Способ микропрофилирования кремниевых структур

Изобретение относится к приборостроению и может применяться для изготовления конструктивных элементов микромеханических приборов на кремниевых монокристаллических подложках, а именно упругих подвесов и всего чувствительного элемента в целом, например для микромеханических акселерометров и гироскопов. Изобретение обеспечивает снижение трудоемкости изготовления и повышение качества структур. Способ микропрофилирования кремниевых структур включает нанесение защитной пленки на пластину из монокристаллического кремния, формирование из защитной пленки локальной маски в области формирования микропрофиля, анизотропное травление пластины монокристаллического кремния, нанесение защитной пленки, нанесение слоя поликристаллического кремния, анизотропное травление поликристаллического кремния, окисление поликристаллического кремния, травление диоксида кремния со вновь наносимой защитной пленки, травление защитной пленки до поверхности пластины и анизотропное травление в образовавшемся окне пластины монокристаллического кремния. Повторяют поочередно эти процессы необходимое количество раз до получения требуемого микропрофиля с последующим сглаживанием в изотропном или анизотропном травителе или анизотропном и изотропном травителях полученной поверхности. 2 ил.

 

Изобретение относится к приборостроению и может применяться для изготовления конструктивных элементов микромеханических приборов на кремниевых монокристаллических подложках, а именно упругих подвесов и всего чувствительного элемента в целом, например для микромеханических акселерометров и гироскопов.

Известен способ изготовления глубокопрофилированных кремниевых структур путем изотропного травления исходной пластины монокристаллического кремния [1].

Недостатком известного способа является неточность изготовления конструктивных элементов для микроприборов, из-за зависимости скорости травления от температуры и концентрации травителя, а также сложность обеспечения локальной защиты от длительного воздействия травителя. Другим недостатком данного способа является значительное боковое расстравливание монокристаллического кремния, т.к. при изотропном травлении скорость во всех направлениях одинакова.

Известен способ изготовления чувствительного элемента микромеханического устройства, заключающийся в нанесении на пластину защитной маски, формировании окна и локальном анизотропном травлении кремния в окне этой маски [2].

Однако известный способ имеет следующие недостатки. В результате анизотропного травления получается профиль в виде трапеции в сечении, на вершинах которой в местах резкого перехода возникают концентраторы механических напряжений и при наличии микротрещин при эксплуатации происходит его разрушение. Кроме того, в микромеханических приборах это также ведет к отказу всего прибора, следовательно, к снижению надежности. Кроме того, в микромеханических приборах изготовленный таким способом упругий подвес обладает низкой устойчивостью к продольному сжимающему воздействию. При воздействии измеряемой величины упругий элемент, полученный таким способом, испытывает распределенный изгиб, что снижает точность преобразователя.

Задачей, на решение которой направлено изобретение, является снижение трудоемкости изготовления и повышение качества структур. Для достижения этого способ микропрофилирования кремниевых структур включает нанесение защитной пленки на пластину из монокристаллического кремния, формирование из защитной пленки локальной маски в области формирования микропрофиля и дальнейшего анизотропного травления пластины монокристаллического кремния, после анизотропного травления пластины монокристаллического кремния наносят защитную пленку, наносят слой поликристаллического кремния, проводят анизотропное травление поликристаллического кремния, проводят окисление поликристаллического кремния, проводят травление диоксида кремния со вновь наносимой защитной пленки, проводят травление защитной пленки до поверхности пластины, проводят анизотропное травление в образовавшемся окне пластины монокристаллического кремния, затем снова наносят защитную пленку, слой поликристаллического кремния, проводят анизотропное травление поликристаллического кремния, окисление поликристаллического кремния, травление диоксида кремния, травление защитной пленки до поверхности пластины и анизотропное травление необходимое количество раз до получения требуемого микропрофиля с последующим сглаживанием в изотропном или анизотропном травителе или анизотропном и изотропном травителях полученной поверхности.

Отличительными признаками заявленного способа является то, что после анизотропного травления пластины монокристаллического кремния наносят защитную пленку, наносят слой поликристаллического кремния, проводят анизотропное травление поликристаллического кремния, проводят окисление поликристаллического кремния, проводят травление диоксида кремния со вновь наносимой защитной пленки, проводят травление защитной пленки до поверхности пластины, проводят анизотропное травление в образовавшемся окне пластины монокристаллического кремния, затем снова наносят защитную пленку, слой поликристаллического кремния, проводят анизотропное травление поликристаллического кремния, окисление поликристаллического кремния, травление диоксида кремния, травление защитной пленки до поверхности пластины и анизотропное травление необходимое количество раз до получения требуемого микропрофиля с последующим сглаживанием в изотропном или анизотропном травителе или анизотропном и изотропном травителях полученной поверхности. Повторение последовательности технологического цикла и технологических операций, а также количество циклов определяется сложностью проектируемого профиля и его назначением соответственно-конкретным применением конечного получаемого профиля, например, для чувствительных элементов датчиков давления, или датчиков линейных, угловых ускорений, или датчиков угловых скоростей, или датчиков силы, или датчиков перемещений. Таким образом, получение конкретного профиля определяется конкретным назначением приборов, в которых будет использоваться микропрофиль, например его упругих элементов, которые определяют его основные точностные и прочностные характеристики. Соответственно для каждого конкретного микропрофиля по назначению количество циклов определяется для каждого индивидуального микропрофиля отдельно по назначению. Предлагаемый способ позволяет изготавливать профиль упругих элементов микромеханических приборов плавным. Это увеличивает надежность по сравнению с прототипом, у которого на изгибах возникают концентраторы напряжений, ведущих к разрушению прибора.

Предлагаемое изобретение иллюстрируется чертежами фиг. 1, фиг. 2.

На фиг. 1 (а, б, в, г, д) и фиг. 2 (а, б, в) изображена последовательность микропрофилирования кремниевых структур,

где:

1 - монокристаллическая пластина кремния;

2 - защитная пленка двуокиси кремния;

3 - защитная пленка нитрида кремния;

4 - слой поликристаллического кремния.

Способ реализуется следующим образом. На пластину монокристаллического кремния 1 наносят защитную пленку двуокиси кремния 2 (фиг. 1а), проводят экспонирование для вскрытия окон в защитной пленке двуокиси кремния 2 (фиг. 1б). Проводят анизотропное травление монокристаллической пластины кремния 1 в образовавшемся окне (фиг. 1в). Вновь наносят защитную пленку нитрида кремния 3 (фиг. 1г). Наносят поликристаллический кремний 4 (фиг.1г). Проводят анизотропное травление поликристаллического кремния 4 (фиг. 1д). Проводят окисление поликристаллического кремния 4 (фиг. 2а). Проводят травление защитной пленки нитрида кремния 3 до поверхности пластины 1 (фиг. 2б). Проводят анизотропное травление монокристаллической пластины кремния 1 в образовавшемся окне (фиг. 2в). Повторяют необходимое количество раз до получения требуемого микропрофиля с последующим сглаживанием в изотропном или анизотропном травителе или анизотропном и изотропном травителях полученной поверхности. Получение конкретного профиля определяется конкретным назначением приборов, в которых будет использоваться микропрофиль, например его упругих элементов, которые определяют его основные точностные и прочностные характеристики. Соответственно для каждого конкретного микропрофиля по назначению количество циклов определяется для каждого индивидуального микропрофиля отдельно по назначению.

Пример.

На пластине монокристаллического кремния ориентации (100) при термическом окислении, температуре 1100°C в течение 65 мин в водном паре образуется на поверхности монокристаллического кремния пленка диоксида кремния толщиной 0,4 мкм при нормальном атмосферном давлении. Затем наносят фоторезист ФП-383. Проводят фотолитографию. Проводят плазмохимическое травление (вертикальное) SiO2. Далее проводят плазмохимическое травление кремния на глубину 2 мкм. После этого проводят осаждение Si3N4 (100 нм). Процесс осаждения Si3N4 проводят из газовой фазы (моносилан и аммиак) в течение 60 мин, при температуре 850-870°C, рабочем давлении 30 Па. Затем проводят осаждение поликристаллического кремния (1 мкм = 2 раза по 60 мин) из газовой фазы (моносилан) в течение 120 мин, при температуре 850-870°C, рабочем давлении 30 Па. Проводят плазмохимическое травление (вертикальное) поликремния на глубину 1 мкм. Затем проводят окисление поликристаллического кремния при парциальном давлении H2O в 0,6 атм в течение 600 мин, температуре 1150°C, рабочем давлении 1 атм. Проводят плазмохимическое травление (вертикальное) Si3N4 до поверхности пластины. Проводят плазмохимическое травление кремния на глубину 2 мкм. Повторяют операции начиная с осаждения Si3N4 необходимое количество раз до получения требуемого микропрофиля с последующим сглаживанием в изотропном или анизотропном травителе или анизотропном и изотропном травителях полученной поверхности. Причем процесс микропрофилирования кремниевых структур проводится с одним фотошаблоном. При этом варьированием толщины осажденного поликристаллического кремния и глубины анизотропного травления в образовавшемся окне пластины монокристаллического кремния каждой стадии формирования получают требуемую форму микропрофиля. Обеспечивается получение различных форм профиля кремниевых структур: как овальных, так и ломаных.

Таким образом, предложенный способ обеспечивает снижение трудоемкости изготовления чувствительных элементов, повышение работоспособности преобразователя путем увеличения механической прочности подвеса. При этом существенно снижается концентрация механических напряжений в местах сопряжения упругих элементов.

В случае наличия микротрещин в теле элемента подвеса по сравнению с прототипом уменьшается вероятность выхода из строя преобразователя.

Источники информации

1. Травление полупроводников [сборник статей]. Пер. с англ. С.Н. Горина. М.: Мир, 1965.

2. Ваганов В.И. Интегральные тензопреобразователи. - М.: Энергоатомиздат, 1983. - прототип.

Способ микропрофилирования кремниевых структур, включающий нанесение защитной пленки на пластину из монокристаллического кремния, формирование из защитной пленки локальной маски в области формирования микропрофиля и дальнейшего анизотропного травления пластины монокристаллического кремния, отличающийся тем, что после анизотропного травления пластины монокристаллического кремния наносят защитную пленку, наносят слой поликристаллического кремния, проводят анизотропное травление поликристаллического кремния, проводят окисление поликристаллического кремния, проводят травление диоксида кремния со вновь наносимой защитной пленки, проводят травление защитной пленки до поверхности пластины, проводят анизотропное травление в образовавшемся окне пластины монокристаллического кремния, затем снова наносят защитную пленку, слой поликристаллического кремния, проводят анизотропное травление поликристаллического кремния, окисление поликристаллического кремния, травление диоксида кремния, травление защитной пленки до поверхности пластины и анизотропное травление необходимое количество раз до получения требуемого микропрофиля с последующим сглаживанием в изотропном или анизотропном травителе или анизотропном и изотропном травителях полученной поверхности.



 

Похожие патенты:

Использование: для селекции электромагнитного излучения. Сущность изобретения заключается в том, что микроструктурный элемент выполнен в виде перфорированной сеточной структуры, объем которой в основном выполнен из полимерной пленки и вся ее поверхность, включая внутренние полости, металлизирована.

Изобретение относится к изготовлению конструктивных элементов микромеханических приборов на кремниевых монокристаллических подложках. Изобретение обеспечивает снижение трудоемкости изготовления и повышение качества структур.

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств.

Изобретение относится к способу формирования рельефа из электронных и фотонных материалов и структурам и устройствам, изготовленным с использованием этого способа.

Изобретение относится к жидкой композиции, способу получения кремниевой подложки и к способу получения подложки для головки для выброса жидкости. .
Изобретение относится к технологии изготовления упругих элементов микроэлектромеханических измерительных систем. .

Изобретение относится к обработке подложек для получения вогнуто-выпуклой структуры. .

Изобретение относится к технологии изготовления чувствительных элементов микроэлектромеханических систем. .

Изобретение относится к приборостроению и может применяться при изготовлении полупроводниковых микромеханических устройств, например чувствительных элементов интегральных датчиков.

Изобретение относится к технологии изготовления кремниевых микро- и наноэлектронных устройств. .

Изобретение относится к подложке с маской для травления, которая нанесена при помощи алмазоподобного углерода, и способу изготовления указанной подложки. Способ изготовления подложки с маской для травления включает подготовку подложки, нанесение фоточувствительного материала на поверхность подложки, экспонирование и проявление фоточувствительного материала для формирования рисунка в фоторезисте, формирование покрывающей пленки из алмазоподобного углерода на поверхности подложки и поверхности рисунка в фоторезисте и отделение покрывающей пленки вместе с рисунком в фоторезисте для формирования рисунка из алмазоподобного углерода на поверхности подложки. Техническим результатом изобретения является создание подложки с маской для травления, обеспечивающей высокоточное нанесение рисунка. 2 н. и 4 з.п. ф-лы, 5 ил.

Использование: для изготовления микроэлектромеханических структур. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия КОН включает формирование масочного рисунка с элементами защиты углов, элементы защиты углов, имеющие диагональную форму на топологической маске, располагают под углом 45° к контурам жесткого центра, причем размеры изготовляемых трехмерных микромеханических структур определяются из определенных условий. Технический результат: обеспечение возможности повышения качества и увеличения процента выхода годных трехмерных микромеханических структур. 6 ил., 2 табл.

Изобретение относится к приборостроению и может применяться при изготовлении кремниевых микромеханических датчиков, таких как датчики давления и акселерометры. Сущность изобретения: в способе изготовления глубокопрофилированных кремниевых структур на кремниевой пластине создают защитный слой, создают контрастный слой из материала, отличающегося от материала защитного слоя, формируют последовательными операциями фотолитографии и травления структуру заданного профиля до появления кремния в области максимальной глубины структуры, последующем чередованием травления кремния и оставшегося защитного слоя получают в кремнии заданный профиль. Вскрытие кремния в области максимальной глубины структуры проводят после создания защитного слоя, а затем наносят контрастный слой на защитный слой и на вскрытый участок кремния и проводят формирование структуры заданного профиля. Изобретение обеспечивает повышение точности изготовления глубокопрофилированных кремниевых структур. 10 ил.

Изобретение может быть использовано для создания упругих подвесов, торсионов и других элементов (например, балок, мембран, струн) микромеханических устройств, например кремниевых гироскопов и акселерометров. Способ изготовления упругого элемента микромеханического устройства заключается в окислении плоской пластины из монокристаллического кремния с ориентацией поверхности в плоскости (100), трехкратного проведения последовательности операций, состоящей из нанесения фоторезиста, вскрытия в нем окон методом двухсторонней фотолитографии и травления окисла по вскрытым окнам. На первом этапе травление окисла проводится до кремния, на втором на глубину, равную 2/3, а на третьем на глубину, равную 1/3 от его начальной толщины. Далее проводят жидкостное травление кремния на глубину, равную 0,5 H1, и дважды повторяют последовательность операций, состоящую из травления окисла на глубину, равную 1/3 от его начальной толщины, и жидкостного травления кремния. Изобретение обеспечивает улучшение качества и воспроизводимости технологии. 6 з.п. ф-лы, 6 ил.

Изобретение относится к приборостроению и может быть использовано при изготовлении кремниевых микромеханических датчиков. Сущность изобретения: в способе изготовления упругих элементов из монокристаллического кремния окисляют плоскую круглую пластину с ориентацией базовой поверхности в плоскости (100), наносят на нее защитный слой фоторезиста, проводят фотолитографию, вскрывают окна в окисном слое в области формирования упругих элементов на определенную ширину с учетом анизотропии травления монокристаллического кремния, анизотропно травят на глубину для получения требуемой толщины упругих элементов. Одновременно с вышеуказанными операциями по формированию упругих элементов формируют контрольный элемент, расположенный вне зоны упругих элементов, формирование контрольного элемента проводят до самоторможения на заданную глубину, определяемую заданным математическим выражением. Изобретение обеспечивает повышение технологичности изготовления упругих элементов из монокристаллического кремния путем оценки травления контрольных элементов до самоторможения. 3 ил.
Изобретение относится к области микроэлектроники, в частности к технологии создания 3D микроструктур кремния, являющихся элементной базой функциональной микроэлектроники, металл-стимулированным травлением с использованием локально расположенных масок Ni. В состав раствора для травления кремния входит фтористоводородистая кислота, перекись водорода и деионизованная вода в объемном соотношении 2:1:10. Процесс травления с использованием никеля является экономически выгодным процессом, так как позволяет заменить дорогостоящие благородные металлы и удешевить технологию создания кремниевых 3D структур.

Изобретение относится к области дифракционной оптики и может быть использовано для разработки новых дифракционных оптических элементов для диапазона 0,35-5,5 мкм. В основу изобретения поставлена задача получения периодических профилей на поверхности кристаллов парателлурита методом анизотропного химического травления. Пластина, вырезанная из кристалла парателлурита и отшлифованная, покрывается смесью химически стойкого к щелочам нитроцеллюлозного лака с растворителем 646, часть смеси удаляется с помощью алмазной иглы через различные интервалы, затем проводится химическое травление, промывка, в результате получаем периодическую структуру заданной геометрии на поверхности образца. Применение данного способа позволяет получать периодические профили на кристаллах парателлурита, обладающих высокими оптическими характеристиками. 3 ил.

Изобретение относится к области приборостроения и может применяться при изготовлении кремниевых кристаллов микроэлектромеханических систем, используемых в конструкциях микромеханических приборов, таких как акселерометры, гироскопы, датчики угловой скорости. В способе изготовления кристаллов микроэлектромеханических систем наносят защитные покрытия на лицевую и обратную стороны пластины, проводят фотолитографию по защитным слоям с лицевой и обратной сторон, травят кремний с лицевой и обратной сторон пластины на заданную глубину и с заданным профилем, наносят защитный слой с лицевой стороны пластины и профиля вытравленных канавок от растрава при последующем травлении с обратной стороны пластины, удаляют остатки маскирующих покрытий с лицевой и обратной сторон пластины. Согласно изобретению после травления кремния на заданную глубину и с заданным профилем удаляют защитный слой с лицевой стороны пластины и профиля вытравленных канавок, проводят обработку профиля в полирующем травителе и удаляют остатки маскирующих покрытий с лицевой и обратной сторон пластины. Кроме того, фотолитографию по защитным слоям на лицевой и обратной стороне проводят одновременно, в качестве защитного слоя с лицевой стороны пластины и профиля вытравленных канавок наносят медную пленку, в качестве маскирующих покрытий с лицевой и обратной стороны используют идентичные материалы, например нитрид кремния. Изобретение повышает чувствительность и прочность конструкций микроэлектромеханических систем за счет повышения технологичности изготовления и формирования кремниевых кристаллов с минимальной шероховатостью вертикального профиля канавок. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области приборостроения и могжет быть использованы для изготовления монокристаллических элементов, таких как струны, упругие элементы, технологические перемычки, используемые в конструкциях микромеханических приборов, например, микромеханических акселерометров, гироскопов, резонаторов. В способе изготовления монокристаллического элемента микромеханического устройства окисляют плоскую пластину из монокристаллического кремния с ориентацией поверхности в плоскости (100), наносят на нее с двух сторон защитный слоя фоторезиста, предварительно вскрывают окна в слое фоторезиста при помощи двухсторонней фотолитографии, травят окисел по вскрытым окнам и анизотропно травят пластину до промежуточной глубины h, вскрывают окисел для формирования монокристаллического элемента, анизотропно травят кремний до получения требуемой толщины монокристаллического элемента. Согласно способа, после вскрытия окисла проводят утонение пластины наносят защитное покрытие в области формирования монокристаллического элемента, проводят анизотропное травление до получения требуемой толщины монокристаллического элемента и удаляют защитное покрытие. Изобретение обеспечивает повышение технологичности изготовления монокристаллических элементов за счет возможности формирования элементов с различным поперечным сечением. 8 ил.

Изобретение относится к электронной полупроводниковой технике, а именно к технологии изготовления высоковольтных кремниевых приборов и направлено на улучшение электрических характеристик высоковольтных приборов, снижение количества выхода из строя приборов в результате обрыва металла и пробоя по поверхности высоковольтных планарных р-п-переходов. Техническим результатом изобретения является формирование контактных окон с пологим профилем в защитном слое структуры с двойной металлизацией с возможностью проведения разварки над активной областью кристалла высоковольтного прибора. В способе формирования контактных окон в слое защитного основания высоковольтного прибора, включающем формирование диэлектрического слоя на слое металлизации, осаждение пассивирующего слоя, осаждение фоторезиста через маску, плазмохимическое травление до металла, удаление фоторезиста, нанесение второго слоя металлизации, в качестве диэлектрического слоя центрифугированием наносится полиимид, после чего проводится его полимеризация при температуре 350-450°С, после нанесения фоторезиста проводится подтравливание пассивирующего слоя до полиимида под маску фоторезиста жидко-химическим травлением, затем проводится плазмохомическое травление поверхности на половинное время вытравливания полиимида, остатки фоторезиста удаляются и снова наносится фоторезистивный слой через маску меньшего размера для травления до металла. 4 з.п. ф-лы, 8 ил.
Наверх