Способ эксплуатации твердополимерного электролизера воды


C25B15/02 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2560883:

Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Изобретение относится к способу эксплуатации твердополимерного электролизера воды, включающему подачу в него постоянного напряжения питания и реакционной воды, нагрев твердополимерного электролизера и реакционной воды до рабочей температуры, соответствующей заданному значению тока электролиза с контролем текущих значений тока электролиза и температуры, фиксацию рабочей температуры твердополимерного электролизера воды, обеспечивающей заданное значение тока электролиза, и последующее разложение воды при данной температуре и токе электролиза на водород и кислород. Способ характеризуется тем, что фиксацию рабочей температуры твердополимерного электролизера воды осуществляют после того, как ток электролиза в процессе нагрева достигнет своего максимального значения и начнет падать, достигнув заданного значения. Использование настоящего изобретения позволяет обеспечить быстродействующую тепловую стабилизацию электролизной ячейки. 1 ил.

 

Изобретение относится к электрохимии и может использоваться при эксплуатации твердополимерных (ТП) электролизеров воды (ЭВ), а также электрохимических генераторов (ЭХГ), изготовленных на основе протонопроводящих мембран типа Нафион (отечественный вариант - МФ-4СК).

Известна общепринятая методика эксплуатации электрохимических установок с ЭВ или ЭХГ, когда эти агрегаты вместе с рабочим телом (реакционной водой или водородом и кислородом) сначала разогревают, а затем уже работают на стационарном режиме. В некоторых случаях для пускового разогрева электрохимического генератора используются тепловые аккумуляторы, а в регенеративной системе «ЭХГ+ЭВ» электролизер нагревают теплом, которое вырабатывает ЭХГ (заявка №2008123214, 10.01.2010, МПК: C25B 1/04 (2006.01)).

В качестве прототипа выбрано техническое решение, предложенное в «DEVELOPMENT OF A HIGH PRESSURE РЕМ ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY, R.A. Engel, G.S. Chapman, C.E. Chamberlin and P.A. Lehman, 15th Annual U.S. Hydrogen Conference, Los Angeles, CA, April 26-30, 2004» для твердополимерного электролизера воды. Здесь для запуска ТП ЭВ с мембраной Нафион используется процедура, включающая:

- включение электропитания ЭВ (постоянное напряжение);

- включение циркуляции воды через электролизер, ее нагрев до рабочей температуры (36-50°C) и соответствующего значения тока электролиза;

- контроль текущих значений тока электролиза и температуры;

- фиксацию рабочей температуры твердополимерного электролизера воды, обеспечивающей его заданную производительность, и соответствующее значение тока электролиза;

- генерирование газов - водорода и кислорода - на стационарном режиме при рабочей температуре и токе электролиза.

Недостатком прототипа является его тепловая инерционность - регулировать таким способом можно только достаточно медленные тепловые процессы. Импульсные колебания температуры в отдельных электролизных ячейках (ЭЯ), тем более перегрев отдельных зон на их мембранах, такое устройство парировать не в состоянии. Между тем, именно в этих случаях чаще всего происходит прогар ЭЯ, который приводит к возникновению взрывоопасной ситуации. Необходимо при этом отметить, что прогорание мембраны происходит на тех ее участках, которые не контактируют с жидкой водой, так как в газовых полостях вблизи поверхности мембраны теплоотвод на несколько порядков хуже, чем в воде.

Задачей предлагаемого изобретения является обеспечение быстродействующей тепловой стабилизации ЭЯ путем демпфирования возможных импульсных и локальных перегревов мембраны.

Техническим результатом изобретения является повышение надежности работы электролизных ячеек, снижение вероятности прогорания их протонопроводящих полимерных мембран и предотвращение взрывоопасной ситуации.

Технический результат достигается за счет того, что в способе эксплуатации твердополимерного электролизера воды, включающем подачу в него постоянного напряжения питания и реакционной воды, нагрев твердополимерного электролизера и реакционной воды до рабочей температуры, соответствующей заданному значению тока электролиза с контролем текущих значений тока электролиза и температуры, фиксацию рабочей температуры твердополимерного электролизера воды, обеспечивающей заданное значение тока электролиза, и последующее разложение воды при данной температуре и токе электролиза на водород и кислород, фиксацию рабочей температуры твердополимерного электролизера воды осуществляют после того, как ток электролиза в процессе нагрева достигнет своего максимального значения и начнет падать, достигнув заданного значения.

Сущность изобретения поясняется чертежом (фиг.1), на котором представлен общий вид температурной характеристики протонопроводящей мембраны Нафион.

Сущность изобретения заключается в том, что быстродействующая тепловая стабилизация электролизных ячеек обеспечивается за счет специфики температурной характеристики (ТХ) мембраны Нафион, то есть зависимости ее проводимости от температуры (Ю.А. Добровольский и др. «Протонообменные мембраны для водородно-воздушных топливных элементов», «Российский химический журнал», 2006 г., т.L, №6, с.97). Проводимость мембраны и, соответственно, тока электролиза растет пропорционально температуре, а достигнув своего максимума imax (точка С), резко падает. На участке нарастания ТХ произвольная рабочая точка А является неустойчивой (фиг.1). Действительно, любое случайное кратковременное изменение температуры в ту или иную сторону приводит к изменению тока в направлении, стимулирующем дальнейшее изменение температуры («больше-больше», «меньше-меньше»). В результате нагрев или остывание идет по нарастающей, и стабильность рабочего режима в точке А обеспечивает только система терморегулирования (СТР) электролизной установки.

При этом СТР, определяющая рабочую температуру (T1), из-за своей инерционности не может демпфировать кратковременные отклонения температуры, тем более образование локальных зон перегрева на поверхности мембран ЭЯ (причина прогорания мембраны).

Если же работать на убывающем участке ТХ в точке В при том же токе электролиза (i0), но более высокой температуре (Т2), то тепловое состояние мембраны и отдельных участков ее поверхности будет устойчивым. В этом случае отклонения температуры и тока будут компенсировать друг друга («больше-меньше», «меньше-больше»). Таким образом, наличие отрицательной обратной связи между этими рабочими характеристиками ЭЯ обеспечивает «тепловую автостабилизацию» ячейки. При этом малая толщина мембраны обеспечивает ее малую тепловую инерционность и, как следствие, синхронность флуктуации тока и температуры.

Реализуется способ следующим образом.

В твердополимерный электролизер воды подают постоянное напряжение питания от источника питания и реакционную воду. Так же, как и при известной методике запуска электролизной установки, твердополимерный электролизер воды и реакционная вода нагреваются с помощью СТР электролизной установки до температуры Т1, обеспечивающей заданную производительность ЭВ и ток электролиза i0. Тепловой режим ЭВ при этом не стабилизируют, а продолжают дальнейший нагрев твердополимерного электролизера и реакционной воды. Рост тока электролиза и температуры, происходящий за счет работы СТР и тепловыделения самого электролизера, продолжается. После достижения максимального значения imax (при температуре ≈80°C) ток электролиза начинает падать, несмотря на то что температура по-прежнему растет. Фиксацию рабочей температуры твердополимерного электролизера воды осуществляют с помощью СТР при прежнем значении тока электролиза i0, но при более высокой температуре Т221). В дальнейшем работа ЭВ происходит на стационарном режиме с заданной производительностью и током i0, но при температуре Т2. При этом, несмотря на более высокий уровень температуры, тепловой режим мембран ЭЯ является более устойчивым по отношению к кратковременным колебаниям температуры самой мембраны и локальных зон на ее поверхности.

Контроль текущих значений тока электролиза и температуры, фиксацию рабочей температуры, обеспечивающей заданную производительность и соответствующее значение тока электролиза, осуществляют с помощью СТР электролизера и системы управления контроля и параметров электролизной установки.

Таким образом, предложенное изобретение повышает надежность работы твердополимерного электролизера, снижая вероятность прогорания его мембран.

Способ эксплуатации твердополимерного электролизера воды, включающий подачу в него постоянного напряжения питания и реакционной воды, нагрев твердополимерного электролизера и реакционной воды до рабочей температуры, соответствующей заданному значению тока электролиза с контролем текущих значений тока электролиза и температуры, фиксацию рабочей температуры твердополимерного электролизера воды, обеспечивающей заданное значение тока электролиза, и последующее разложение воды при данной температуре и токе электролиза на водород и кислород, отличающийся тем, что фиксацию рабочей температуры твердополимерного электролизера воды осуществляют после того, как ток электролиза в процессе нагрева достигнет своего максимального значения и начнет падать, достигнув заданного значения.



 

Похожие патенты:
Изобретение относится к электрохимическому способу получения ацетиленидов меди. При этом ацетилениды общей формулы R-C≡C-Cu, где R-алкил (C6-C8), арил получают путем электролиза раствора, состоящего из алкина общей формулы R-C≡CH, где R-алкил (C6-C8), арил, безводной соли щелочноземельного металла общей формулы MX2, где M=Mg, Ca; X=Cl, Br, J и биполярного апротонного растворителя (N, N-диметилформамид, Н, N-диметилацетамид) в мольном отношении алкин : MX2 : растворитель - 1:3:15 на медных электродах и контролируемом потенциале Е=2,4 В.

Изобретение относится к электролизно-водному генератору для получения смеси водорода и кислорода электролизом воды при газопламенной обработке материалов, биполярный или монополярно-биполярный, содержащий корпус с электролитом, погруженный в электролит блок дистанцированных друг от друга электродов с отверстиями для прохода водородно-кислородной смеси и электролита и проводники для подвода тока к электродам.

Изобретение относится к способу производства углеводородов из диоксида углерода и воды, в котором обеспечивают первый реакционный сосуд, содержащий положительный электрод и жидкую электролитическую среду, включающую воду и ионизирующий материал; обеспечивают второй реакционный сосуд, содержащий отрицательный электрод и жидкую электролитическую среду, включающую смесь воды и диоксида углерода; соединяют первый и второй реакционные сосуды средством связи в виде жидкой электролитической среды; прилагают постоянный электрический ток к положительному электроду и отрицательному электроду, обеспечивая образование углеводородов на отрицательном электроде в реакционном сосуде и кислорода на положительном электроде в реакционном сосуде, причем реакционные сосуды работают при давлении более 5,1 атм и при разных температурах.

Изобретение относится к технологии получения серосодержащих органических соединений, в частности к синтезу метансульфокислоты. Метансульфокислота используется в качестве катализатора реакций нитрования, ацилирования, этерификации и полимеризации олефинов.

Изобретение относится к способу эксплуатации твердополимерного электролизера, включающему подачу в него постоянного напряжения питания и воды, нагрев твердополимерного электролизера и воды до температуры, обеспечивающей заданную производительность и соответствующее значение тока электролиза, контроль текущих значений температуры, давления, тока электролиза, производительности в процессе нагрева твердополимерного электролизера, фиксирование рабочего давления и рабочей температуры, последующую работу электролизера в стационарном режиме при фиксированной рабочей температуре с заданной производительностью и давлением.

Изобретение может быть использовано в производстве магнитных порошков, постоянных магнитов, магнитопластов, магнитных жидкостей, а также устройств магнитной записи высокой плотности.

Изобретение относится к области наноструктурированных биосовместимых материалов, в частности к пористому кремниевому наноносителю. Способ включает следующие этапы - получение пор под действием электролиза в пластине толщиной 700-730 мкм и площадью до 32 см2 монокристаллического кремния, являющейся анодом, p-типа проводимости, легированной бором с концентрацией около 10-19 см-3, с удельным сопротивлением 3-7·10-3 Ом·см, поверхности которой ориентированы параллельно кристаллографическим плоскостям в стеклоуглеродном стакане, являющемся катодом.

Изобретение относится к области металлургии, а именно к катодным материалам на основе нанокристаллических частиц Fe-Ni. Катод для электрохимического получения водорода выполнен в виде стальной подложки с нанесенным на ее поверхность нанокомпозитным покрытием железо-никель.

Изобретение относится к катодному материалу для твердооксидного топливного элемента (ТОТЭ) на основе никельсодержащих перовскитоподобных слоистых оксидов. При этом в качестве перовскитоподобного оксида взято соединение с общей формулой Pr2-xSrxNi1-yCoyO4-z, где 0.0<x<1.0; 0.0<y<1.0; -0.25≤z≤0.25.

Изобретение относится к способу получения водорода низкого давления для последующего сжигания и получения водяного пара с помощью низковольтного электролиза щелочного электролита раствора солей галогенводородных кислот и их смесей постоянным током, с помощью алюминиевых электродов, с дальнейшим извлечением кислорода в отдельный накопитель из образовавшихся алюминиевых комплексов, с поддержанием состава электролита и контролем температуры и давления в электрохимической ячейке.

Изобретение относится к батарее твердооксидных электролитических элементов (SOEC), изготовляемой способом, который включает следующие стадии: (a) формирование первого блока батареи элементов путем чередования по меньшей мере одной соединительной пластины и по меньшей мере одного узла элемента, причем каждый узел элемента содержит первый электрод, второй электрод и электролит, расположенный между этими электродами, а также обеспечение стеклянного уплотнителя между соединительной пластиной и каждым узлом элемента, причем стеклянный уплотнитель имеет следующий состав: от 50 до 70 мас.% SiO2, от 0 до 20 мас.% Аl2О3, от 10 до 50 мас.% СаО, от 0 до 10 мас.% МgО, от 0 до 2 мас.% (Na2O+K2O), от 0 до 10 мас.% В2O3 и от 0 до 5 мас.% функциональных элементов, выбранных из TiO2, ZrO2, F2, P2O5, МоО3, Fе2O3, MnO2, La-Sr-Mn-O перовскита (LSM) и их комбинаций; (b) превращение указанного первого блока батареи элементов во второй блок со стеклянным уплотнителем толщиной от 5 до 100 мкм путем нагревания указанного первого блока до температуры 500°C или выше и воздействия на батарею элементов давлением нагрузки от 2 до 20 кг/см2; (c) превращение указанного второго блока в конечный блок батареи твердооксидных электролитических элементов путем охлаждения второго блока батареи, полученного на стадии (b), до температуры ниже, чем на стадии (b), при этом стеклянный уплотнитель на стадии (a) представляет собой лист стекловолокон. Также изобретение относится к применению Е-стекла в качестве стеклянного уплотнителя в батареях твердооксидных электролитических элементов. Предлагаемые батареи демонстрируют малую степень ухудшения свойств в процессе эксплуатации. 2 н. и 7 з.п. ф-лы, 1 ил.

Изобретение относится к аноду для выделения хлора при электролизе из водного раствора. Анод имеет сформированный на проводящей подложке каталитический слой, содержащий аморфный оксид рутения и аморфный оксид тантала. Обеспечивается снижение напряжения электролиза и удельное потребление электроэнергии. 14 з.п. ф-лы, 2 ил., 4 табл., 6 пр.
Изобретение относится к способу изготовления электродно-диафрагменного блока для щелочного электролизера воды, включающему приготовление формующего раствора диафрагмы, нанесение формующего раствора на подложку, изготовление диафрагмы методом фазовой инверсии и формирование электродно-диафрагменного блока прижатием электродов с двух сторон диафрагмы. Способ характеризуется тем, что пористые электроды предварительно вдавливают в формующий раствор диафрагмы, нанесенный на сетчатую подложку, используя текучесть формующего раствора диафрагмы, и затем погружают полученный элемент в воду для проведения фазовой инверсии, приводящей к формированию пористого диафрагменного материала и фиксации электродов материалом диафрагмы и к формированию электродно-диафрагменного блока, в котором электроды и диафрагма представляют собой единый рабочий элемент. Использование настоящего изобретения позволяет упростить процесс сборки ячеек и батарей щелочного электролизера и снизить его энергопотребление. 1 з.п. ф-лы.

Изобретение относится к технологии получения йодата калия и найдет применение в химической, фармацевтической и пищевой промышленности при изготовлении йодсодержащих соединений. Способ получения йодата калия включает непрерывное электрохимическое окисление йодида калия до йодата калия с массовой концентрацией йодида калия 55-85 кг/м3 и йодата калия 70-170 кг/м3 в присутствии бихромата калия с массовой концентрацией до 2 кг/м3 на окислительном рутениево-титановом аноде при анодной плотности тока не более 2000 А/м2 в растворе при температуре 60-80°C, кристаллизацию йодата калия путем непрерывного отбора части электролита, его охлаждение до температуры окружающей среды и отделение кристаллов йодата калия от маточного раствора, отделенный от кристаллов маточный раствор укрепляется по йодиду калия и возвращается в электролизер.
Изобретение относится к технологии изготовления нетканых диафрагменных материалов на основе волокон полимера с внедренными по поверхности частицами гидрофильного наполнителя для электролизеров воды с щелочным электролитом. Способ изготовления диафрагменного материала для электролитического разложения воды с щелочным электролитом, при котором электроформование волокон полимера происходит одновременно с обработкой их поверхности раствором прекурсора гидрофильного наполнителя и последующим гидролизом прекурсора, сопровождающимся образованием частиц гидрофильного наполнителя, удерживаемых поверхностью волокон. Электроформование волокон производится в атмосфере герметичного бокса с остаточной влажностью 0.01 ppm и оптимальным содержанием паров растворителя, коррелирующим с составом раствора полимера. Изобретение позволяет создать нетканые диафрагменные материалы на основе полимерных волокон, характеризующиеся высокой удельной электропроводностью, оптимальной пористостью, высокой химической и механической устойчивостью в условиях щелочного электролиза, и обеспечивает высокую чистоту генерируемых газов. 1 з.п. ф-лы, 1 пр.Использование новых диафрагменных материалов позволяет повысить рабочую температуру электролиза (для систем, работающих под давлением вплоть до 140°C), снизить энергопотребление электролизера на 10-15% и значительно повысить ресурс работы. 1 н., 2 з.п. ф-лы.

Изобретение относится к способу получения дезинфицирующего средства из водного раствора NaCl с использованием диафрагменного электролизера. Способ характеризуется тем, что поток пресной воды в количестве 0,4%-0,8% от количества получаемого дезинфицирующего средства в пересчете на концентрацию 500 мг в литре соединений активного хлора направляют в катодную камеру, поток пресной воды в количестве 16%-20% от количества получаемого дезинфицирующего средства в пересчете на концентрацию 500 мг в литре соединений активного хлора направляют на смешение с NaCl и затем в анодную камеру, оставшийся поток пресной воды направляют внутрь трубчатого катода, поток пресной воды из внутренней полости катода направляют в продолжение анодной камеры в крышке-смесителе электролизера, поток из катодной камеры направляют на утилизацию, поток из анодной камеры в виде анолита направляют в продолжение анодной камеры этого же электролизера, концентрацию активного хлора в анолите понижают поступившей пресной водой до норм дезинфицирующего средства, и дезинфицирующее средство выводят из электролизера, водород из катодной камеры направляют на вытяжку. Также изобретение относится к электролизеру. Использование настоящего изобретения позволяет упростить способ получения дезинфицирующего средства и повысить производительность эффективной работы одного электролизера. 2 н. и 5 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к способу получения вторичного энергоносителя - водорода посредством преобразования энергии ветра. Способ получения вторичного энергоносителя - водорода посредством преобразования энергии ветра включает преобразование посредством парусного движителя кинетической энергии ветра в кинетическую энергию движения судна, движущегося в районах открытого океана с мощными воздушными потоками, и затем посредством гидравлической турбины и электрогенератора в электрическую энергию, которую используют для разложения воды на водород и кислород с ожижением и накоплением водорода в криогенных резервуарах. В качестве плавающего судна используют катамаран с парусным движителем, работающим по физическому принципу подъемной силы крыла. Гидротурбину и электрогенератор используют одновременно в качестве балласта, перемещая их по вертикали, обеспечивая и требуемую остойчивость катамарана при сильных порывах ветра. Изобретение направлено на повышение коэффициента использования энергии ветра и мощности парусного движителя. 2 ил.

Изобретение относится к карбонизатору напитка и к способу получения газированного напитка. Карбонизатор напитка содержит блок для генерации CO2, включающий в себя фотоэлектрохимический элемент, предназначенный для превращения сахарида в первой жидкости, содержащей сахарид, под влиянием света в CO2 и воздух, обогащенный CO2; регулятор давления, предназначенный для поддерживания повышенного давления воздуха, обогащенного CO2; и смесительную камеру для смешивания воздуха, обогащенного CO2, под давлением со второй жидкостью для получения газированного напитка. Технический результат - снижение энергозатрат, возможность получения газированного напитка без использования громоздких баллонов со сжиженным газом. 2 н. и 13 з.п. ф-лы, 5 ил.
Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в процессе электролиза воды с раздельным генерированием водорода и кислорода, отделение упомянутых газов от воды в газоотделителях с обеспечением в процессе генерирования равенства давлений упомянуты газов и заправку полученными газами баллонов системы, при этом генерирование газов и заправку ими баллонов производят поочередно, с пневматическим изолированием газоотделителей системы от ее баллонов при генерировании водорода и кислорода, а во время заправки баллонов - от электролизера, причем перед заправкой баллонов газоотделители изолируют друг от друга, а после окончания заправки их снова соединяют. Обеспечивается возможность генерирования водорода и кислорода с одинаковым давлением, без силовых нагрузок на мембраны ячеек и заполнения баллонов электролизной системы газами с различными давлениями без потери газов благодаря двухстадийному алгоритму работы электролизного накопителя газов, т.е. разделению по времени процессов генерирования газов и заполнения ими баллонов.

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и магистрали 8 с арматурой для ввода исходного сырья в реактор 1 и вывода из него водорода и продуктов реакции. В качестве твердого реагента выбран нанодисперсный углерод, размещенный на поверхности анода 3 в воде между анодом 3 и катодом 4. На магистрали вывода водорода из реактора 1 установлены приемник водорода, электромагнит 10 с блоком управления магнитной индукцией 11 и аккумулятор водорода 12 с углеродными нанотрубками. Кроме того, устройство содержит регулятор 6 подводимой к реактору 1 электрической мощности в зависимости от температуры нанодисперсного углерода 5 в прианодном пространстве и заданного программой темпа получения водорода. Изобретение позволяет радикально увеличить срок хранения атомарного водорода для последующего использования в технологических процессах. 1 ил.
Наверх