Способ определения параметров модели замирания радиоканала по закону райса по информационному многочастотному сигналу

Изобретение относится к области электрорадиотехники и связи и может быть использовано в системах передачи данных, использующих многочастотные сигналы с ортогональным частотным разделением каналов, для оценки параметров канала связи. Техническим результатом заявленного изобретения является обеспечение более точного определения параметров модели замирания радиоканала по закону Райса по информационному многочастотному сигналу в случае наличия на приемной стороне блока автоматической регулировки усиления. Кроме того, данный способ не требует наличие тестового сигнала. Для этого в предложенном способе осуществляется измерение значений амплитуды смеси сигнала и шума на используемых частотах и значений амплитуды шума на неиспользуемых частотах и используется аналитическое выражение для плотности случайной величины, равной отношению измеренных величин. 1 ил.

 

Изобретение относится к области электрорадиотехники и связи и может быть использовано в системах передачи данных, использующих многочастотные сигналы с ортогональным частотным разделением каналов, для оценки параметров канала связи.

Для обеспечения стабильной работы системы передачи данных необходимо осуществлять контроль качества используемого канала связи. Критерием качества канала в цифровых системах связи является вероятность ошибки на бит, которая однозначно связана с параметрами модели замираний. Поэтому актуальной является задача определения параметров модели замираний радиоканала по закону Райса по результатам анализа информационного многочастотного сигнала.

Известен способ измерения параметров распределения Райса, описанный в патенте США №6868120. Он заключается в том, что на приемной стороне нормируют принимаемый сигнал, затем пропускают его через низкочастотный фильтр для устранения высокочастотного шума при его наличии. Затем квадрат амплитуды отфильтрованного сигнала возводят в квадрат, чтобы получить мощность. После этого вычисляют сумму мощности и возведенной мощности в квадрат на длительности некоторого окна анализа. Затем эти суммы усредняются для получения первого и второго момента выборок. Затем усредненные значения пропускают через низкочастотный фильтр, чтобы уменьшить флуктуации. Усредненные величины подают на вход блока решения уравнений Гринштейна - Майкельсона - Эрсега (GME) на основе метода моментов, для получения оценок средней мощности и дисперсии мощности. Затем параметры распределения вычисляют в соответствии с данными уравнениями и пропускают через низкочастотный фильтр для сглаживания результатов.

Данный способ требует отсутствия блока автоматической регулировки усиления перед входом. Кроме того, наличие большого количества низкочастотных фильтров значительно увеличивают время реагирования на изменение параметров канала связи, что в сумме приводит к увеличению погрешности измерений.

Наиболее близким к заявленному техническому решению является способ, описанный в [L.J. Greenstein et al. "Moment-Method Estimation of the Ricean K-Factor", IEEE Communications Letters, vol. 3, no. 6, june 1999], который принят за прототип. Оценка параметров формируется с помощью анализа амплитуд полезного сигнала на основе метода моментов.

Известный способ определения параметров распределения Райса работает следующим образом. На приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе (АЦП), затем передают оцифрованный сигнал с выхода АЦП на вход блока вычисления амплитуды, в котором определяют амплитуду принимаемого сигнала на используемой частоте на длительности элементарной посылки. Затем с выхода блока вычисления амплитуды вычисленное значение амплитуды передают на вход первого квадратора, в котором полученное значение возводят в квадрат. Далее с выхода первого квадратора полученное значение передают одновременно на вход второго квадратора и вход первого блока накопления, в котором накапливают последние N значений. С выхода первого блока накопления накопленный массив значений передают на вход первого сумматора, в котором вычисляют сумму всех значений массива. Затем с выхода первого сумматора вычисленное значение передают на вход первого делителя, в котором делят полученное значение на N, а результат деления передают одновременно на первый вход блока нахождения параметров распределения и на второй вход блока вычитания, при этом с выхода второго квадратора полученное значение передают на вход второго блока накопления, в котором накапливают последние N значений. С выхода второго блока накопления накопленный массив значений передают на вход второго сумматора, в котором вычисляют сумму всех значений массива. Затем с выхода второго сумматора вычисленное значение передают на вход второго делителя, в котором делят полученное значение на N, а результат деления передают на первый вход блока вычитания, в котором вычитают из значения, полученного по первому входу, значение, полученное по второму входу. Далее результат передают на второй вход блока нахождения параметров распределения, где определяют параметр распределения (регулярную составляющую отношения сигнал/шум) по формуле , где Ga - значение, полученное по первому входу, а где Gv - значение, полученное по второму входу блока нахождения параметров распределения.

На приемной стороне реальных систем связи обычно присутствует блок автоматической регулировки усиления (АРУ) для приведения уровня входного сигнала к значению, обеспечивающему оптимальную работу АЦП. В таком случае, выборочная плотность амплитуды не будет являться соответствующей состоятельной оценкой истинной плотности распределения. Таким образом, недостатком прототипа является то, что он не учитывает наличие блока АРУ и получаемая данным способом оценка будет обладать большой погрешностью.

Целью изобретения является получение оценки параметров модели замирания радиоканала по закону Райса путем анализа принимаемого информационного многочастотного сигнала.

Поставленная цель достигается тем, что способ определения параметров модели замирания радиоканала по закону Райса по информационному многочастотному сигналу состоит в том, что на приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя на вход первого блока вычисления амплитуды, при этом в нем определяют значение амплитуды смеси принимаемого сигнала и шума на всех n используемых частотах на длительности элементарной посылки, а с n выходов первого блока вычисления амплитуды на первые входы n соответствующих делителей передают вычисленные значения амплитуд, также с выхода аналогово-цифрового преобразователя передают оцифрованный сигнал на вход второго блока вычисления амплитуды, в котором определяют значение амплитуды шума на n неиспользуемых частотах на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды передают вычисленные значения амплитуд на вторые входы n соответствующих делителей, а в каждом делителе осуществляют деление значения амплитуды шума на неиспользуемой частоте, полученное по второму входу на значение амплитуды смеси сигнала и шума на используемой частоте, полученное по первому входу, а результат деления передают с выходов n делителей на n соответствующих входов блока накопления, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной М посылкам, получая, таким образом, выборку размером n×М значений, а с выхода блока накопления передают накопленный массив значений на вход блока вычисления параметров распределения, в котором, например, методом наискорейшего спуска определяют параметры модели замирания радиоканала по закону Райса h p 2 и h 0 2 , являющиеся координатами максимума функции правдоподобия , где xi - это i-е значение выборки, - плотность распределения вероятности измеряемой случайной величины.

Структурная схема предложенного способа приведена на фиг. 1.

Способ основан на следующих предположениях.

В общем случае для определения плотности распределения огибающей сигнала в канале с замираниями, когда доступными для измерения являются только значения огибающей смеси сигнал + шум можно использовать подход, заключающийся в том, чтобы по плотности распределения огибающей смеси сигнал + шум определить параметры распределения Райса. При этом восстановить истинную плотность распределения огибающей можно, используя выборочную плотность распределения огибающей смеси сигнал + шум, получаемую посредством измерений на приемной стороне.

В данном подходе следует учитывать техническую проблему, связанную с тем, что на приемной стороне чаще всего сигнал перед обработкой проходит через устройство автоматической регулировки усиления (АРУ). Поскольку коэффициент усиления АРУ неизвестен и динамически меняется в процессе измерений, статистические характеристики выборочной плотности распределения амплитуды сигнала значительно меняются и, применение указанных выше способов напрямую дает неадекватные оценки.

Избавиться от указанной трудности при приеме сигнала с использованием АРУ можно, если для оценки параметров модели канала использовать выборку случайных величин, инвариантную к значению коэффициента усиления АРУ. В качестве такой случайной величины может быть использована случайная величина ξ, определяемая как отношение огибающих Ai и Aj, измеренных на длительности одной и той же элементарной посылки на различных субчастотах с номерами i и j:

ξ=Ai/Aj.

Такой подход можно реализовать, если информационный сигнал является многочастотным, и при этом часть субчастот не используются для передачи. Тогда на входе приемника на занятых субчастотах наблюдается смесь информационного сигнала с шумом, а на свободных - только шум.

Для описания плотности распределения огибающей шума на свободных субчастотах при гипотезе, что шум является гауссовским, используется плотность распределения Рэлея:

.

Тогда в качестве Ai можно использовать измеренную огибающую шума, а в качестве Aj - огибающую смеси сигнал + шум.

В случае постоянного уровня информационного сигнала A на соответствующих субчастотах для модели гауссовского шума, функцию распределения случайной величины ξ можно найти следующим образом:

.

Если уровень информационного сигнала A не постоянен, а подвержен замираниям и его плотность распределения WA(x) подчиняется закону Райса, то в этом случае функция распределения случайной величины ξ можно найти следующим образом:

.

При этом, как уже отмечалось, величина σ 0 2 σ 2 = h 0 2 , а величина A 0 2 2 σ 0 2 = h p 2 .

Тогда в новых обозначениях функция распределения случайной величины ξ имеет следующий вид:

.

Выражение для плотности при этом имеет следующий вид:

.

Сформировав выборку случайной величины ξ и имея аналитическое выражение для ее плотности распределения, можно воспользоваться методом максимального правдоподобия, как одним из методов оценки неизвестных параметров распределений. В данном случае неизвестными параметрами будут h 0 2 и h p 2 . Тогда функция правдоподобия L, определяется выражением:

,

где xi - значение случайной величины ξ, n*M - объем выборки.

В этом случае координаты максимума функции правдоподобия L ( h 0 2 , h p 2 ) являются оценками искомых величин h 0 2 и h p 2 .

Таким образом, приведенные аналитические выводы показывают, что с помощью предложенного способа можно определить параметры модели замирания радиоканала по закону Райса по информационному многочастотному сигналу. При этом необходимыми данными являются измеренные значения амплитуды смеси сигнала и шума на используемых частотах и значения амплитуды шума на неиспользуемых частотах.

Способ работает следующим образом.

На приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе 1, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя 1 на вход первого блока вычисления амплитуды 2, в котором определяют значение амплитуды смеси принимаемого сигнала и шума на всех n используемых частотах на длительности элементарной посылки. С n выходов первого блока вычисления амплитуды 2 на первые входы n соответствующих делителей 4(1)…4(N) передают вычисленные значения амплитуд. При этом с выхода аналогово-цифрового преобразователя 1 также передают оцифрованный сигнал на вход второго блока вычисления амплитуды 3, в котором определяют значение амплитуды шума на n неиспользуемых частотах на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды 3 передают вычисленные значения амплитуд на вторые входы n соответствующих делителей 4(1)…4(N). В каждом делителе 4(1)…4(N) осуществляют деление значения амплитуды шума на неиспользуемой частоте, полученное по второму входу на значение амплитуды смеси сигнала и шума на используемой частоте, полученное по первому входу, а результат деления передают с выходов n делителей 4(1)…4(N) на n соответствующих входов блока накопления 5, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной M посылкам, получая, таким образом, выборку размером n×M значений, а с выхода блока накопления 5 передают накопленный массив значений на вход блока вычисления параметров распределения 6, в котором, например, методом наискорейшего спуска определяют параметры модели замирания радиоканала по закону Райса h p 2 и h 0 2 , являющиеся координатами максимума функции правдоподобия , где xi - это i-е значение выборки, - плотность распределения вероятности измеряемой случайной величины.

Предлагаемый способ может быть использован для систем связи, использующих сигналы с ортогональным многочастотным разделением каналов связи. Применение такого способа позволяет более точно определять параметры замирающего канала связи.

Предлагаемое устройство по сравнению с прототипом обладает следующим преимуществом: обеспечивает более точное определение параметров модели замирания радиоканала по закону Райса по информационному многочастотному сигналу в случае наличия на приемной стороне блока автоматической регулировки усиления.

Способ определения параметров модели замирания радиоканала по закону Райса по информационному многочастотному сигналу, заключающийся в том, что на приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя на вход первого блока вычисления амплитуды, отличающийся тем, что в первом блоке вычисления амплитуды определяют значение амплитуды смеси принимаемого сигнала и шума на всех n используемых частотах на длительности элементарной посылки, а с n выходов первого блока вычисления амплитуды на первые входы n соответствующих делителей передают вычисленные значения амплитуд, также с выхода аналогово-цифрового преобразователя передают оцифрованный сигнал на вход второго блока вычисления амплитуды, в котором определяют значение амплитуды шума на n неиспользуемых частотах на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды передают вычисленные значения амплитуд на вторые входы n соответствующих делителей, а в каждом делителе осуществляют деление значения амплитуды шума на неиспользуемой частоте, полученное по второму входу на значение амплитуды смеси сигнала и шума на используемой частоте, полученное по первому входу, а результат деления передают с выходов n делителей на n соответствующих входов блока накопления, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной М посылкам, получая, таким образом, выборку размером n×М значений, а с выхода блока накопления передают накопленный массив значений на вход блока вычисления параметров распределения, в котором методом наискорейшего спуска определяют параметры модели замирания радиоканала по закону Райса и , являющиеся координатами максимума функции правдоподобия , где xi - это i-е значение выборки, - плотность распределения вероятности измеряемой случайной величины.



 

Похожие патенты:

Настоящее изобретение относится к способу и терминалу для передачи по обратной связи информации о состоянии канала. Технический результат состоит в повышении точности передачи UE по обратной связи информации о состоянии канала и в возможности базовой станции динамически выбирать передачу SU-MIMO (однопользовательский режим MIMO) или MU-MIMO (многопользовательский режим MIMO).

Изобретение относится к технике электрической связи и может быть использовано в любых информационных системах. Технический результат состоит в повышении помехоустойчивости, пропускной способности и качества информационной продукции.

Изобретение относится к средствам передачи восходящей управляющей информации. Технический результат заключается в уменьшении ошибок при декодировании восходящей управляющей информации (ВУИ).

Изобретение относится к способу, устройству и системе для конфигурирования каналов управления в сети мобильной связи и на мобильной станции. Технический результат заключается в усовершенствовании схемы для конфигурирования каналов управления, в частности каналов управления, относящихся к передаче пользовательских данных.

Изобретение относится к способу передачи данных в системе беспроводной связи с гибридным автоматическим переспросом (HARQ). Технический результат состоит в обеспечении контроля уровня успешной доставки данных с первой попытки передачи, а также в повышении эффективности использования радиоресурсов и скорости передачи данных в системе беспроводной связи в целом.

Изобретение относится к способу беспроводной передачи данных и управляющей информации с использованием множества уровней передачи. Технический результат состоит в обеспечении оптимального распределения ресурсов передачи, когда необходимо передавать большой объем управляющей информации.

Изобретение относится к способу беспроводной передачи данных и управляющей информации при использовании нескольких слоев передачи. Технический результат состоит в обеспечении оптимального распределения ресурсов передачи, когда необходимо передавать большой объем управляющей информации.

Изобретение относится к способу для передачи данных беспроводным образом с использованием множества уровней передачи. Технический результат состоит в оптимальном распределении ресурсов передачи между информацией управления и данными пользователя.

Группа изобретений относится к области управления связью. Технический результат состоит в снижении ухудшения характеристик передачи при передаче данных даже в том случае, когда в мобильном терминале не обеспечено достаточной мягкой буферной памяти для управления повторной передачей.

Изобретение относится к способу передачи обратной связи информации состояния канала (CSI). Технический результат изобретения заключается в увеличении пропускной способности каналов передачи данных.

Изобретение относится к передаче восходящей управляющей информации. Технический результат состоит в способности управляющей восходящей информации определить необходимое количество ресурсов для каждого уровня при передаче восходящей управляющей информации. Для этого предусмотрено: кодирование восходящей управляющей информации, которая должна быть передана, и информации в виде данных, соответствующей одному или двум транспортным блокам, получение кодированной последовательности в соответствии с целевой длиной и формирование соответствующей последовательности кодированной модуляции из кодированной последовательности в соответствии с режимом модуляции (401); перемежение полученной последовательности кодированной модуляции и передачу перемеженной последовательности кодированной модуляции на уровень, соответствующий физическому восходящему мультиплексному каналу (PUSCH) (402). 5 н. и 15 з.п. ф-лы, 4 ил., 5 табл.

Изобретение относится к области выбора канала при агрегировании несущих в системе LTE-Advanced. Техническим результатом является уменьшение объема служебной информации, передаваемой в физическом канале управления восходящей линии связи. Способ выбора канала включает: определение того, что используются или должны использоваться процедуры выбора канала и выбора сигнального созвездия; определение того, что для выбора канала используется или должна использоваться структура одной таблицы преобразования для максимум четырех битов; выбор ресурса связи из записей ресурсов, соответствующих состояниям подтверждения приема и отрицательного подтверждения приема, на основе определения того, что используются или должны использоваться процедуры выбора канала и выбора сигнального созвездия, а также определения того, что для выбора канала используется или должна использоваться структура одной таблицы преобразования для максимум четырех битов. 4 н. и 24 з.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к оценке и представлению отчета об индикаторе качества канала (CQI). Технический результат заключается в точности оценки и представления отчета об CQI. Для этого, когда соседствующие базовые станции могут вызывать сильные помехи друг для друга, им могут быть выделены разные ресурсы, например разные субкадры. UE может наблюдать разные уровни помех по разным ресурсам. UE может определить CQI для ресурсов, выделенных базовой станции, и у которых уменьшены или отсутствуют помехи от по меньшей мере одной вызывающей помехи базовой станции. В другом аспекте UE может определить несколько CQI для ресурсов разных типов и связанных с разными уровнями помех. Например, UE может определить первый CQI на основе по меньшей мере одного первого субкадра, выделенного базовой станции, и у которого уменьшены или отсутствуют помехи от вызывающей помехи базовой станции(й). UE может определить второй CQI на основе по меньшей мере одного второго субкадра, выделенного вызывающей помехи базовой станции(ям). 16 н. и 44 з.п. ф-лы, 12 ил., 2 табл.

Изобретение относится к электросвязи и может быть использовано для передачи цифровой информации. Техническим результатом является снижение времени передачи сообщений. Способ заключается в том, что на передающей стороне к исходному сообщению добавляют циклическую контрольную сумму (CRC), полученный блок кодируют помехоустойчивым внешним кодом и внутренним кодом, первоначально в канал связи передают все информационные биты, затем передают биты CRC, после чего передают в канал результаты кодирования: проверочные биты внешнего кода и проверочные биты внутреннего кода БЧХ, после получения информационной последовательности бит на приемной стороне по ним вычисляют и проверяют CRC, в случае положительного результата сообщение передают получателю, в противном случае исправляют ошибочные блоки внешним кодом, в качестве которого используют блок контроля на четность, для этого восстанавливают j-ый блок из k бит посредством блока четности, после чего полученную последовательность проверяют по CRC, при положительном результате проверки принятое сообщение передают получателю, а при отрицательном - повторяют процедуру восстановления блоков, пока не будут проверены все J блоков, при отсутствии положительного результата выполняют операцию исправления ошибок внутренним кодом, для чего объединяют j-ю информационную k- битную последовательность с j-ой проверочной последовательностью кода БЧХ, декодируют j-ый блок, при исправлении выявленных ошибок вновь выполняют процедуру проверки CRC, а при отрицательном результате продолжают операцию исправления ошибок в последующих блоках до j=J. 2 ил.

Изобретение относится к вычислительной технике и может быть использовано для обнаружения и исправления ошибок при передаче информации между частями распределенных вычислительных систем. Техническим результатом является повышение надежности передачи данных. Устройство содержит контроллер мультиплексных каналов информационного обмена, внутреннюю интерфейсную магистраль информационного обмена, ОЗУ, ПЗУ, устройство сброса, микропроцессор, преобразователи мультиплексного канала информационного обмена, приемопередатчики мультиплексного канала информационного обмена, трансформаторы гальванической развязки, устройства согласования мультиплексного канала информационного обмена, формирователь адреса оконечного устройства, преобразователь данных, формирователь команд управления, преобразователь вспомогательного мультиплексного канала информационного обмена, буферный формирователь, приемопередатчик вспомогательного мультиплексного канала информационного обмена, устройство программирования. 2 н.п. ф-лы, 2 ил.

Изобретение применяется в области связи и предоставляет способ и устройство для удаленного определения местоположения неисправности беспроводной сети. Технический результат изобретения заключается в обеспечении возможности определения местоположения элемента беспроводной сети, вызывающего проблему в сети, тем самым улучшая эффективность выявления неисправностей, экономя трудозатраты. Способ содержит этапы: собирают рабочий параметр беспроводной сети на стороне терминала и отправляют собранный рабочий параметр беспроводной сети на стороне терминала на сервер. Затем сервер сравнивает рабочий параметр беспроводной сети на стороне терминала с рабочим параметром беспроводной сети на стороне точки доступа, и, какая часть беспроводной сети имеет неисправность, определяется в соответствии с результатом сравнения, так что обнаружение не является обязательным на стороне терминала, когда обнаружено, что беспроводная сеть является ненормальной на стороне точки доступа. 4 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к беспроводной связи и, в частности, к управлению мощностью передачи мобильного терминала. Способ передачи информации управления от терминала беспроводной связи сети доступа включает в себя этап, на котором формируют информацию управления, содержащую множество битов управления. Изобретение относится к средствам мобильной связи. Технический результат заключается в повышении надежности передачи информации управления. В способе кодируют биты управления, используя блочный код, разделяют закодированные биты на первую группу и вторую группу, передают первую группу закодированных битов по первому набору несущих и передают вторую группу закодированных битов по второму набору несущих, содержащему частоты, отличные от первого набора несущих. 12 н. и 35 з.п. ф-лы, 26 ил.

Изобретение относится к оборудованию пользовательского узла беспроводной связи. Технический результат заключается в повышении надежности работы оборудования. Пользовательское оборудование принимает через первую ячейку (970), сконфигурированную на несущей частоте, по меньшей мере один параметр, ассоциированный со второй ячейкой (980), сконфигурированной на несущей частоте, содержащий идентификационную информацию ячейки. Пользовательское оборудование (920) затем получает (1050) по меньшей мере одну характеристику физического уровня для второй ячейки (980) на основании принятого по меньшей мере одного параметра. Таким образом, пользовательское оборудование (920) в состоянии принять передачи через вторую ячейку (980), даже если оно не могло первоначально обнаружить присутствие ячейки. 6 н. и 16 з.п. ф-лы, 19 ил.

Изобретение относится к области технологий связи. Технический результат изобретения заключается в улучшении производительности балансного алгоритма максимума апостериорной вероятности (MAP) в высокоскоростном канале. Способ включает в себя: определение метрики ветви, прямой метрики и обратной метрики для каждого состояния в текущий момент времени с использованием значения оценки характеристики канала для каждого состояния и принятого сигнала в текущий момент времени; и определение MAP принятого сигнала в текущий момент времени с использованием метрики ветви, прямой метрики и обратной метрики для каждого состояния в текущий момент времени. В соответствии с раскрытым решением в режиме реального времени может отслеживаться высокоскоростной изменяющийся во времени канал путем комбинирования балансировки MAP с обновлением канала и адаптивного определения значения характеристики канала в каждом состоянии в каждый момент времени. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к способу работы вторичной станции, которая осуществляет связь с, по меньшей мере, одной первичной станцией посредством передач MIMO. Достигаемый технический результат - повышение скорости передачи данных, уменьшение объема ресурса, необходимого, чтобы сигнализировать рекомендованные коэффициенты предварительного кодирования. Способ работы вторичной станции, которая осуществляет связь с , по меньшей мере, одной первичной станцией посредством передач MIMO, характеризуется тем, что вторичная станция сигнализирует одиночный индикатор предварительного кодирования, представляющий, по меньшей мере, один набор рекомендованных коэффициентов предварительного кодирования в первичную станцию, при этом одиночный индикатор предварительного кодирования является общим для множества доступных режимов передачи MIMO. 3 н. и 4 з.п. ф-лы, 3 ил.
Наверх