Стенд для исследования теплового состояния поршней двухтактных двигателей внутреннего сгорания

Изобретение относится к испытательным стендам и может быть использовано преимущественно в ходе научно-исследовательских и опытно-конструкторских работ, а также в период доводки двигателей внутреннего сгорания. Стенд для исследования теплового состояния поршней двигателей внутреннего сгорания включает корпус с установленной в нем гильзой цилиндра, исследуемый поршень и нагреватель. Стенд содержит обтюратор в виде диска с равномерно расположенными по его окружности отверстиями, соединенный с электродвигателем и находящийся перед днищем поршня, причем между обтюратором и корпусом расположено графитовое кольцо, систему охлаждения, состоящую из насоса, соединенного через патрубки с рубашкой охлаждения корпуса, систему кривошипно-камерной продувки, состоящую из компрессора, сообщающегося через патрубки с крышкой корпуса, а также расположенный напротив поршня со стороны внутренней поверхности днища тепловизор. Вдоль боковой поверхности поршня между поршнем и гильзой цилиндра могут быть установлены тензодатчики. Моделирование циклического воздействия температуры на днище поршня и охлаждение его в процессе газообмена с частотой, соответствующей работе двигателя при имитации кривошипно-камерной продувки, позволяет повысить точность исследований теплового состояния поршней двухтактных двигателей внутреннего сгорания. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к испытательным стендам и может быть использовано преимущественно в ходе научно-исследовательских и опытно-конструкторских работ, а также в период доводки двигателей внутреннего сгорания для исследования теплового состояния поршней.

Известен стенд для испытания поршня, в котором на основании неподвижно установлен испытуемый поршень и смонтированы электрический нагреватель днища поршня, водяная система охлаждения, масляная система охлаждения днища поршня и система подачи сжатого воздуха. На поршне закреплены датчики, соединенные с измерительной аппаратурой. Внутри испытуемого поршня размещена вставка с каналами с образованием замкнутой полости охлаждения, которая соединена каналом с масляной системой охлаждения, каналами через дозатор - с системой подачи сжатого воздуха, и в одном из каналов установлен ограничитель уровня масла. На свободных концах каналов установлены сопловые наконечники, расположенные ниже уровня масла. Достигается повышение достоверности и точности результатов измерений (авторское свидетельство СССР №1543279 A1, кл. G01M 15/00, опубл. 15.02.1990).

Недостатком является сложность конструкции испытательного стенда и необходимость дополнительной обработки результатов, что повышает трудоемкость процесса испытаний.

Наиболее близким к заявляемому является стенд для исследования тепловых процессов в цилиндропоршневой группе двигателя внутреннего сгорания, содержащий корпус с вертикально установленной в нем гильзой цилиндра, исследуемый поршень, опорный палец корпуса для установки поршня и нагреватель. Стенд снабжен двумя парами встречно направленных соосных упоров для имитации действия боковых сил (авторское свидетельство СССР №1693422 A1, кл. G01M 13/00, опубл. 23.11.1991).

Недостатком известного стенда является отсутствие имитации кривошипно-камерной продувки с учетом цикличности процессов газообмена двухтактного двигателя; циклическое воздействие температуры на днище поршня не может имитировать аналогичные процессы нагрева днища поршня, наблюдающиеся в реальном двигателе внутреннего сгорания. Кроме того, для имитации действия боковых сил используется сложная конструкция, включающая дополнительные элементы в виде опорного пальца, переходника, резьбового стержня и пружинного кольца. В результате чего точность испытаний невысока.

Задачей изобретения является повышение точности исследований теплового состояния поршней двухтактных двигателей внутреннего сгорания, а также упрощение конструкции испытательного стенда.

Технический результат - повышение точности исследований теплового состояния поршней двухтактных двигателей внутреннего сгорания, которая достигается моделированием циклического воздействия температуры на днище поршня и его охлаждением, а также имитацией кривошипно-камерной продувки для наиболее точного моделирования процесса газообмена двухтактного двигателя.

Задача решается, а технический результат достигается стендом для исследования теплового состояния поршней двигателей внутреннего сгорания, включающим корпус с установленной в нем гильзой цилиндра, исследуемый поршень и нагреватель. В отличие от прототипа стенд содержит обтюратор в виде диска с равномерно расположенными по его окружности отверстиями, соединенный с электродвигателем и находящийся перед днищем поршня, причем между обтюратором и корпусом расположено графитовое кольцо, систему охлаждения, состоящую из насоса, соединенного через патрубки с рубашкой охлаждения корпуса, систему кривошипно-камерной продувки, состоящую из компрессора, сообщающегося через патрубки с крышкой корпуса, а также расположенный напротив поршня со стороны внутренней поверхности днища тепловизор.

Вдоль боковой поверхности поршня между поршнем и гильзой цилиндра могут быть установлены тензодатчики.

Использование в стенде обтюратора позволяет осуществлять моделирование циклического воздействия температуры на днище поршня и его охлаждения в процессе газообмена с частотой, соответствующей работе двигателя. Охлаждение в процессе газообмена моделируется при помощи системы кривошипно-камерной продувки, состоящей из компрессора, сообщающегося через патрубки с крышкой корпуса. Моделирование процессов, происходящих при воздействии температуры на днище поршня, позволяет повысить точность испытаний теплового состояния поршней двигателей внутреннего сгорания. Из уровня техники не установлено использование отличительных признаков изобретения, направленных на повышение точности испытаний теплового состояния поршней двухтактных двигателей внутреннего сгорания, что позволяет сделать вывод о соответствии заявленного технического решения критерию «изобретательский уровень».

Сущность изобретения поясняется чертежом, где показан заявляемый стенд в продольном разрезе.

Стенд содержит корпус 1 с установленной в нем гильзой 2 цилиндра, исследуемый поршень 3, нагреватель 4, обтюратор 5 в виде диска с равномерно расположенными по его окружности отверстиями, соединенный с электродвигателем 6 и расположенный перед днищем поршня, графитовое кольцо 7, расположенное между обтюратором и корпусом, систему охлаждения, состоящую из насоса 8, соединенного через патрубки 9 с рубашкой 10 охлаждения корпуса, а также систему кривошипно-камерной продувки, состоящую из компрессора 11, сообщающегося через патрубки 12 с крышкой 13 корпуса, и тепловизор 14, расположенный напротив поршня со стороны внутренней поверхности днища.

Стенд установлен на основании 15. Нагреватель 4 представляет собой газовую горелку, подключенную к газовому баллону 16 через расходомер 17 газа и вентиль 18. Электродвигатель 6 соединен через переходную муфту 19 с валом 20, установленным в подшипник 21, на котором закреплен обтюратор. Позицией 22 обозначены поршневые кольца, позицией 23 - уплотнительная крышка, обеспечивающая герметичность системы охлаждения поршня.

Работа стенда осуществляется следующим образом.

Исследуемый поршень 3 установлен в гильзе 2 цилиндра вместе с поршневыми кольцами 22 на стенде, который закреплен на основании 15.

Нагрев поршня осуществляют при помощи нагревателя 4, который представляет собой газовую горелку, подключенную к газовому баллону 16 через расходомер 17 газа и вентиль 18. Распределение тепловой нагрузки на днище поршня фиксируют с помощью тепловизора 14, который позволяет проводить измерения температуры любых поверхностей в диапазоне от -200 до +1200°С, с разрешающей способностью до 0,1°С и скоростью записи 15…25 кадров/с.

Обтюратор 5 представляет собой диск с отверстиями, расположенными равномерно по его окружности, и служит для пропуска поочередно пламени от нагревателя 4 и охлаждающего воздуха от компрессора 11. Диск обтюратора вращается с заданной частотой, в результате чего происходит циклическое воздействие температуры от нагревателя 4 на поршень 3. Привод обтюратора осуществляется с помощью электродвигателя 6, который соединен через переходную муфту 19 с установленным в подшипник 21 валом 20, на котором закреплен обтюратор. Использование в стенде обтюратора позволяет осуществлять моделирование циклического воздействия температуры на днище поршня и охлаждение его в процессе газообмена с частотой, соответствующей работе двигателя. Графитовое кольцо 7 предназначено для обеспечения минимального зазора между обтюратором 5 и уплотнительной крышкой 23.

Водяное охлаждение поршня обеспечивается за счет насоса 8, соединенного через патрубки 9 с рубашкой 10 охлаждения корпуса 1, воздушное охлаждение поршня обеспечивается с помощью компрессора 11 и патрубков 12, закрепленных в крышке 13 корпуса. Наличие системы кривошипно-камерной продувки позволяет имитировать кривошипно-камерную продувку реального процесса газообмена двухтактного двигателя.

Таким образом, моделирование циклического воздействия температуры на днище поршня и охлаждение его в процессе газообмена с частотой, соответствующей работе двигателя при имитации кривошипно-камерной продувки, позволяет повысить точность исследований теплового состояния поршней двухтактных двигателей внутреннего сгорания.

1. Стенд для исследования теплового состояния поршней двигателей внутреннего сгорания, включающий корпус с установленной в нем гильзой цилиндра, исследуемый поршень и нагреватель, отличающийся тем, что содержит обтюратор в виде диска с равномерно расположенными по его окружности отверстиями, соединенный с электродвигателем и находящийся перед днищем поршня, причем между обтюратором и корпусом расположено графитовое кольцо, систему охлаждения, состоящую из насоса, соединенного через патрубки с рубашкой охлаждения корпуса, систему кривошипно-камерной продувки, состоящую из компрессора, сообщающегося через патрубки с крышкой корпуса, а также расположенный напротив поршня со стороны внутренней поверхности днища тепловизор.

2. Стенд по п. 1, отличающийся тем, что вдоль боковой поверхности поршня между поршнем и гильзой цилиндра установлены тензодатчики.



 

Похожие патенты:

Способ оценки повреждения термического барьера, нанесенного на деталь, выполненную на металлической подложке, причем упомянутый термический барьер включает в себя подслой из алюминия и слой из керамического материала с колончатой структурой, причем упомянутый подслой расположен между упомянутой подложкой и упомянутым керамическим слоем.

Изобретение относится к испытательной технике и может быть использовано при комплексных исследованиях металлорежущих станков. Способ включает импульсное воздействие с заданными параметрами на испытательную поверхность исследуемого узла станка быстросменным элементом ударного устройства, на которое устанавливают дополнительный сменный элемент, выполненный в виде сплошного цилиндра с заданной массой, при этом подаваемое на исследуемый узел усилие измеряют с помощью пьезоэлектрического динамометра, подключенного к блоку обработки данных.

Изобретение относится к машиностроению и может быть использовано для изучения процесса работы поверхностей деталей машин. Согласно заявленному способу определения длительности этапов эксплуатации циклически нагруженных поверхностей деталей машин регистрируют изменения во времени параметра состояния контактирующих поверхностей деталей, нагруженных в соответствии с реальными условиями эксплуатации.

Способ включает закрепление на станине шпиндельной бабки со шпиндельным узлом, фиксирование сигналов от датчиков колебаний и направление их через усилительно-преобразующую аппаратуру в компьютер.

Изобретение относится к машиностроению, к испытаниям и стендам испытательным, в частности может быть использовано для испытания на износ пар трения вал-втулка, которые вращаются на определенный угол и воспринимают двухстороннюю радиальную нагрузку.

Изобретение предназначено для проведения диагностики упругой системы металлорежущих станков. Способ вибродиагностики упругой системы станка с применением генератора силового воздействия, входящего в систему «станок-приспособление-инструмент-деталь», заключающийся в том, что осуществляют на входе гармоническое, импульсное или случайное возбуждение в упругой системе станка и замеряют отклик системы на выходе, при этом для получения динамических характеристик возбуждают исследуемую конструкцию с помощью замеряемой динамической силы, отличающийся тем, что гармоническое и случайное возбуждение обеспечивают с помощью пьезокерамического контактного вибратора, а для создания импульсного силового воздействия применяют генератор, после чего сигналы подают на двухканальный спектроанализатор, в котором получают с помощью спектрального анализа сложных сигналов, основу которого составляет быстрое преобразование Фурье, частотные характеристики, а поступающие на входы анализатора аналоговые сигналы фильтруют, отбирают и преобразуют с помощью аналого-цифрового преобразователя в цифровую форму для получения серий цифровых данных - реализации, а по скорости выборки и продолжительности реализации определяют частотный диапазон и разрешающую способность при анализе исследуемых характеристик, а подаваемое на исследуемый объект усилие при точении резцом оправки измеряют с помощью пьезоэлектрического динамометра.

Изобретение относится к оборудованию для контрольных испытаний грузозахватных приспособлений на прочность без разборки последних. Стенд содержит вертикально расположенную пространственную раму, лебедку, силовой гидроцилиндр и насосную станцию.

Изобретение относится к устройству для контроля кольцевого уплотнителя, проходящего по поверхности барабана облопаченных дисков ротора. Устройство содержит каретку, имеющую по меньшей мере два направляющих колеса и несущую датчик, в рабочем положении обращенный к кромке проверяемого уплотнителя и расположенный на заданном расстоянии от нее.

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний. Устройство содержит подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой.

Изобретение относится к испытательной технике и может применяться, в частности, для испытания и исследования зубчатых передач и редукторов при их изготовлении или в процессе эксплуатации.

Изобретение относится к области испытательной техники, в частности к способам проведения однонаправленных испытаний на износ динамическим способом для определения механического ресурса шаровых шарниров передней подвески легкового автомобиля. Способ заключается в том, что через определенное количество циклов изменяется нагрузка на шатровый шарнир. Так же в определенные периоды происходит дополнительно включение и выключение бокового гидроцилиндра. Способ испытания осуществляется следующим образом: первые 50 тыс. циклов давление в гидросистеме 1,2 мПа; следующие 50 тыс. циклов дополнительно включается боковой гидроцилиндр. Далее шарнир снимают и проверяют его работоспособность и износ. Затем давление поднимают до 1,5 мПа и проводят еще 25 тыс. циклов, далее включают боковой гидроцилиндр еще на 25 тыс. циклов. Затем шарнир повторно снимают и проверяют. На третьем этапе испытаний давление поднимают до 1,8 мПа и проводят 25 тыс. циклов нагрузки. Далее подключают боковой гидроцилиндр на 25 тыс. циклов. Затем снимают и проверяют шарнир. После чего эксперимент повторяется с самого начала до достижения общей наработки в 1 млн циклов. Технический результат: упрощение испытаний шаровых шарниров передней подвески легкового автомобиля, максимальное приближение испытаний к реальным условиям эксплуатации и уменьшение времени испытаний. 3 ил.

Группа изобретений относится к измерительной технике, в частности к техническому диагностированию машин и их деталей, и может быть использована для измерения динамических характеристик машин. Для осуществления способа диагностирования на валу или нескольких валах машины жестко закрепляют датчики в одном и более сечениях, измеряющих осевые и изгибные нагрузки при колебаниях вала или валов. При этом сигналы синхронизируют между собой по фазе, измеренные и преобразованные динамические характеристики передают потребителю. Устройство состоит из датчиков, усилителей сигналов от датчиков осевых и изгибных нагрузок, передатчиков и накопителей сигнала от осевых и изгибных нагрузок, блока оценки временных интервалов от нескольких датчиков осевых и изгибных нагрузок, блока оценки временных интервалов от нескольких датчиков осевых и изгибных нагрузок. Датчики, включающие сенсоры, элементы питания, устройство для преобразования, передачи и хранения информации, жестко закрепляют на составном валу или различных валах машины. При этом к одному преобразователю или элементу питания или блоку хранения информации, блоку передачи информации подключают один и более сенсоров. Технический результат заключается в повышении точности и достоверности измерений нагрузок на валах. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике и испытаниям на усталостную прочность при кручении. Стенд содержит сервогидравлическое нагружающее устройство (СНУ), элемент коленчатого вала (1), один конец которого жестко крепится через фланец отбора мощности к вертикальной неподвижной стойке (7). Напрессованный с натягом на свободный конец вала каток (2) имеет возможность свободно кататься по опорной плите (5), которая жестко крепится к столу СНУ. Сопряженная с катком (2) поверхность опорной плиты (5) повторяет форму опорной поверхности катка (2). К катку (2) крепится рычаг (4), на который через сферический упор (6), присоединенный к СНУ, передается эксцентричная нагрузка от поршня СНУ, под действием которой жестко связанный с рычагом (4) каток (5) может совершать качательное движение вокруг оси, совпадающей с продольной осью коленчатого вала (1) и передавать крутящий момент элементу коленчатого вала (1). Технический результат заключается в обеспечении задания произвольного закона нагружения. 1 ил.

Изобретение относится к области машиностроения и может быть использовано при определении стойкости инструмента методом, основанным на корреляции между магнитными и физико-механическими свойствами. Для определения стойкости инструмента, работающего в составе пресса для холодной обработки металлов давлением при рабочей нагрузке в плоскости, перпендикулярной плоскости обработки, измеряют коэрцитивную силу на наиболее нагруженных участках инструмента в процессе его эксплуатации. Измерение производят в плоскости обработки в направлениях, параллельном и перпендикулярном плоскости рабочей нагрузки на инструмент. Полученные значения сопоставляют с критическими и производят оценку текущего ресурса инструмента. Для оценки используют наименьшее из рассчитанных по приведенным формулам значений текущего ресурса. В результате при определении стойкости инструмента обеспечивается учет влияния конструкции и материала инструмента, степени износа и рабочей нагрузки на технологической операции, что позволяет повысить точность определения. 2 ил., 2 табл., 1 пр.

Изобретение относится к машиностроению, в частности к устройствам для испытания на прочность лопаточных дисков турбомашин с вильчатым соединением. Устройство содержит тяги, предназначенные для связи с захватами испытательной машины и с элементом обода диска посредством заклепок, предназначенных для размещения в крепежных отверстиях элемента обода диска, четыре планки - верхнюю и нижнюю, расположенные горизонтально параллельно друг другу, правую и левую, расположенные вертикально параллельно друг другу и перпендикулярно верхней и нижней планкам, причем верхняя планка содержит пять отверстий, равномерно отстоящих друг от друга, нижняя, правая и левая планки содержат по три отверстия, равномерно отстоящих друг от друга, при этом отверстия, расположенные справа и слева от центрального отверстия верхней планки, а также центральные отверстия нижней, правой и левой планок предназначены для соединения и передачи усилий от соответствующих захватов двухосной испытательной машины. Технический результат заключается в создании эксплуатационных условий нагружения одновременно в трех верхних крепежных отверстиях элементах обода диска. 1 ил.

Изобретение относится к машиностроению, в частности к способам определения прочности лопаточных дисков турбомашин с вильчатым соединением. Способ заключается в создании эксплуатационных условий нагружения одновременно в трех верхних крепежных отверстиях элементах обода диска. При этом устанавливают устройство нагружения в захваты испытательной машины, формирующей нагрузку, закрепляют элемент обода диска в устройстве нагружения, прикладывают нагрузку от испытательной машины к крепежному отверстию элемента обода диска. Устройство нагружения устанавливают в захваты двухосной испытательной машины, нагрузку от испытательной машины через устройство нагружения прикладывают дополнительно еще к двум крепежным отверстиям элемента обода диска и распределяют нагрузку одновременно на три верхних крепежных отверстия элемента обода диска, в каждом из которых формируют заданное усилие S, равное по величине и направлению центробежной силе лопаток, при этом горизонтальное FГ и вертикальное FB растягивающие усилия, задаваемые двухосной испытательной машиной, определяют из уравнений. Технический результат заключается в возможности моделировать в процессе стендовых испытаний эксплуатационные условия нагружения и поврежденность в критических зонах дисков турбомашин. 1 ил.

Изобретение относится к приборостроению, в частности к способам испытания подшипниковых опор ротора, и может быть преимущественно использовано при определении предварительного осевого натяга подшипников качения ротора. Способ включает возбуждение собственных колебаний вала ротора и измерение параметров колебаний. Для каждого типа роторов, имеющих в опорах подшипники качения, выводятся экспериментальным путем зависимости относительной частоты пика от установки предварительного натяга. Для измерения и контроля силы предварительного натяга в конструкцию ротора предварительно вносят изменения: вдоль оси вала ротора между регулировочным винтом установки предварительного натяга и пружиной при минимуме вмешательства в конструкцию узла устанавливается датчик силы, а на корпус ротора в области передней опоры на одной оси с направлением приложенной силы удара крепится датчик виброускорения. Воздействуя силовым импульсом малой длительности (т.е. упругим ударом), получают отклик виброускорения, что позволяет вычислить относительную частоту пика и сопоставить ее с показаниями датчика силы. Проделав эксперимент для всего рабочего диапазона установки предварительного осевого натяга, получают зависимость относительной частоты пика от величины установки предварительного натяга. Технический результат заключается в повышении точности определения осевого натяга. 2 ил., 1 табл.

Изобретение относится к области турбомашиностроения, а именно к способам снижения вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, испытательных стендах, роторы которых оборудованы упругими опорами. Способ включает установку ротора на нелинейную и жесткую стендовые опоры с установленным на последней вибродатчиком, в качестве нелинейной стендовой опоры применяют упругую опору с плавно регулируемой жесткостью, с установленным на ней вибродатчиком и при достижении 100% нормируемых значений вибраций жесткой стендовой опоры и/или нелинейной стендовой опоры, замеряемых в процессе испытаний, плавно изменяют жесткость нелинейной стендовой опоры до снижения упомянутых значений ниже предела 90% нормируемых значений. Технический результат заключается в стабилизации уровня вибраций в процессе испытаний, повышении надежности испытательного стенда и упрощении его конструкции. 1 ил.

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит вал, установленный в радиальном подшипнике, закрепленном на станине стенда, установленный на валу испытуемый газодинамический подшипник, размещенный в корпусе, подвижном относительно станины, приводное устройство, соединенное с валом, нагрузочное устройство, связанное с указанным корпусом испытуемого газодинамического подшипника, и измерительную систему с датчиком частоты вращения вала и блоком обработки данных. Дополнительно он снабжен устройством подачи горячего воздуха для подогрева газодинамического подшипника до рабочих температур, корпус газодинамического подшипника выполнен с двумя полостями, размещенными по разные стороны газодинамического подшипника, причем полости пневматически связаны между собой посредством последнего и снабжены уплотнениями, размещенными по сторонам, противоположным газодинамическому подшипнику, первая полость выполнена с возможностью приема горячего воздуха и связана с выходом устройства подачи горячего воздуха, а вторая - с возможностью выпуска воздуха и связана с атмосферой, приводное устройство выполнено в виде высокоскоростного электродвигателя, а нагрузочное устройство - в виде тяги, прикрепленной к корпусу испытуемого газодинамического подшипника и соединенной с тягой тарелки с тарированными грузами, измерительная система снабжена датчиками вертикальных и горизонтальных перемещений корпуса газодинамического подшипника, датчиком его вибраций, датчиком температуры газодинамического подшипника, датчиками температуры воздуха, размещенными в первой и второй полостях, и устройством измерения момента трения в газодинамическом подшипнике в виде горизонтально расположенного рычага, закрепленного на корпусе газодинамического подшипника, и датчика силы, закрепленного на станине стенда и контактирующего со свободным концом рычага, при этом выходы датчиков связаны с соответствующими входами блока обработки данных. Технический результат заключается в повышении точности результатов испытаний. 4 з.п. ф-лы, 3 ил.

Изобретение относится к испытательной технике, в частности к оборудованию для испытания рабочих органов дорожно-строительных машин. Стенд для испытания рабочих органов дорожно-строительных машин содержит опорную раму со стойками, установленную на опорной раме несущую плиту с упорами для фиксации исследуемого образца грунта, взаимодействующего с испытываемым рабочим органом. Стенд также содержит механизм поперечного перемещения несущей плиты в горизонтальной плоскости и механизм продольного перемещения рабочего органа в горизонтальной плоскости, привод которого снабжен тяговой цепью, на которой закреплен захват с возможностью перемещения рабочего органа вдоль стенда на направляющих, закрепленных в стойках опорной рамы параллельно несущей плите. Дополнительно содержит винтовой механизм перемещения рабочего органа в вертикальной плоскости, выполненный в виде ползуна, содержащего корпус, в котором с помощью резьбового соединения установлен винт с возможностью вертикального перемещения и взаимодействия с расположенным в корпусе четырехгранником, жестко соединенным с тензометрической головкой, на которой с помощью жестко соединенного с ней кронштейна, пальца и подшипников качения установлен с возможностью вращения на пальце рабочий орган. Технический результат заключается в повышении эффективности стенда. 2 ил.
Наверх