Летательный аппарат

Изобретение относится к воздушно-космической технике. Летательный аппарат содержит корпус, устройство забора воздуха, блок управления, конусообразную камеру сгорания с выхлопным соплом. Корпус жестко связан с блоком управления и конусообразной камерой сгорания. Камера сгорания имеет две гидравлические связи с блоком управления и жестко связана с выходным соплом. Техническим результатом изобретения является уменьшение габаритов ЛА без уменьшения его ускорения. 1 ил.

 

Изобретение относится к области воздушно-космической техники и может быть использовано для полетов в атмосфере и космосе.

Известен летательный аппарат, изложенный в патенте №2363625, автор Часовской А.А. В нем используется конусообразная камера сгорания с выхлопным соплом позади, жестко связанная с корпусом, с которым также жестко связан блок управления, выдающий топливо в эту камеру. Топливо может быть двухкомпонентным и состоять из горючего и окислителя. Поэтому камера сгорания может иметь две гидравлические связи с блоком управления. В состав устройства может входить устройство забора воздуха, жестко связанное с корпусом и размещенное впереди него. Через это устройство проходит воздух в дополнительные узлы, которые вместе с другими узлами используются для увеличения скорости полета. Однако использование этих узлов увеличивает громоздкость.

Известен летательный аппарат, изложенный в патенте №2494020, автор Часовской А.А. В его состав могут входить те же узлы, что и в вышеупомянутом аналоге. Но в нем создается возможность увеличить скорость за счет увеличения частоты воспламенений при сохранении количества топлива в каждой порции между воспламенениями. Но в состав устройства также входят дополнительные узлы, увеличивающие громоздкость.

С помощью предлагаемого устройства уменьшается громоздкость без уменьшения ускорения. Достигается это введением гидравлической связи между устройством забора воздуха и конусообразной камерой сгорания и осуществлением в камере сгорания, после распыления окислителя, смешение его распыленных частиц с воздушной струей перед воспламенением с помощью распыленного керосина.

На фиг.1 и в тексте приняты следующие обозначения:

1 - устройство забора воздуха,

2 - корпус,

3 - блок управления,

4 - конусообразная камера сгорания,

5 - выхлопное сопло,

при этом корпус 2 жестко связан с блоком управления 3 и с конусообразной камерой сгорания 4, имеющей две гидравлические связи с вышеупомянутым блоком управления 3 и гидравлическую связь с устройством забора воздуха 1, а также жесткую связь с выхлопным соплом 5.

Работа устройства осуществляется следующим образом.

Начальное движение летательному аппарату придается благодаря подаче окислителя и топлива в виде керосина с блока управления 3 в конусообразную камеру сгорания 4, имеющую две гидравлические связи с вышеупомянутым блоком 3. В камере сгорания после распыления компонентов происходит формирование смеси, ее воспламенение и выход через выхлопное сопло 5, жестко связанное с оконечностью конусообразной камеры сгорания 4. Также осуществляется увеличение поступления воздуха через устройство забора воздуха 1, размещенного в передней части корпуса 2 и жестко связанного с ним. Через это устройство воздух в виде струи поступает в конусообразную камеру сгорания 4, гидравлически связанную с этим устройством. В результате после распыления окислителя осуществляется подхватывание его распыленных частиц и смешение их с воздушной струей. При этом не уменьшается скорость струи, но увеличивается количество кислородных компонентов перед воспламенением с помощью распыленного керосина, что увеличивает скорость полета. К тому же благодаря использованию в качестве горючего керосина обеспечивается осуществление в камере сгорания 4 совмещение воздушно-реактивных и жидкостно-ракетных процессов. По достижении высоты 20 км и необходимой скорости начинается дополнительное ускорение путем осуществления воспламенений с увеличенной частотой. При этом благодаря воздействию на стенки камеры импульсных воспламенений создается возможность увеличить предельное количество окислителя и керосина, при которых сохраняется надежность, зависящая не от частоты воспламенений, а от количества воспламененного топлива между воспламенениями. Поэтому, выбрав максимальную частоту воспламенений, можно добиться максимальной конечной скорости. Кроме того, ускорение увеличивается благодаря наличию относительного движения корпуса и вновь воспламененного топлива, относительно ранее воспламененного, но еще не вышедшего из камеры сгорания.

Возможен вариант использования, когда движение до высоты, с которой начинается дополнительное ускорение, происходит без поступления окислителя с блока управления, а только путем забора воздуха в камеру сгорания.

В предлагаемом устройстве благодаря предварительному увеличению скорости создается возможность при использовании одного двигателя и сопла увеличить конечную скорость, что улучшит тактико-технические характеристики летательных средств при полетах в атмосфере и космосе.

Летательный аппарат, состоящий из жестко связанных с корпусом блока управления и конусообразной камеры сгорания, жестко связанной с выхлопным соплом в конце камеры, имеющей две гидравлические связи с блоком управления, и размещенного в передней части корпуса устройства забора воздуха, отличающийся тем, что в процессе поступления в камеру сгорания этого воздуха происходит и поступление в нее компонентов окислителя и осуществляется после распыления окислителя смешение его распыленных частиц с воздушной струей перед воспламенением с помощью распыленного керосина.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике, а именно к конструкции дренажа криогенного компонента из криогенного бака ракетного разгонного блока в составе ракеты космического назначения.

Изобретение относится к космической технике и может быть использовано для удаления нефункционирующего космического аппарата (КА) с геостационарной орбиты. Выводят на геостационарную орбиту КА со средством наблюдения и захвата нефункционирующего КА и дополнительным запасом компонентов топлива, переводят КА после окончания срока активного существования в точку стояния на геостационарной орбите нефункционирующего КА, осуществляют ориентацию относительно нефункционирующего КА, наводят на нефункционирующий КА, захватывают нефункционирующий КА, включают двигатель КА, переводят связку космических аппаратов на орбиту захоронения.

Изобретение относится к ракетно-космической технике и может быть использовано в многоразовых ступенях ракет космического назначения (РКН). Система для обеспечения выхода в космическое пространство содержит РКН с двунаправленной поверхностью управления с возможностью разворота, с возможностью принимать информацию о положении конструкции части РКН на поверхности воды для регулирования траектории полета, стартовую площадку, средство для запуска РКН или части РКН со стартовой площадки в первый раз и второй раз соответственно, средство для вертикальной посадки части РКН на конструкцию на водной поверхности, средство для запуска, средство для изменения ориентации РКН с ориентации носом вперед на ориентацию хвостом вперед перед посадкой и повторного входа в атмосферу Земли, средство для отключения ракетных двигателей, средство для первичного и повторного запуска одного или больше ракетных двигателей.

Изобретение относится к ракетно-космической технике и может быть использовано в последних ступенях ракет-носителей. Ракетно-космическая система (РКС) содержит ракету-носитель с последней ступенью с внешним корпусным отсеком с силовым промежуточным опорным шпангоутом с состыкованными между собой с помощью крепежных элементов наружным и внутренним шпангоутами, космический аппарат с головным обтекателем с торцевым шпангоутом.

Изобретение относится к системе доставки различных видов полезной нагрузки в верхние слои атмосферы и выше. Система пуска ракет (1) включает трубчатую тележку пуска ракет (2) с фрикционными приводами кабельного/тросового пути (26), перемещаемую ниже двухосевого шарнира (63), прикрепленного к земле, поднимаемую в коаксиальную переносную трубу (124, 143), ведущую к трем основным привязным кабелям/тросам (27), вес которых компенсируется аэростатами (164).

Изобретение относится к космической технике и может быть использовано в разгонных блоках ракет-носителей (РН). Ракетный криогенный разгонный блок (РБ), выполненный по тандемной схеме, содержит бак горючего с приборным отсеком и переходной системой для крепления космического аппарата, бак окислителя (БО), проставку межбаковую, маршевый двигатель (МД) РБ, промежуточный отсек, систему пожаровзрывопредупреждения, средства обеспечения теплового режима с блоком разъемных соединений связи с наземным оборудованием и разделяемых подводящих трубопроводов, коллекторы продувки застойных зон и обеспеспечения теплового режима зоны и аппаратуры РБ, разделительную мембрану, сбрасываемый головной обтекатель (ГО) с окнами сброса системы пожаровзрывопредупреждения и средств обеспечения теплового режима газов продувки зоны РБ, дополнительной теплоизоляцией зоны РБ, частью разделяемых подводящих труб коллекторов с разъемными стыками и блоком разъемных соединений связи с наземным оборудованием, межбаковой проставкой, сопряженной с межбаковой фермой для крепления БО с МД и сопряженной с верхней проставкой отделяемого промежуточного отсека с узлами соединения и разделения с РН и ГО.

Изобретение относится к ракетно-космической технике и может быть использовано для управления движением жидкостной ракеты космического назначения (РКН). После команды на выключение маршевого двигателя (МД) отработавшей ступени переводят МД на режим пониженной тяги и окончательно выключают МД, управляют движением ракеты по крену с помощью двух пар газовых сопел, осуществляют прогноз момента времени окончательного выключения МД, включают одну из пар газовых сопел до спрогнозированного момента времени окончательного выключения МД для создания управляющего момента по крену, выключают пару газовых сопел в спрогнозированный момент времени, при этом величину промежутка времени работы пары газовых сопел определяют перед началом полета в зависимости от момента инерции вращающейся части турбонасосного агрегата с учетом присоединенной массы компонентов топлива относительно оси вращения, абсолютной величины момента по крену, создаваемого каждой парой газовых сопел при их включении, абсолютной величины угловой скорости вращения ротора турбонасосного агрегата на режиме пониженной тяги, угла между осью вращения ротора турбонасосного агрегата и продольной осью ракеты.

Группа изобретений относится к межорбитальным, в т.ч. межпланетным, перелетам космических аппаратов (КА) с реактивным двигателем.

Изобретение относится к атомной энергетике и ракетно-космической технике. Технический результат - повышение эффективности и надежности функционирования ядерной энергодвигательной установки космического аппарата.

Изобретение относится к космической технике и может быть использовано в ракетах-носителях. Многоступенчатая ракета-носитель содержит головной блок с полезным грузом, параллельно расположенные разделяемые ракетные блоки ступеней с многокамерными двигательными установками с топливными баками (ТБ) в форме тора, крылья, хвостовую часть конической формы, укороченное центральное тело (УЦТ) на первой ступени, единое тарельчатое сопло (ЕТС) на второй ступени, донную часть в виде внешнего и внутреннего усеченных конусов, образованных внешней поверхностью обечайки УЦТ и внутренней поверхностью обечайки ЕТС.

Изобретение относится к ракетно-космической технике и предназначено для обеспечения безопасности космонавта при работе на поверхности пилотируемой космической станции в открытом космосе. Индивидуальное средство передвижения космонавта в открытом космосе представляет собой дополнительное устройство, прикрепленное к скафандру космонавта. Устройство состоит из корпуса, в котором размещены панели солнечной батареи в свернутом состоянии, и отсека с размещенным в нем аккумулятором, электрически связанным через блок управления и согласования с солнечной батареей и баллоном с компонентом рабочего тела для электрореактивных двигателей. Техническим результатом изобретения является повышение безопасности работы в открытом космическом пространстве. 9 ил.

Изобретение относится к устройствам и способам защиты летательных объектов при нападении. Целевой объект размещается в космическом аппарате (ложном объекте - оболочке). Космический аппарат содержит радиолокатор, блок команд и управления, панели солнечных батарей, от которых в том числе питается и целевой модуль. Целевой модуль в свою очередь снабжен двигательной установкой, химическим источником тока, соответствующей служебной и специальной аппаратурой и спецсистемой. После отделения целевого модуля питание от солнечных батарей прекращается и целевой модуль переходит на электропитание от химического источника тока. В случае атаки космический аппарат разделяется на ложный объект, имитирующий объект нападения, и целевой модуль. Техническим результатом изобретения является защита целевого модуля от поражения при атаке и обеспечение выполнения им целевых задач. 3 ил.

Кронштейн // 2565427
Металлический кронштейн (1) состоит из двух концевых участков с пазами и имеет Г-образный профиль с продольными и поперечными пазами (2) различной толщины по всей его длине. Кронштейн закреплен с помощью болтового соединения (6) на двух противоположных элементах сложной конструкции, например элементах силовой конструкции (3, 4) космического аппарата, обладающих различными температурными коэффициентами линейного расширения. Обеспечивается компенсация температурных деформаций силовой конструкции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области радиотехники и может использоваться для передачи информации об аварийном состоянии изделий ракетно-космической техники на этапе космического запуска. Радиопередающее устройство (РПДУ) содержит автогенератор, усилитель мощности и передающую антенну. В автогенераторе и усилителе мощности используют транзисторы с частотой, соответствующей выходной частоте РПДУ. Плотность материала подложки антенных блоков выбирают минимальной при обеспечении защиты аппаратуры, находящейся в защитном корпусе за блоками, от радиационных излучений космического пространства. Техническим результатом изобретения является снижение габаритно-массовых параметров РПДУ. 2 ил.

Изобретение относится к космической технике и может быть использовано для доставки полезной нагрузки в космическое пространство. Комплекс содержит отсек силовой установки с несущей конструкцией с проемами, переходником, электрическим двигателем, источником электрического питания с солнечными элементами и ядерным источником энергии, бортовую систему в виде дополнительной жидкостной и твердотопливной системы обеспечения движения в космосе, образующую искусственный спутник Земли. Изобретение позволяет увеличить массу полезной нагрузки. 2 н. и 5 з.п. ф-лы, 14 ил.

Изобретение относится к области ракетной техники и касается изготовления силовой оболочки корпуса возвращаемого летательного аппарата. Ленточный препрег для изготовления теплозащитного покрытия силовой оболочки корпуса содержит скрепленные между собой куски растяжимой в тангенциальном направлении и пропитанной фенольным связующим ленты. При этом препрег выполнен в виде многослойной ленты, в каждом слое которой куски образующих ее лент скреплены между собой встык со смещением этих стыков, расположенных в соседних слоях, относительно друг друга. Слои ленты скреплены между собой в точках, расположенных зигзагообразно вдоль продольной оси ленты. Достигается повышение качества изготовления теплозащитного покрытия за счет оптимизации структуры и конструктивно-технологической схемы изготовления ленточного препрега с повышенной термоэрозионной стойкостью в сочетании с улучшенными теплоизоляционными свойствами и меньшей толщиной. 1 з.п. ф-лы, 1 ил.

Изобретение относится к орбитальному движению искусственных спутников Земли (ИСЗ), совершающих групповой полет. Поддержание расстояния между ИСЗ по фронту производится путем периодического включения на ближней границе разрешенного коридора движения реактивной двигательной установки (ДУ) активного ИСЗ. Тяга ДУ ориентирована перпендикулярно плоскости орбиты активного ИСЗ в направлении от плоскости орбиты пассивного ИСЗ. Поддержание расстояния между ИСЗ по дистанции производится периодическим изменением высоты полета активного ИСЗ с включением его ДУ вдоль местной вертикали или периодическим изменением скорости полета активного ИСЗ с включением его ДУ вдоль направления полета. Техническим результатом изобретения является создание способа группового орбитального движения двух и более ИСЗ, включающего их полет по близким орбитам с возможностью изменения положения активных аппаратов относительно пассивного, поддержание заданной конфигурации орбитального построения относительно наблюдателя на поверхности Земли. 1 ил.

Изобретение относится к космической технике. Космическая платформа содержит модуль служебных систем в форме прямоугольного параллелепипеда, узлы стыковки с системой отделения, двигательную установку, солнечные батареи, систему терморегулирования. Космическая платформа включает в себя цилиндрический отсек в виде сетчатой конструкции из углепластика, сотовые панели с кронштейнами. Внутри цилиндрического отсека установлены баки хранения рабочего тела для двигательной установки системы коррекции с плазменными двигателями на ксеноне и двигательной установки системы ориентации и стабилизации. Техническим результатом изобретения является повышение плотности компоновки и сокращение сроков изготовления КА на базе данной платформы. 4 ил.,3 з.п. ф-лы

Изобретение относится к космической связи и может быть использовано при проектировании космических систем оперативной связи различного назначения. Технический результат состоит в повышении оперативности, помехоустойчивости и технологичности связи, Для этого глобальная низкоорбитальная космическая информационная система состоит из космического и наземного сегментов, включает в себя КА-абоненты и через телекоммуникационное и информационное пространство связана с потребителями на суше, на воде и в воздухе пользовательского сегмента. Космический сегмент состоит из N информационных узлов, состоящих из основного и связанных космических аппаратов в виде кольцевых кластеров, объединенных локальной сетью, при этом космические информационные узлы расположены в смещенных орбитальных плоскостях, а наземный сегмент состоит из сети связанных между собой непосредственно или через телекоммуникационное и информационное пространство конкретной страны с наземными информационными узлами, каждый из которых связан с космическими информационными узлами, которые также связаны со всеми связанными космическими аппаратами-абонентами кластеров. 2 н.п. ф-лы, 3 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения лёгкого класса (РКН ЛК). РКН ЛК на нетоксичных компонентах топлива с высокой степенью заводской готовности к пусковым операциям с определенным составом, весогабаритными и техническими параметрами, необходимыми для осуществления авиационной транспортировки полностью собранной и испытанной в заводских условиях РКН ЛК, содержит спасаемые ракетный блок или двигательную установку первой ступени, воздушно-космическую парашютную систему. Изобретение позволяет сократить время предстартовой подготовки РКН ЛК к пуску. 5 ил.
Наверх