Термоскважина для извлечения и/или сброса в грунт тепловой энергии

Изобретение относится к области строительства и может быть использовано для энергетически и экологически эффективного теплохладоснабжения зданий и сооружений различного назначения. Термоскважина для извлечения или сброса в грунт тепловой энергии работает следующим образом. Теплоноситель 2 циркулирует по замкнутому гидравлическому контуру 5, образованному герметичной полостью 3 термоскважины 1 и полостью внутренней трубы 4. Внутренняя труба 4 дополнительно теплоизолирована пористым материалом 6 с замкнутыми порами, в связи с чем наиболее холодный теплоноситель 2 поступает без потерь температурного потенциала в наиболее теплую точку (подошва термоскважины), что обеспечивает максимальный температурный напор между грунтом и теплоносителем термоскважины. При этом за счет сжатия воздуха в замкнутых порах пористого материала 6 компенсируется температурное расширение/сжатие теплоносителя 2 термоскважины 1. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области строительства и может быть использовано для энергетически и экологически эффективного теплохладоснабжения зданий и сооружений различного назначения.

Известна термоскважина для извлечения из грунта тепловой энергии, входящая в состав теплонасосной системы теплоснабжения, обеспечивающей горячей водой экспериментальный энергоэффективный жилой дом (Статья «Энергоэффективный жилой дом в Москве» журнал «Вентиляция, отопление, кондиционирование воздуха, теплоснабжение и строительная теплофизика» АВОК №4, 1999 г.).

Наиболее близким к предлагаемому изобретению техническим решением-прототипом является термоскважина для извлечения и/или сброса в грунт тепловой энергии, описанная в Патенте РФ Васильева Г.П. на изобретение Ru №2364795 С2 «Теплонасосная система теплоснабжения многоэтажных зданий». Теплонасосная система теплоснабжения, реализующая этот способ, включает систему сбора низкопотенциального тепла грунта и систему утилизации вторичного тепла вентиляционных выбросов и/или систему утилизации сбросного тепла канализационных стоков. В этой теплонасосной системе теплоснабжения термоскважины могут эксплуатироваться как в режиме извлечения тепловой энергии из грунта (режим теплоснабжения), так и в режиме сброса тепловой энергии в грунт (режим холодоснабжения). В связи с этим, диапазон изменения температуры теплоносителя термоскважины в годовом цикле значительно увеличивается.

Недостатком термоскважины-прототипа является низкая эффективность термоскважины, вызванная снижением температурного напора между грунтом и теплоносителем термоскважины, обусловленная теплообменом между полостями термоскважины через стенку внутренней трубы. Еще одним недостатком термоскважины-прототипа является значительный объем теплоносителя, необходимого для эксплуатации термоскважины, а также необходимость включения в гидравлический контур термоскважины расширительных емкостей, компенсирующих температурное расширение теплоносителя.

Предлагаемое изобретение решает техническую задачу повышения энергетической и экономической эффективности термоскважин. Решение этих задач достигается за счет того, что в термоскважине для извлечения или сброса в грунт тепловой энергии, состоящей из герметизированной скважины, в герметичную полость которой встроена внутренняя труба, образующая с полостью термоскважины единый гидравлический контур, внутренняя труба дополнительно теплоизолирована пористым материалом с замкнутыми порами.

При этом толщина теплоизоляции внутренней трубы может выбираться, в том числе и из условия компенсации температурного изменения объема теплоносителя термоскважины в процессе эксплуатации.

Предлагаемая термоскважина для извлечения или сброса в грунт тепловой энергии позволяет в значительной мере повысить энергетическую эффективность термоскважины за счет уменьшения теплообмена через стенку внутренней трубы между внешней и внутренней полостями термоскважины, а также повысить ее экономическую эффективность за счет исключения или существенного сокращения капиталовложений в расширительные емкости, компенсирующие температурное расширение/сжатие теплоносителя термоскважины.

Сущность предлагаемой термоскважины для извлечения или сброса в грунт тепловой энергии поясняется схемой, представленной на Фиг.1.

Термоскважина для извлечения или сброса в грунт тепловой энергии включает герметизированную скважину 1 с циркулирующим по ней теплоносителем 2, в герметичную полость 3 которой встроена внутренняя труба 4, образующая с полостью термоскважины единый гидравлический контур 5, при этом внутренняя труба 4 дополнительно теплоизолирована пористым материалом 6 с замкнутыми порами.

Термоскважина для извлечения или сброса в грунт тепловой энергии работает следующим образом.

Теплоноситель 2 циркулирует по замкнутому гидравлическому контуру 5, образованному герметичной полостью 3 термоскважины 1 и полостью внутренней трубы 4. Внутренняя труба 4 дополнительно теплоизолирована пористым материалом 6 с замкнутыми порами, в связи с чем наиболее холодный теплоноситель 2 поступает без потерь температурного потенциала в наиболее теплую точку (подошва термоскважины), что обеспечивает максимальный температурный напор между грунтом и теплоносителем термоскважины. При этом за счет сжатия или расширения воздуха или газа в замкнутых порах пористого материала 6 и изменения его объема компенсируется температурное расширение/сжатие теплоносителя 2 термоскважины 1.

Предлагаемая термоскважина для извлечения или сброса в грунт тепловой энергии позволяет в значительной мере повысить энергетическую и экологическую эффективность термоскважины за счет дополнительной теплоизоляции внутренней трубы пористым материалом с замкнутыми порами.

1. Термоскважина для извлечения или сброса в грунт тепловой энергии, состоящая из герметизированной скважины с циркулирующим теплоносителем, в герметичную полость которой встроена внутренняя труба, образующая с полостью термоскважины единый гидравлический контур, отличающаяся тем, что внутренняя труба дополнительно теплоизолирована пористым материалом с замкнутыми порами.

2. Термоскважина для извлечения или сброса в грунт тепловой энергии по п.1, отличающаяся тем, что толщина теплоизоляции внутренней трубы выбирается в том числе и из условия компенсации температурного изменения объема теплоносителя термоскважины в процессе эксплуатации.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики, в частности к системам управления отоплением. Техническим результатом является поддержание допустимой температуры внутри помещений, в которых находятся люди в часы работы дежурного отопления.

Изобретение относится к энергетике и может быть использовано в системах отопления нежилых помещений вблизи газовых котельных. .

Изобретение относится к клапанному устройству и предназначено для подключения к теплофикационной сети теплообменника водозаборного устройства. .

Изобретение относится к способу передачи тепловой энергии. .

Изобретение относится к области теплотехники и может быть использовано в автоматизации управления системами отопления. .

Изобретение относится к отопительным системам. .

Изобретение относится к системе теплоснабжения и подачи горячей воды, которая использует топливный элемент. .

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения зданий и сооружений. .
Изобретение относится к теплоэнергетике и предназначено для использования при эксплуатации систем отопления жилых зданий и повысить эффективность и ресурс систем теплоснабжения, снизить капитальные и эксплуатационные затраты.

Изобретение относится к теплоэнергетике и предназначено для использования в системах централизованного и автономного теплоснабжения жилых и производственных помещений.

Изобретение относится к области отопления и вентиляции помещений газовыми конвекторами. Технический результат - экономия энергии путем одновременного нагрева и вентиляции помещения без затрат дополнительной тепловой энергии. Устройство для обогрева и вентиляции помещения включает газовый конвектор с коаксиальными трубами для удаления дымовых газов и подачи наружного воздуха внутрь помещения и вентилятор. Вентилятор обеспечивает забор воздуха для горения из помещения в камеру сгорания. Торцы трубы для подачи наружного воздуха герметично соединены с наружной поверхностью трубы для удаления дымовых газов. К верхней части трубы для подачи наружного воздуха присоединен патрубок с вентилятором для нагнетания наружного воздуха в межтрубное пространство с обеспечением нагрева наружного воздуха от трубы для удаления дымовых газов и вывода нагретого чистого наружного воздуха в помещение через другой патрубок, расположенный в нижней части трубы для подачи наружного воздуха. 1 ил.

Изобретение относится к устройствам альтернативного энергоснабжения с использованием комбинированных средств получения тепла, холода и электричества при помощи ветровой и солнечной энергии, которые предназначены преимущественно для автономного кондиционирования и горячего водоснабжения жилых и промышленных зданий. Комплекс автономного электротеплоснабжения здания установлен на крыше здания внутри прозрачного купола, в верхней зоне купола укреплен бак-накопитель теплоносителя, внутри которого размещен контейнер с теплоаккумулирующим материалом, а внутри контейнера размещен теплогенератор, кинематически связанный с валом ветропривода, бак-накопитель установлен на опорной вертикальной трубе квадратного сечения, сообщающейся с теплоносителем, теплоизолированной по двум внешним граням, замкнутый контур образуют бак, радиаторы нагрева-охлаждения, труба квадратного сечения и эрлифт, включающий воздушный насос с возможностью подачи воздуха из трубы, сообщающейся с воздушным слоем над теплоносителем в баке, в полость трубы квадратного сечения посредством микропористого распылителя, отражатель солнечных лучей выполнен в виде параболического конуса с вертикальной осью оптического фокуса, с которым совмещена вертикальная труба, на двух гранях вертикальной трубы размещены элементы Пельтье, дополнительно снабженные поглотителями солнечного излучения в виде оребренных металлических пластин, элементы Пельтье электрически соединены последовательно и подключены через разделительные диоды параллельно электрогенератору и обмотке подмагничивания ферромагнитного ротора к суммирующему диоду питания воздушного насоса и стабилизатору заряда буферного аккумулятора, подключенного через инвертор к электросети, которая соединена с переключателем режимов элементов Пельтье через регулируемый выпрямитель тока и выключателем электронагревателя теплоносителя в баке-накопителе. Изобретение должно повысить степень использования возобновляемых источников энергии. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области теплотехники и может быть востребовано для теплоснабжения децентрализованных объектов малой мощности с использованием энергии Солнца. Получение тепла, достаточного для использования в системах отопления с повышением термодинамической эффективности системы и обеспечением потребителя тепловой энергией на основе возобновляемых источников энергии, происходит за счет того, что отопительное устройство для зданий с вентилируемым фасадом включает вентилируемый фасад 1 с верхним 2 и нижним 3 вентиляционными отверстиями, установленный на стене 7 под кровей 6 здания тепловой насос 4, теплообменник 5 которого помещен в верхнее вентиляционное отверстие, и систему отопления, состоящую из контура отопления 8 и отопительного прибора 9. Использование предлагаемого изобретения в сравнении с существующими устройствами аналогичного назначения позволит повысить температуру теплоносителя, поступающего потребителю, и устранить шум и вибрации, возникающие при работе устройства теплоснабжения. 1 ил.

Изобретение относится к теплотехнике и может быть использовано для автономного теплоснабжения - отопления и горячего водоснабжения жилых, промышленных и сельскохозяйственных помещений от внешнего источника тепла низкого потенциала с использованием тепловых насосов. Задачей изобретения является повышение экономичности теплоснабжения. Способ теплоснабжения включает отбор от воздуха и передачу в систему теплоснабжения тепла низкого потенциала с помощью теплового насоса и подогрев воздуха за счет разбрызгивания в нем воды с образованием и последующим улавливанием и удалением частиц льда и снега. Установка теплоснабжения включает тепловой насос с системой подачи воздуха, в которой имеется испаритель, вентилятор, разбрызгиватели воды и устройства улавливания и удаления льда и снега, причем выхлопной патрубок системы подачи воздуха предлагается выполнить с регулирующим шибером и подключить его байпасом к входу в систему подачи воздуха. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области теплотехники и может быть использовано для экономичного, экологически эффективного, автономного отопления и вентиляции зданий и сооружений, в том числе с применением тепловых насосов в резко континентальных и суровых климатических условиях, включая зону вечной мерзлоты. Система теплоснабжения здания выполняется с вентилируемым фасадом с внешним теплоизолирующим слоем, имеет внутренние приборы обогрева в здании и камеру подогрева воздуха с вентиляторами, разбрызгивателями воды и устройствами улавливания и удаления льда и снега. Камера подогрева воздуха включена с помощью раздающих и сборных коллекторов в контуры циркуляции подогретого воздуха через вентилируемый фасад здания и испарители тепловых насосов, используемых в качестве по меньшей мере части приборов обогрева. Для электроснабжения предлагается использовать солнечные батареи, совместно с аккумуляторами электроэнергии это обеспечит полностью автономное, экологически безвредное теплоснабжение. 10 з.п. ф-лы, 3 ил.

Изобретение относится к системам контроля эффективности работы систем отопления, вентиляции и кондиционирования жилых, общественных и административных зданий и может быть использовано при проектировании, реконструкции и оптимизации режимов работы указанных систем, а также при разработке и внедрении энергосберегающих мероприятий. В способе оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий, заключающемся в измерении в помещении температуры воздуха, относительной влажности, подвижности воздуха, температуры окружающих поверхностей, предварительно определяют преимущественный тип и характеристики выполняемой работы, а также сопротивление теплопроводности преимущественного типа одежды людей, дополнительно измеряют температуру поверхности одежды человека, концентрацию диоксида углерода в воздухе обследуемого помещения и в наружном воздухе, вычисляют составляющие уравнения теплового баланса человека, определяют коэффициент комфортности теплового состояния человека k1, коэффициент радиационного охлаждения k2, коэффициент асимметрии радиационных потоков k3, коэффициент качества воздушной среды k4. Вычисляют уровень комфортности микроклимата по формуле: W=k1⋅k2⋅k3⋅k4, и оценивают уровень комфортности микроклимата по следующей шкале: <-0,5 - холодно, дискомфорт, -0,3÷-0,5 - прохладно, легкий дискомфорт, 0÷-0,3 - прохладно, но комфортно, 0 - комфорт, 0÷0,3 - тепло, но комфортно, 0,30÷0,5 - тепло, легкий дискомфорт. Технический результат - повышение точности определения уровня комфортности помещений жилых, общественных и административных зданий.

Изобретение относится к системам вентиляции воздуха в помещении парной русской бани и/или помещениях дома, где источником тепла является теплонакопительная кирпичная печь периодического действия. Технический результат - повышение надежности управления режимами вентиляции, упрощение режимов эксплуатации печи, повышение ее эффективности и экономичности. Вентиляционный модуль печи состоит из канала притока уличного воздуха и вытяжного канала, выполненных изолированными друг от друга или примыкающими к, по меньшей мере, одной стенке корпуса печи и задвижки-регулятора. Задвижка-регулятор содержит шток, снабженный двумя запирающими элементами, один из которых установлен в вытяжном канале, а другой - в канале притока уличного воздуха, и установлена с возможностью одновременного открытия или закрытия обоих каналов посредством «движения одной руки». 2 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к теплоснабжению, а именно к регулированию процесса отопления здания и к схемам узлов отопления тепловых пунктов, обеспечивающих данное регулирование. Способ регулирования отопления здания, характеризующийся подачей теплоносителя в систему отопления и его регулированием автоматизированным узлом управления путем открытия и закрытия регулирующего клапана(ов), и/или изменением напорной характеристики установленного насоса(ов) путем работы его регулятора(ов), и/или изменением количества работающих насосов в узле подготовки теплоносителя, отличающийся тем, что с помощью автоматизированного узла управления отоплением регулируют температуру подаваемого и/или обратного теплоносителя и/или его расход по уравнению регулирования отопления, выраженному формулой где τсо1(2)≡τо3(2) - определяемая датчиками температура теплоносителя, знак "±" в формуле следует использовать как «+» для подаваемого теплоносителя и «-» для обратного теплоносителя; Gco - расход теплоносителя, определяемый датчиком или иным способом; tн - поддерживаемая регулированием заданная средняя температура внутреннего воздуха в здании и текущая температура наружного воздуха, соответственно; а также задаваемые или определяемые при проектировании или при энергоаудите здания и его системы отопления или иным способом величины: θ', Δt', - параметры расчетного (проектного) режима работы системы отопления: охлаждение теплоносителя, температурный напор, теплоемкость и теоретическая отопительная тепловая нагрузка, соответственно; а также n, p, kco, fco - характеристики отопительных приборов и системы отопления: показатели степени нелинейности теплопередачи от температурного напора и расхода, коэффициенты относительной теплопередачи и относительной площади системы, соответственно; qo, Vн, a - характеристики здания: удельная отопительная характеристика, зависящая от его теплозащиты, объем здания, поправочный коэффициент, соответственно; и, кроме того, определяемые или вычисляемые на основе сигналов датчиков и/или ручного и/или программного задания или иным способом величины, характеризующие режим отопления: - текущая средняя теплоемкость теплоносителя; Qтв - мощность внутренних тепловыделений; μ, Qинс - параметры внешней среды: коэффициент инфильтрации и тепловая мощность солнечной инсоляции. Техническим результатом изобретения является уменьшение затрат тепловой и гидравлической (механической) энергии на отопление и повышение качества процесса отопления, т.е. точности поддержания постоянной температуры внутреннего воздуха. 2 н. и 6 з.п. ф-лы, 10 ил.

Изобретение относится к электроэнергетике и может быть использовано для разнесения топливных затрат между видами производимой энергии на теплоэлектроцентралях (ТЭЦ) и в энергообъединениях для оптимизации режимов их работы в целях экономии топлива и улучшения экологической обстановки в стране в целом. Предлагаемый способ позволяет увеличить экономию топлива за счет оптимизации режимов работы ТЭЦ как комбинированного источника по производству электрической и тепловой энергии, максимизировать прибыль производителя и минимизировать себестоимость производства электрической и тепловой энергии. Это достигается тем, что в известном способе распределения топливных затрат на ТЭЦ, при котором для заданного состава работающего оборудования (котлов и турбин) распределяют расход материального энергоресурса (расход топлива, пара) между производством электрической и тепловой энергий по критерию максимизации прибыли за счет регулирования отбора пара с турбин с помощью регулирующего клапана части высокого давления турбинного отделения, определяют энергетические характеристики станции на основе принципа равенства относительных приростов расхода топлива, а также строят на их основе характеристику предельных издержек станции по каждому сезону года и предельных доходов станции на основе кривых спроса по сезонам года, определяют объем оптимальной электрической мощности станции, при этом в начале осуществляют оптимальное распределение электрической энергии тепловых электростанций с учетом ограничений по вынужденному теплофикационному режиму по критерию максимизации прибыли, затем распределяют тепловую энергию между агрегатами станции по методу для оптимизации режимов работы станции по электрической энергии, а далее осуществляют разнесение топливных затрат (топлива, пара) между видами производимой энергии (электрической и тепловой) путем регулирования значений отборов пара с турбин с помощью регулирующего клапана части высокого давления турбинного отделения по критерию максимума прибыли и в результате находят оптимальный режим работы станций для комбинированного способа производства электрической и тепловой энергии, на заключительном этапе производят корректировку распределения нагрузки на станции на основе сравнения результатов наивыгоднейшего распределения электроэнергии между агрегатами станции по сезонам года и результатов управления функционированием станции как источника комбинированного производства и распределяют расход топлива между выработкой электрической и тепловой энергий на станции по разработанной модели оптимального распределения электроэнергии между ее агрегатами по критерию максимизации прибыли. 5 ил.
Наверх