяет легко контролировать степень полимеризации за счет количества используемого циклического иминоэфира (4) и количества используемого инициатора полимеризации, как указано ниже в теоретической формуле (II), и, кроме того, становится возможным получить практически монодисперсный поли(N-ацилалкиленимин) с более узким молекулярно-массовым распределением, чем молекулярно-массовое распределение, которое можно получить при обычной радикальной полимеризации

Mni=c/d×e+h, (II)

где Mni - расчетная среднечисловая молекулярная масса поли(N-ацилалкиленимина), который может быть получен полимеризацией с “живой” цепью; c - количество моль циклического иминоэфира (4); d - количество моль инициатора полимеризации; e - молекулярная масса циклического иминоэфира (4); h - молекулярная масса инициатора полимеризации.

Предпочтительно, используют такое количество циклического иминоэфира (4) и такое количество инициатора полимеризации, чтобы можно было получить величину Mni в формуле (II) в диапазоне от 1600 до 3500, более предпочтительно, от 1800 до 3200 и, еще более предпочтительно, от 2000 до 3000.

С точки зрения растворимости полученного указанным образом полиорганосилоксана в полярном растворителе, таком как вода, и простоты манипулирования с полиорганосилоксаном после его растворения в полярном растворителе, средневесовая молекулярная масса модифицированного полиорганосилоксана, представленного формулой (3), предпочтительно, составляет от 7000 до 100000, более предпочтительно, от 10000 до 80000, более предпочтительно, от 20000 до 60000, еще более предпочтительно, от 20000 до 50000 и, еще более предпочтительно, от 20000 до 40000.

Кроме того, эквивалент функциональной группы модифицированного полиорганосилоксана, представленного формулой (3), имеет такой верхний предел, который удовлетворяет как массовому отношению (a/b), так и значению MWg полиорганосилоксана по настоящему изобретению. С этой точки зрения и с точки зрения получения основной цепи с соответствующей гидрофобностью, эквивалент функциональной группы, предпочтительно, составляет от 500 до 3500, более предпочтительно, от 800 до 3200 и, еще более предпочтительно, от 1000 до 3000. Термин “эквивалент функциональной группы модифицированного полиорганосилоксана, представленного формулой (3)” означает величину, полученную при делении средневесовой молекулярной массы модифицированного полиорганосилоксана, представленного формулой (3), на среднее количество R5 на один моль модифицированного полиорганосилоксана.

Модифицированный полиорганосилоксан, представленный формулой (3), и поли(N-ацилалкиленимин) с реакционноспособной концевой группой используют в таком количестве, чтобы получить их массовое отношение (модифицированный полиорганосилоксан/поли(N-ацилалкиленимин) с реакционноспособной концевой группой), предпочтительно, в диапазоне от 42/58 до 58/42, более предпочтительно, в диапазоне от 45/55 до 55/45, еще более предпочтительно, в диапазоне от 47/53 до 53/47 с учетом модуля упругости и степени деформируемости полученного указанным образом полиорганосилоксана.

Примеры

Настоящее изобретение далее описывается с помощью примеров. Настоящее изобретение не ограничивается указанными примерами. При синтезе каждого полиорганосилоксана различные молекулярные массы определяют в следующих условиях.

<Условия определения средневесовой молекулярной массы модифицированного полиорганосилоксана>

Колонка: Super HZ4000 + Super HZ2000 (продукт компании Tosoh Corporation)

Элюент: 1 мМ триэтиламин/ТГФ

Скорость потока: 0,35 мл/мин

Температура колонки: 40°С

Детектор: УФ

Образец: 50 мкл

<Условия измерения MNox и MWt>

Колонка: K-804L (продукт компании Tosoh Corporation). Две колонки подсоединены последовательно

Элюент: 1 мМ диметилдодециламин/хлороформ

Скорость потока: 1,0 мл/мин

Температура колонки: 40°С

Детектор: показатель преломления

Образец: 50 мкл

Регистрацию спектров 1Н-ЯМР с целью определения массового отношения (a/b) проводят в следующих условиях:

<Условия проведения измерений 1Н-ЯМР>

Состав полученного полимера подтверждают методом 1Н-ЯМР (400 МГц, спектрометр компании Varian, Inc.).

Проводят измерение в растворе, полученном при растворении 0,5 г образца в 2 г используемого для проведения измерений растворителя (дейтерохлороформ).

ПОСЛЕДОВАТЕЛЬНОСТЬ ИМПУЛЬСОВ

Временная задержка релаксации: 30 сек. Импульс: 45 градусов

Кумулятивное количество: 8 раз

Подтвержденные пики: пик вблизи 0 м.д.: метильная группа полиорганосилоксана, пик вблизи 3,4: метиленовая порция этиленимина.

Значение отношения силоксан/поли(N-ацилалкиленимин) определяют из каждого объединенного значения.

Пример 1: Синтез полиорганосилоксана A

Поли(N-пропионилэтиленимин) с реакционноспособными концевыми группами синтезируют, растворяя 6,17 г (0,04 моль) диэтилсульфата и 93,8 г (0,947 моль) 2-этил-2-оксазолина в 203 г обезвоженного этилацетата, и полученный раствор кипятят с обратным холодильником в течение 8 час в атмосфере азота. Он имеет величину MNox, равную 2500, что определяют методом GPC. Затем к реакционному раствору добавляют 33%-ный раствор в этилацетате 100 г полидиметилсилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи (средневесовая молекулярная масса: 26000, аминовый эквивалент (эквивалент функциональной группы: 2000), и полученную смесь кипятят с обратным холодильником в течение 10 час. Растворитель удаляют из реакционной смеси при пониженном давлении и получают полиорганосилоксан A в виде твердого вещества бледно-желтого цвета. Полученный продукт имеет массовое отношение (a/b) 50/50 и MWt 56000. Кислотно-основное титрование хлористоводородной кислотой при использовании метанола в качестве растворителя показывает, что осталось приблизительно 20% мол. аминогрупп.

Пример 2: Синтез полиорганосилоксана B

Поли(N-пропионилэтиленимин) с реакционноспособными концевыми группами синтезируют, растворяя 6,18 г (0,04 моль) диэтилсульфата и 75,6 г (0,762 моль) 2-этил-2-оксазолина в 166 г обезвоженного этилацетата, и полученный раствор кипятят с обратным холодильником в течение 8 час в атмосфере азота. Он имеет величину MNox, равную 2040, что определяют методом GPC. Затем к реакционному раствору добавляют 33%-ный раствор в этилацетате 100 г полидиметилсилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи (средневесовая молекулярная масса: 46000, аминовый эквивалент (эквивалент функциональной группы: 1870), и полученную смесь кипятят с обратным холодильником в течение 10 час. Растворитель удаляют из реакционной смеси при пониженном давлении и получают полиорганосилоксан B в виде твердого вещества бледно-желтого цвета. Полученный продукт имеет массовое отношение (a/b) 55/45 и MWt 74000. Кислотно-основное титрование хлористоводородной кислотой при использовании метанола в качестве растворителя показывает, что осталось приблизительно 25% мол. аминогрупп.

Пример 3: Синтез полиорганосилоксана C

Поли(N-пропионилэтиленимин) с реакционноспособными концевыми группами синтезируют, растворяя 7,22 г (0,05 моль) диэтилсульфата и 110,2 г (1,11 моль) 2-этил-2-оксазолина в 238 г обезвоженного этилацетата, и полученный раствор кипятят с обратным холодильником в течение 8 час в атмосфере азота. Он имеет величину MNox, равную 2500, что определяют методом GPC. Затем к реакционному раствору добавляют 33%-ный раствор в этилацетате 100 г полидиметилсилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи (средневесовая молекулярная масса: 26000, аминовый эквивалент (эквивалент функциональной группы: 2000), и полученную смесь кипятят с обратным холодильником в течение 10 час. Растворитель удаляют из реакционной смеси при пониженном давлении и получают полиорганосилоксан C в виде твердого вещества бледно-желтого цвета. Полученный продукт имеет массовое отношение (a/b) 46/54 и MWt 44000. Кислотно-основное титрование хлористоводородной кислотой при использовании метанола в качестве растворителя показывает, что осталось приблизительно 4% мол. аминогрупп.

Пример 4: Синтез полиорганосилоксана D

Поли(N-пропионилэтиленимин) с реакционноспособными концевыми группами синтезируют, растворяя 6,10 г (0,04 моль) диэтилсульфата и 93,9 г (0,95 моль) 2-этил-2-оксазолина в 203 г обезвоженного этилацетата, и полученный раствор кипятят с обратным холодильником в течение 8 час в атмосфере азота. Он имеет величину MNox, равную 2530, что определяют методом GPC. Затем к реакционному раствору добавляют 33%-ный раствор в этилацетате 100 г полидиметилсилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи (средневесовая молекулярная масса: 46000, аминовый эквивалент (эквивалент функциональной группы: 1870), и полученную смесь кипятят с обратным холодильником в течение 10 час. Растворитель удаляют из реакционной смеси при пониженном давлении и получают полиорганосилоксан D в виде твердого вещества бледно-желтого цвета. Полученный продукт имеет массовое отношение (a/b) 50/50 и MWt 53000. Кислотно-основное титрование хлористоводородной кислотой при использовании метанола в качестве растворителя показывает, что осталось приблизительно 26% мол. аминогрупп.

Сравнительный пример 1: Синтез полиорганосилоксана E

Поли(N-пропионилэтиленимин) с реакционноспособными концевыми группами синтезируют, растворяя 3,84 г (0,02 моль) диэтилсульфата и 96,2 г (0,97 моль) 2-этил-2-оксазолина в 203 г обезвоженного этилацетата, и полученный раствор кипятят с обратным холодильником в течение 8 час в атмосфере азота. Он имеет величину MNox, равную 4000, что определяют методом GPC. Затем к реакционному раствору добавляют 33%-ный раствор в этилацетате 100 г полидиметилсилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи (средневесовая молекулярная масса: 26000, аминовый эквивалент (эквивалент функциональной группы: 2000), и полученную смесь кипятят с обратным холодильником в течение 10 час. Растворитель удаляют из реакционной смеси при пониженном давлении и получают полиорганосилоксан E в виде твердого вещества бледно-желтого цвета. Полученный продукт имеет массовое отношение (a/b) 50/50 и MWt 100000. Кислотно-основное титрование хлористоводородной кислотой при использовании метанола в качестве растворителя показывает, что осталось приблизительно 49% мол. аминогрупп.

Сравнительный пример 2: Синтез полиорганосилоксана F

Поли(N-пропионилэтиленимин) с реакционноспособными концевыми группами синтезируют, растворяя 9,10 г (0,06 моль) диэтилсульфата и 141 г (1,42 моль) 2-этил-2-оксазолина в 304 г обезвоженного этилацетата, и полученный раствор кипятят с обратным холодильником в течение 8 час в атмосфере азота. Он имеет величину MNox, равную 2540, что определяют методом GPC. Затем к реакционному раствору добавляют 33%-ный раствор в этилацетате 100 г полидиметилсилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи (средневесовая молекулярная масса: 46000, аминовый эквивалент (эквивалент функциональной группы: 1440), и полученную смесь кипятят с обратным холодильником в течение 10 час. Растворитель удаляют из реакционной смеси при пониженном давлении и получают полиорганосилоксан F в виде твердого вещества бледно-желтого цвета. Полученный продукт имеет массовое отношение (a/b) 40/60 и MWt 100000. Кислотно-основное титрование хлористоводородной кислотой при использовании метанола в качестве растворителя показывает, что осталось приблизительно 15% мол. аминогрупп.

Сравнительный пример 3: Синтез полиорганосилоксана G

Поли(N-пропионилэтиленимин) с реакционноспособными концевыми группами синтезируют, растворяя 11,8 г (0,08 моль) диэтилсульфата и 88,2 г (0,89 моль) 2-этил-2-оксазолина в 203 г обезвоженного этилацетата, и полученный раствор кипятят с обратным холодильником в течение 8 час в атмосфере азота. Он имеет величину MNox, равную 1310, что определяют методом GPC. Затем к реакционному раствору добавляют 33%-ный раствор в этилацетате 100 г полидиметилсилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи (средневесовая молекулярная масса: 10000, аминовый эквивалент (эквивалент функциональной группы: 1090), и полученную смесь кипятят с обратным холодильником в течение 10 час. Растворитель удаляют из реакционной смеси при пониженном давлении и получают полиорганосилоксан G в виде твердого вещества бледно-желтого цвета. Полученный продукт имеет массовое отношение (a/b) 50/50 и MWt 23000. Кислотно-основное титрование хлористоводородной кислотой при использовании метанола в качестве растворителя показывает, что осталось приблизительно 17% мол. аминогрупп.

Сравнительный пример 4: Синтез полиорганосилоксана H

Поли(N-пропионилэтиленимин) с реакционноспособными концевыми группами синтезируют, растворяя 3,77 г (0,02 моль) диэтилсульфата и 57,5 г (0,58 моль) 2-этил-2-оксазолина в 124 г обезвоженного этилацетата, и полученный раствор кипятят с обратным холодильником в течение 8 час в атмосфере азота. Он имеет величину MNox, равную 2510, что определяют методом GPC. Затем к реакционному раствору добавляют 33%-ный раствор в этилацетате 100 г полидиметилсилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи (средневесовая молекулярная масса: 26000, аминовый эквивалент (эквивалент функциональной группы: 2000), и полученную смесь кипятят с обратным холодильником в течение 10 час. Растворитель удаляют из реакционной смеси при пониженном давлении и получают полиорганосилоксан H в виде твердого вещества бледно-желтого цвета. Полученный продукт имеет массовое отношение (a/b) 62/38 и MWt 65000. Кислотно-основное титрование хлористоводородной кислотой при использовании метанола в качестве растворителя показывает, что осталось приблизительно 50% мол. аминогрупп.

Оценка

Используя в качестве образцов полиорганосилоксаны, которые получают в примерах 1-4 и сравнительных примерах 1-4, определяют их модуль упругости, способность к растяжению и растворимость в воде в соответствии со следующими методиками. Результаты объединены в таблице 1.

Образцы, которые предполагается использовать для определения модуля упругости и растяжимости, готовят, используя следующий метод получения пленок.

<Метод получения пленок>

Соответствующее количество раствора полиорганосилоксана в этаноле (50%) помещают в чашки Петри, изготовленные из тефлона (торговое название), и высушивают при комнатной температуре в токе азота в течение 5 дней. Затем сушат в токе азота при пониженном давлении (40 кПа) и получают прозрачную пленку бледно-желтого цвета толщиной приблизительно 1 мм. Полученную указанным образом пленку разрезают на кусочки и используют их для определения модуля упругости и растяжимости.

<Измерение модуля упругости>

Модуль упругости каждого образца измеряют в соответствии со следующей методикой. Когда пленка имеет модуль упругости, равный 5×106 Па или больше, то полиорганосилоксан, если его используют в качестве средства для укладки волос, обладает высокой способностью фиксировать волосы.

Устройство, которое используют при проведении измерений: Прибор для измерения динамической вязкоупругости “DVA-225” (выпускается компанией Keisoku Seigyo Co., Ltd.)

Режим проведения измерений: Режим сдвига

Относительная деформация: от 0,01 до 0,1%

Частота: 1 Гц

Размер образца: (0,8-1,5)×(8-10) × (5-6) мм

Температура при проведении измерений: 25°С

<Определение растяжимости>

Термин “растяжимость” в данном описании означает отношение, в сравнении с исходной длиной образца (длиной перед растягиванием), степени деформации образца при разрыве, которую рассчитывают в соответствии с приведенным ниже уравнением (III), используя длину образца при разрыве в направлении растягивания в качестве результата растягивания образца для указанных ниже условий проведения измерений, и исходной длины образца. Если образец имеет растяжимость 50% и больше, то пленка, образующаяся на волосах при использовании полиорганосилоксана в качестве фиксирующего компонента, трудно разрушается даже в том случае, когда волосы испытывают воздействие большой деформации, вызванной внешними факторами (расчесывание прядей волос пальцами рук, ветер, тряска и т.п.), прическа способна сохраняться в течение многих часов

Растяжимость (%) = (длина образца при разрыве в направлении растягивания - исходная длина образца)/исходная длина образца. (III)

Прибор: Tensilon RTC (выпускается компанией A&D Company)

Режим проведения измерений: Растягивание

Размер образца: (0,8-1,0)×(4,0-6,0)×(38,0-40,0) мм

Температура при проведении измерений: 25°С

Скорость растягивания: 300 мм/мин.

<Определение растворимости в воде>

Готовят для каждого образца 5%-ный водный раствор или дисперсию и определяют пропускание (T%) полученной жидкости в следующих условиях. Пропускание 50% и больше свидетельствует о легкости объединения образца с водой.

Прибор: спектрофотометр в УФ- и видимой областях спектра UV-2550 (выпускается компанией Shimadzu Corporation).

Режим проведения измерений: Пропускание

Длина волны, на которой проводят измерение: 660 нм

Образец: 5% масс. дисперсия в деионизированной воде.

Толщина поглощающего слоя: 1 см

Таблица 1
Пример 1 Пример 2 Пример 3 Пример 4 Сравнит. пример 1 Сравнит. пример 2 Сравнит. пример 3 Сравнит. пример 4
Полиорганосилоксан A B C D E F G H
MNox 2500 2040 2500 2530 4000 2540 1310 2510
MWsi* 26000 46000 26000 46000 26000 46000 10000 26000
MWg 2500 2490 2080 2530 4000 1690 1310 4000
Массовое отношение (a/b) 50/50 55/45 46/54 50/50 50/50 40/60 50/50 62/38
Модуль упругости (Па) 1×107 8×106 2×107 2×107 8×106 3×107 4×106 2×106
Растяжимость (%) 170 300 60 150 20 10 20 300
Пропускание (T%) 95 51 96 61 1 96 13 -**
* Используют средневесовую молекулярную массу полиорганосилоксана, модифицированного аминопропильными группами преимущественно в боковой цепи.
** Не определяли вследствие образования осадка.

Из примеров и сравнительных примеров однозначно следует, что полиорганосилоксаны по настоящему изобретению представляют собой отличные эластомеры, которые обладают большой деформируемостью и при этом имеют большой модуль упругости. Кроме того, полиорганосилоксаны по настоящему изобретению превосходно растворяются в воде.

1. Полиорганосилоксан, который получают присоединением, по крайней мере, к двум атомам кремния в полиорганосилоксановом сегменте, составляющем основную цепь, сегмента поли(N-ацилалкиленимина), включающего повторяющееся звено, которое представлено следующей формулой (1):

где R1 означает атом водорода или алкильную группу, имеющую от 1 до 3 атомов углерода, а n равно 2 или 3, посредством алкиленовой группы, содержащей гетероатом,
при этом сегмент поли(N-ацилалкиленимина) имеет среднечисловую молекулярную массу в диапазоне от 1600 до 3500; массовое отношение (а/b) полиорганосилоксанового сегмента (а), составляющего основную цепь, к сегменту поли(N-ацилалкиленимина) (b) равно от 42/58 до 58/42; полиорганосилоксановый сегмент между двумя находящимися по соседству сегментами поли(N-ацилалкиленимина) имеет средневесовую молекулярную массу от 1600 до 3500; а полиорганосилоксановый сегмент, составляющий основную цепь, имеет средневесовую молекулярную массу от 7000 до 100000.

2. Полиорганосилоксан по п. 1, где из тех атомов кремния полиорганосилоксанового сегмента, составляющего основную цепь, к которым сегмент поли(N-ацилалкиленимина) присоединен посредством алкиленовой группы, содержащей гетероатом, один или несколько атомов кремния представляют собой атомы кремния, отличные от атомов кремния на обоих концах полиорганосилоксанового сегмента.

3. Полиорганосилоксан по пп. 1 или 2, где алкиленовая группа, содержащая гетероатом, представляет собой алкиленовую группу, имеющую от 2 до 20 атомов углерода и содержащую от одного до трех атомов азота.



 

Похожие патенты:

Изобретение относится к органосиликоновым полимерам и содержащим их композициям. Предложена композиция для очистки и обработки тканей и твердых поверхностей, содержащая в пересчете на общий вес композиции 0,1-50% поверхностно-активного вещества, выбранного из анионных, катионных, амфотерных, цвиттерионных и неионных поверхностно-активных веществ и их комбинаций и 0,01-20% статистического или блочного органосиликонового полимера с азотсодержащими заместителями, а также способ обработки поверхности с использованием указанной композиции.

Изобретение относится к органополисилоксанам, используемым в косметических средствах. .

Изобретение относится к средствам для укладки волос. Предложен способ укладки волос, включающий нанесение на волосы косметической композиции для волос, содержащей полиорганосилоксан, включающий по крайней мере, два атома кремния в полиалкилсилоксановом сегменте (a), составляющем основную цепь полиорганосилоксана, которые присоединены к сегментам поли(N-ацилалкиленимина) (b), состоящим из повторяющихся звеньев общей формулы (1), посредством алкиленовой группы, содержащей атом N, причем R1 представляет собой атом водорода, алкил, арил или аралкил, n равно 2 или 3, среднечисловая молекулярная масса каждого сегмента поли(N-ацилалкиленимина) от 1200 до 5500, массовое отношение сегмента (a) к сегменту (b) составляет от 35/65 до 60/40, средневесовая молекулярная масса каждого сегмента поли(N-ацилалкиленимина) (b) от 1300 до 5500, и средневесовая молекулярная масса полиалкилсилоксанового сегмента (a) от 7000 до 100000; формирование прически при температуре волос 50°С или выше; и последующее снижение температуры волос до температуры ниже 50°С с целью зафиксировать сделанную прическу. Предложена также косметическая композиция для волос, содержащая указанный выше полиорганосилоксан. Технический результат: предложенный способ укладки придает волосам мягкость и одновременно надежно фиксирует прическу на длительное время, выдерживая воздействие внешних сил. 2 н. и 17 з.п. ф-лы, 7 табл., 66 пр.

Изобретение относится к абсорбирующим изделиям одноразового использования. Предложено абсорбирующее изделие, представляющее собой нетканый материал или санитарно-гигиенический продукт, на часть которого нанесен блочный катионный полиорганосилоксан определенной структуры. Предложен также способ получения указанных абсорбирующих изделий, а также способ обработки и очистки поверхности с их использованием. Технический результат - предложенные абсорбирующие изделия имеют улучшенную мягкость. 5 н. и 11 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к новым полиорганосилоксанам. Предложен блочный катионный полиорганосилоксан формулы MwDxTyQz, в котором по меньшей мере один из M, D или T включает по меньшей мере один фрагмент структуры (I). Технический результат – предложенные блочные катионные полиорганосилоксаны стабильны при хранении, могут использоваться в композициях различных потребительских продуктов, придавая им способность эффективно осаждаться на заданных подложках для придания им полезных потребительских свойств, таких как кондиционирующие, разглаживающие, смягчающие и антистатические. 2 н. и 26 з.п. ф-лы, 7 табл., 85 пр. (I)

Изобретение относится к новым полиорганосилоксанам. Предложен блочный катионный полиорганосилоксан формулы MwDxTyQz, в котором по меньшей мере один из M, D или T включает по меньшей мере один фрагмент структуры (I). Технический результат – предложенные блочные катионные полиорганосилоксаны стабильны при хранении, могут использоваться в композициях различных потребительских продуктов, придавая им способность эффективно осаждаться на заданных подложках для придания им полезных потребительских свойств, таких как кондиционирующие, разглаживающие, смягчающие и антистатические свойства. 2 н. и 26 з.п. ф-лы, 7 табл., 85 пр. (I)

Изобретение относится к очищающим или кондиционирующим продуктам, содержащим полиорганосилоксановые эмульсии. Предложена эмульсия гидрофобного полезного агента, содержащая полезный агент, выбранный их силикона, винилового полимера, простого полиэфира, материала, содержащего углеводородный воск, углеводородной жидкости, жидкого сложного полиэфира сахаров, жидкого простого полиэфира и их смесей, и катионную добавку полиорганосилоксановой природы, способствующую осаждению. Предложена также композиция очищающих и/или кондиционирующих поверхность продуктов, содержащая указанную эмульсию. Технический результат: предложенная композиция способствует улучшенному осаждению гидрофобных полезных агентов на отрицательно заряженные субстраты. 4 н. и 19 з.п. ф-лы, 13 табл., 36 пр.

Изобретение относится к композициям потребительских продуктов, предназначенных для использования в качестве очищающих и/или кондиционирующих поверхность продуктов. Предложена композиция потребительского продукта, содержащая добавку и полиорганосилоксановый кондиционирующий агент формулы MwDxTyQz, где M, D, T и Q являются силоксановыми звеньями различной структуры и по меньшей мере один из M, D и T включает фрагмент ,где Е и Е’ – двухвалентные радикалы, выбранные из алкиленов, ариленов, арилалкиленов, алкокси и алкиленаминов, w, x, y, z, p и n являются целыми числами, р=1-50, w - от 1 до (2+y+2z), x=1-15000, y и z – от 0 до 98, n равно 1 или 2, один из заместителей у M, D или T положительно заряжен, А-t – подходящий анион или анионы, уравновешивающие заряд указанных заместителей, k ≤ (p·2/t)+1. Предложен также способ обработки субстрата, включающий приведение указанного субстрата в контакт с заявленной композицией. Технический результат – предложенные композиции способны эффективно осаждаться на различные субстраты и придавать им кондиционирующие свойства при невысоких концентрациях. 3 н. и 14 з.п. ф-лы, 31 табл., 113 пр.

Изобретение относится к привитым полимерам органополисилоксана, пригодным для использования в косметических средствах для волос. Предложен привитой полимер органополисилоксана, включающий сегмент органополисилоксана в качестве основной цепи и сегмент полимера, полученного из ненасыщенного мономера, в качестве боковой цепи, в котором сегмент полимера, полученного из ненасыщенного мономера, содержит повторяющееся звено, полученное из N,N-диметилакриламида в количестве не менее 50 мас.% и не более 100 мас.%, и содержание сегмента органополисилоксана в привитом полимере составляет не менее 10 мас.% и не более 70 мас.%. Предложено также косметическое средство для волос, содержащее указанный привитой полимер. Технический результат – предложенный привитой полимер способен к образованию прочной приятной на ощупь и нелипкой пленки и позволяет получить эффективное средство для фиксации волос, придания им мягкости и естественного вида. 2 н. и 5 з.п. ф-лы, 6 табл., 15 пр.
Наверх