Устройство для измерения дебита нефтяных скважин

Изобретение относится к измерительной технике, используемой в нефтедобывающей промышленности для замера и учета продукции нефтяных скважин. Технический результат: определение полного компонентного состава жидкости, а именно - воды и нефти за счет конструктивной конфигурации сепаратора, компоновки плотномера, газового и жидкостного сифонов. Устройство для измерения дебита нефтяных скважин, содержащее сепаратор, входную и выходную, в виде сифона, жидкостные линии, газовую линию с установленными на ней датчиками давления и температуры газовой фазы, связанными со счетно-решающим блоком с электронными часами, к которому подключены установленные на общей линии перед впадением ее в сборный коллектор объемный счетчик жидкости и запорный клапан. Сепаратор выполнен в виде двух вертикальных цилиндрических емкостей, которые в нижней части соединены патрубком. На стыке между вертикальными цилиндрическими емкостями смонтирован жидкостный сифон, а верхние части вертикальных цилиндрических емкостей соединены газовым сифоном. На выходе сепаратора установлен плотномер, соединенный со счетно-решающим блоком с электронными часами, содержащим микропроцессор. 7 ил.

 

Изобретение относится к технике измерения дебита нефтяных скважин и направлено на упрощение конструкции устройства измерения.

Известно устройство для измерения дебита скважин (SU Авт. св. №1530765, E21B 47/10, 23.12.1989), содержащее газосепаратор с поплавком, связанным с заслонкой на газовой линии, счетчик жидкости, пневматически связанный с газовой линией, и гидравлически связанный с общей линией мембранный клапан со штоком, выполненный с возможностью установки его в двух крайних фиксированных положениях, дополнительный мембранный клапан со штоком и дросселем, установленный параллельно заслонке на газовой линии, выполненный с возможностью установки в двух крайних фиксированных положениях и связанный пневматически с газосепаратором и общей линией, причем подмембранная полость соединена с газовой линией после него и дросселя.

Недостатками известного устройства являются сложность и дороговизна его конструкции:

- наличие сложных клапанов с пневматическим приводом;

- наличие заслонки с приводом от поплавка и устройством герметизации прохода привода из полости газосепаратора;

- наличие импульсных пневматических линий к клапанам, как известно, подверженных вероятности замерзания при низких температурах окружающей среды при попадании в них влаги.

Известно устройство для измерения дебита нефтяных скважин (SU Авт. св. №1553661, E21B 47/10, 30.03.1990), содержащее вертикальный цилиндрический сепаратор с гидроциклоном, два датчика давления, один из них замеряет давление жидкой фазы, установленные на разных уровнях, газовую линию с клапаном с электромагнитным приводом, впускную и выпускную жидкостные линии, микропроцессор и блок управления, успокоительные решетки, датчики давления и температуры, замеряющие параметры газовой фазы, причем выпускная жидкостная линия выполнена в виде сифона.

Известное устройство имеет сложную и ненадежную конструкцию:

- клапан с электромагнитным приводом и управлением;

- датчики давления и уровня, работающие в жидкой среде, подверженные вероятности выхода из строя по причине обрастания их слоем парафина.

Известно устройство для осуществления способа замера дебита попутного газа в продукции нефтяной скважины на групповых замерных установках (SU патент №276851, E21B 47/10, 22.07.1970), включающего подачу газонефтяного потока в сепарационный трап в виде цилиндрической вертикальной емкости и накопление жидкой фазы в нем, вытеснение ее давлением газовой фазы путем перекрытия запорного клапана на газовой линии и определение дебита газа замером времени вытеснения заданного объема жидкой фазы, содержащее вертикальную цилиндрическую емкость, датчики нижнего и верхнего уровней, датчики температуры и давления газовой фазы, газовую линию, счетно-решающий блок, электронные часы, запорный клапан, жидкостные входную и выходную, в виде сифона, линии.

Известное устройство имеет недостатки, заключающиеся в том, что конструкция его включает датчики уровня жидкой фазы, подверженные риску выхода из строя по причине обрастания их слоем парафина, и лишена приборов, замеряющих непрерывно расходы жидкой и газовой фаз и позволяющие учесть добычу продукции скважины в заданный отрезок времени с высокой точностью, прямым способом, чего не может обеспечить способ, поскольку учесть в этом случае добычу можно лишь опосредствованно.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является устройство для измерения дебита газа и жидкости нефтяных скважин (RU патент №2426877 C1, E21B 47/10, 20.08.2011), содержащее сепаратор, в виде вертикальной цилиндрической емкости, входную и выходные, в виде сифона, жидкостные линии, газовые линии, датчики давления и температуры газовой фазы, счетно-решающий блок с электронными часами. Устройство также включает гидравлический замок, сообщающую его со сборным коллектором общую линию, объемный счетчик жидкости, запорный клапан, выполненный самодействующим, перепускным, двухфазным, дискретного действия с магнитной фиксацией его крайних положений, установленный, как и счетчик, на общей линии вслед за ним перед впадением ее в сборный коллектор, при этом газовая и выходная жидкостная нисходящей ветвью сифона линии сообщены с замком, причем датчики давления и температуры установлены на газовой линии.

Недостатком данного известного устройства является невозможность определения компонентного состава жидкости, а именно - воды и нефти.

Задачей изобретения является повышение надежности устройства для замера дебита нефтяных скважин.

Технический результат - определение полного компонентного состава жидкости, а именно - воды и нефти за счет конструктивной конфигурации сепаратора, компоновки плотномера, газового и жидкостного сифонов.

Поставленная задача решается, а технический результат достигается тем, что в устройстве для измерения дебита нефтяных скважин, содержащем сепаратор, входную и выходную, в виде сифона, жидкостные линии, газовую линию, с установленными на ней датчиками давления и температуры газовой фазы, связанными со счетно-решающим блоком с электронными часами, к которому подключены установленные на общей линии перед впадением ее в сборный коллектор объемный счетчик жидкости и запорный клапан, выполненный самодействующим, перепускным, двухфазным, дискретного действия с магнитной фиксацией его крайних положений, согласно изобретению сепаратор выполнен в виде двух вертикальных цилиндрических емкостей, которые в нижней части соединены патрубком, на стыке с которым между вертикальными цилиндрическими емкостями смонтирован жидкостный сифон, а верхние части вертикальных цилиндрических емкостей соединены газовым сифоном, и на выходе сепаратора установлен плотномер, соединенный со счетно-решающим блоком с электронными часами, содержащим микропроцессор.

Техническая сущность изобретения поясняется чертежами:

фиг. 1 - схема устройства;

фиг. 2 - схема перетока в коллектор нефти;

фиг. 3 - схема перетока в коллектор газа;

фиг. 4 - схема перетока в коллектор воды.

Переходные этапы работы устройства:

фиг. 5 - этап заполнения жидкостного сифона;

фиг. 6 - этап заполнения газового сифона;

фиг. 7 - этап заполнения сифонов и емкостей.

Устройство содержит сепаратор 1, входную 2 и выходную 3, в виде сифона, жидкостные линии, газовую линию 4, датчики давления 5 и температуры 6 газовой фазы, счетно-решающий блок 7, включающий электронные часы и микропроцессор, объемный счетчик 8 жидкости, запорный клапан 9, выполненный самодействующим, перепускным, двухфазным, дискретного действия с магнитной фиксацией его крайних положений, установленный, как и счетчик 8, на общей измерительной линии 10 перед впадением ее в сборный коллектор 11. Сепаратор 1 выполнен в виде двух вертикальных цилиндрических емкостей Е1 и Е2, которые в нижней части соединены патрубком 12, на стыке с которым между вертикальными цилиндрическими емкостями Е1 и Е2 смонтирован жидкостный сифон 13, а верхние части вертикальных цилиндрических емкостей Е1 и Е2 соединены газовым сифоном 14 и на выходе сепаратора 1 в верхней части емкости Е2 установлен плотномер 15. Наряду с этим жидкостный сифон 13 соединен со сборным коллектором 11 через отсекающий жидкость клапан 16.

Устройство работает следующим образом. Продукция нефтяных скважин поступает по входной жидкостной линии 2 в сепаратор 1, выполненный в виде двух вертикальных цилиндрических емкостей Е1 и Е2, которые в нижней части соединены патрубком 12. По мере заполнения емкости Е1 сепаратора 1 жидкостью в нем происходит накопление жидкости и разделение ее на фракции: вода, эмульсия, нефть и газ. При этом переток газа происходит через газовый сифон 14, а переток жидкости, которая легче воды, в первоначальный момент заполнения происходит через жидкостный сифон 13 со сбросом газа в сборный коллектор 11 через отсекающий жидкость клапан 16. В вертикальной цилиндрической емкости Е1 сепаратора 1 происходит накопление и разделение поступающей продукции на эмульсию, воду и газ. В процессе работы происходит раздельно переток в сборный коллектор 11 нефти (фиг. 2), газа (фиг. 3) и воды (фиг. 4).

Переходные этапы работы устройства показаны:

на фиг. 5 - заполнение жидкостного сифона 13 до уровня H1;

на фиг. 6 - заполнение газового сифона 14 до уровня Н2;

на фиг. 7 - заполнение водой сифонов 13, 14 и емкостей Е1 и Е2.

После разделения в процессе работы чистая вода, которая образовалась во второй емкости Е2 сепаратора 1, через общую измерительную линию 10 по мере достижения перепада давления между сепаратором 1 и сборным коллектором 11 (запорный клапан 9 открывается) проходит через счетчик жидкости 8. В процессе работы по мере поступления продукции в сепаратор 1 жидкостный сифон 13 заполняется жидкостью, а в газовом сифоне 14 в верхней части накапливается газ.

По мере накопления в емкости Е1 жидкости, которая легче воды, она начинает заполнять жидкостный сифон 13 и по достижении уровня этой жидкостью величины H1 (фиг. 5) происходит переток жидкости, которая легче воды, по жидкостному сифону 13 в емкость Е2.

Ввиду разности гидростатических давлений между емкостью Е2, которая заполнена водой, и емкостью Е1 происходит лавинообразный переток жидкости, которая легче воды, по газовому сифону 14 из емкости Е1 в емкость Е2, а из емкости Е2 по патрубку 12 в емкость Е1 до выравнивания гидростатических давлений. В результате чего верхняя часть емкости Е1 заполняется жидкостью, которая легче воды, и с открытием запорного клапана 9 она проходит через счетчик жидкости 8 в сборный коллектор 11. По мере накопления газа в емкости Е1 до уровня Н2 (фиг. 6) начинается переток газа из емкости Е1 через газовый сифон 14 в емкость Е2 и ввиду разности гидростатических давлений происходит лавинообразное перемещение жидкости из емкости Е2 в емкость Е1 по патрубку 12 и переток газа из емкости Е1 по газовому сифону 14 в емкость Е2 и при этом верхняя часть емкости Е2 заполняется газом, который начинает выдавливаться через счетчик жидкости 8 и запорный клапан 9 в общий коллектор 11.

Плотномер 15, установленный в верхней части емкости Е2, определяет самую тяжелую жидкость - воду и самую легкую жидкость - нефть при прохождении жидкости.

Плотность между тяжелой и легкой жидкостью позволяет определить объем нефти и воды в составе жидкости, проходящей через счетчик жидкости 8 и плотномер 15, по формуле:

где ρН - плотность нефти,

ρЭ - плотность эмульсии,

ρВ - плотность воды,

VЭ - объем эмульсии,

VH - объем нефти.

Показания объемного счетчика жидкости 8, датчиков давления 5 и температуры 6, плотномера 15 регистрируются и обрабатываются счетно-решающим блоком 7.

Использование изобретения позволит создать устройство для измерения дебита нефтяных скважин, надежное в эксплуатации и обеспечивающее возможность определения полного компонентного состава жидкости, а именно воды и нефти за счет конструктивной конфигурации сепаратора, компоновки плотномера, газового и жидкостного сифонов.

Устройство для измерения дебита нефтяных скважин, содержащее сепаратор, входную и выходную, в виде сифона, жидкостные линии, газовую линию, с установленными на ней датчиками давления и температуры газовой фазы, связанными со счетно-решающим блоком с электронными часами, к которому подключены установленные на общей линии перед впадением ее в сборный коллектор объемный счетчик жидкости и запорный клапан, выполненный самодействующим, перепускным, двухфазным, дискретного действия с магнитной фиксацией его крайних положений, отличающееся тем, что сепаратор выполнен в виде двух вертикальных цилиндрических емкостей, которые в нижней части соединены патрубком, на стыке с которым между вертикальными цилиндрическими емкостями смонтирован жидкостный сифон, а верхние части вертикальных цилиндрических емкостей соединены газовым сифоном, и на выходе сепаратора установлен плотномер, соединенный со счетно-решающим блоком с электронными часами, содержащим микропроцессор.



 

Похожие патенты:

Изобретение относится к способам исследования газовых и газоконденсатных скважин, определению их оптимальных технологических режимов, а именно к определению режимов максимального извлечения жидких продуктов при минимальных энергетических затратах, то есть минимальных потерях давления при различных режимах течениях газожидкостного потока.

Группа изобретений относится к нефтегазодобывающей отрасли и может быть использована для оперативного учета дебитов продукции газоконденсатных и нефтяных скважин в режиме реального времени.

Изобретение относится к области газового машиностроения, в частности к устройствам исследования газовых и газоконденсатных месторождений на разных технологических режимах.

Группа изобретений относится к испытаниям гидравлических машин и предназначена для измерения рабочих характеристик погружных газосепараторов, используемых при добыче нефти.

Многофазный сепаратор-измеритель выполнен в виде двух вертикальных камер, гидравлически соединенных между собой в верхней и нижней частях. В нижней части первой камеры расположен входной порт, в котором установлена заглушенная сверху трубка с перфорированными стенками для подачи смеси флюидов, а также выходной порт для отбора тяжелой фазы.

Предлагаемое изобретение относится к области добычи нефти и может быть использовано для определения дебитов нефти, воды и попутного нефтяного газа как передвижными, так и стационарными замерными установками.

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды.

Изобретение относится к области измерения расхода газожидкостного потока. .

Изобретение относится к нефтепромысловому оборудованию и может быть использовано при измерении и контроле дебита скважин на объектах нефтедобычи. .

Изобретение относится к измерительной технике и может быть использовано для измерения расхода газа, конденсата и его составляющих, и воды в газовой и нефтедобывающей промышленности при добыче газа и подготовке его к транспортировке.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов поступления свободного газа из пласта в ствол горизонтальной скважины при исследованиях нефтяных скважин с использованием многодатчиковой технологии.

Изобретение относится к области исследования характеристик скважин, а именно к способу экспресс-определения характеристик призабойной зоны малодебитных скважин, применяемому при освоении скважин, и системе его реализующей.

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных и отдельных устройствах.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для измерения дебита продукции нефтяных и газовых скважин. Технический результат заключается в повышении точности измерения фазового расхода в режиме реального времени за счет обеспечения однородности измеряемого потока газожидкостной смеси.

Группа изобретений относится к вариантам блока регулирования и учета добычи флюида из многопластовой скважины. Блок по первому варианту содержит корпус, ограниченный снизу стыковочным узлом с каналами потоков пластовых флюидов и сверху стыковочным узлом с установленными на нем регулируемыми клапанами в количестве, равном числу эксплуатируемых пластов скважины.

Изобретение относится к области нефтедобывающей промышленности, в частности к переносным поверочным установкам для оперативного измерения массы жидкости, объема свободного газа, температуры, содержания воды в нефти, а также для контроля состава продукции скважины.

Изобретение относится к измерительной технике, используемой в нефтедобывающей промышленности для замера и учета продукции нефтяных скважин. Технический результат: повышение точности и качества замера дебита нефтяных скважин, подключенных к групповой замерной установке за счет эффективности суммарного и поочередного измерения дебита каждой скважины, а также обеспечение достаточного времени для достоверного замера дебита каждой скважины.

Изобретение относится к области добычи нефти и к измерительной технике и может быть использовано для измерений дебита продукции нефтегазодобывающих скважин. Технический результат заключается в упрощении конструкции, возможности измерения чрезвычайно малых дебитов не только жидкости, но и газа.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для автоматического определения объемов закачиваемых в скважину по напорной магистрали буровых и тампонажных жидкостей.

Изобретение относится к добыче скважинного флюида, в частности к способу измерения мультифазного потока флюида с использованием расходомера. Техническим результатом является повышение точности измерения мультифазного потока флюида.

Изобретение относится к системе и способу обнаружения и мониторинга эрозии в различных средах, включая окружающую среду нисходящих скважин. Способ, в котором размещают индикаторный элемент в материале скважинного компонента посредством встраивания защитного индикаторного элемента внутрь скважинного компонента, таким образом, что достаточная степень эрозии материала инициирует высвобождение индикаторного элемента. Причем индикаторный элемент встраивают в наполнитель противопесочного фильтра. Обеспечивают работу системы мониторинга воздействия эрозии на индикаторный элемент и, следовательно, для мониторинга эрозии скважинного компонента. Регулируют скорость потока в скважине на основании данных, полученных от системы мониторинга. Система мониторинга расположена таким образом, что обеспечивается ее совместная работа с индикаторным устройством, и определенное воздействие на индикаторное устройство обнаруживается системой мониторинга. Соответствующие выходные данные системы мониторинга, характеризующие степень эрозии, позволяют регулировать интенсивность потока. 3 н. и 15 з.п. ф-лы, 6 ил.
Наверх