Микромеханический вибрационный гироскоп

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения угловой скорости движения основания, как вибрационные гироскопы. Микромеханический вибрационный гироскоп содержит основание, инерционный диск, имеющий одинаковую толщину и закрепленный на основании с помощью внутреннего упругого подвеса, систему электростатического возбуждения колебаний диска, состоящую из гребенчатых двигателей возбуждения и датчиков углового положения, систему управления выходными колебаниями, состоящую из электродов емкостного съема и электродов управления, расположенных на основании под инерционным диском и закрепленных на площадке, связанной с основанием с помощью упругого подвеса, что способствует синфазным перемещениям электродов и инерционного диска при действии постоянного ускорения или вибрации. Этим обеспечивается постоянство зазора в системе управления выходными колебаниями и неизменность масштабного коэффициента прибора. Техническим результатом является снижение чувствительности гироскопа к постоянным поступательным ускорениям и вибрации, что обеспечивает уменьшение помехи и повышение эксплуатационных характеристик гироскопа. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения угловой скорости движения основания, как вибрационные гироскопы.

Известны микромеханические вибрационные гироскопы (МВГ) [Soderkvist J. Micromachined gyroscopes. // Sensors and Actuators A, 43, 1994, pp. 65-71].

Принцип действия МВГ состоит в следующем. Инерционный диск, имеющий упругую связь с основанием, совершает первичные угловые колебания (угловые вибрации), создаваемые системой возбуждения, вокруг оси, перпендикулярной плоскости диска. Под воздействием угловой скорости основания вокруг оси чувствительности, направление которой лежит в плоскости диска, возникают силы Кориолиса, вызывающие вторичные (выходные) колебания инерционного диска вокруг ортогональной оси, лежащей в плоскости диска, измеряемые системой съема.

Основные проблемы при эксплуатации МВГ на подвижном основании заключаются в обеспечении устойчивости прибора к инерционным поступательным ускорениям высокой интенсивности как постоянной амплитуды, так и переменной амплитуды (вибрации). Наибольшее влияние на показания МВГ оказывает действие ускорения вдоль оси, перпендикулярной плоскости инерционного диска.

Известна конструкция МВГ [Бурцев В.А., Злотников К.А., Карелин А.П. и др. Особенности комплексирования объемной микромеханики и БИС в измерительных системах // Материалы X Санкт-Петербургской международной конференции по интегрированным системам, СПб: «ЦНИИ «Электроприбор», 2003, с. 217-225], чувствительный элемент которого содержит основание и инерционный диск, закрепленный на основании с помощью внутреннего упругого подвеса. Инерционный диск выполнен из кремниевой пластины одинаковой толщины. Внутренняя часть упругих элементов подвеса закреплена на основании, а наружная часть соединена с инерционным диском. Инерционный диск совершает первичные колебания вокруг оси, перпендикулярной плоскости диска. Колебания возбуждаются системой возбуждения первичных колебаний, состоящей из гребенчатых двигателей возбуждения и датчиков углового положения. Измерение выходных колебаний инерционного диска осуществляется системой управления выходными колебаниями, состоящей из электродов емкостного съема и электродов управления, расположенных на основании под инерционным диском.

К недостаткам конструкции относится то, что при действии ускорения вдоль оси первичных колебаний происходит деформация упругого подвеса и соответствующее изменение зазора между инерционным диском и электродами емкостного съема. Это, в свою очередь, приводит к изменению масштабного коэффициента МВГ и к искажению его показаний. Вследствие нелинейного изменения зазора между электродами в системе управления выходными колебаниями при вибрации с высокой частотой и амплитудой возникают субгармонические резонансные колебания инерционного диска, приводящие к отказу МВГ [Евстифеев М.И. и др. Результаты испытаний микромеханических гироскопов при механических воздействиях // Гироскопия и навигация, 2011, №1, с. 49-58].

Известны технические решения, позволяющие уменьшить влияние вибраций на показания микромеханических датчиков и, в частности, МВГ.

Вибростойкость достигается использованием специальной виброизолирующей платформы, на которой закреплен МВГ или другой микромеханический прибор [Clark Т. - С. Nguyen. The Harsh Environment Robust Micromechanical Technology (HERMiT) Program: Success and Some Unfinished Business // Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, June 2012, pp. 1-3], или внедрением антивибрационной прокладки в месте крепления амортизируемого прибора [патент США №8659101]. Однако для эффективной виброизоляции требуется создание низкочастотного подвеса платформы и подавление резонансов путем введения специального демпфирования, что существенно увеличивает общую массу и габариты устройства.

Известны решения для МВГ (см., например, патент РФ №2289789 и патент США №6765305), позволяющие измерять зазор между инерционным диском (подвижной массой) и электродами емкостного съема и использовать эту информацию для корректировки масштабного коэффициента МВГ. Предложено использование силовой обратной связи с помощью дополнительных электродов для поддержания постоянной величины зазора (заявка США №2009/0056443). Такие решения требуют реализации специализированной системы управления и дополнительных электродов, что усложняет функционирование прибора.

В качестве прототипа по наибольшему числу общих существенных признаков принят МВГ [патент РФ №2471149], чувствительный элемент которого содержит: основание; инерционную массу (инерционный диск); систему возбуждения первичных колебаний, состоящую из гребенчатых двигателей возбуждения и датчиков углового положения; систему управления выходными колебаниями, состоящую из пары электродов емкостного съема и пары электродов управления и расположенных под инерционным диском; устройство измерения перемещений инерционной массы; устройство с изменяемым коэффициентом передачи.

Недостатками конструкции-прототипа являются необходимость измерения перемещений инерционной массы (диска) с помощью специального устройства и формирование изменяемого коэффициента передачи с использованием аналоговых умножителей. Сложность таких измерений обуславливается требованиями их обеспечения в реальном времени в условиях высочастотной вибрации, что будет вызывать амплитудные и фазовые искажения формируемого коэффициента.

Задачей предлагаемого изобретения является снижение чувствительности прибора к внешним инерционным ускорениям.

Технический результат - повышение эксплуатационных характеристик МВГ.

Сущность изобретения заключается в том, что электроды системы управления выходными колебаниями (электроды съема и электроды управления) размещены на подвижной площадке, которая с помощью упругого подвеса закреплена на пластине. Пластина, в свою очередь, неподвижно соединена с основанием, таким образом, обеспечивая связь площадки с основанием посредством упругого подвеса. Собственные частоты поступательных колебаний инерционного диска и площадки с электродами в соответствующих упругих подвесах выбираются равными или, по крайней мере, близкими.

Вследствие воздействия ускорения в направлении, например, перпендикулярном плоскости инерционного диска, происходят равные деформации упругих подвесов инерционного диска и подвижной площадки, обеспечивая неизменность зазора между диском и электродами системы управления выходными колебаниями. При этом вследствие законов механики амплитуды вынужденных колебаний инерционного диска и подвижной площадки с электродами под действием постоянного или вибрационного ускорений равны или близки (в зависимости от соотношения собственных частот подвесов), а фазовые искажения исключены, так как колебания являются синфазными.

Неизменность зазора и отсутствие относительных перемещений диска и электродов системы управления выходными колебаниями обеспечивают постоянство масштабного коэффициента прибора и создают нечувствительность МВГ к поступательным колебаниям основания.

Упругие элементы подвеса подвижной площадки расположены в плоскости площадки с ее внешней стороны, симметрично относительно оси, перпендикулярной плоскости инерционного диска. Поступательная жесткость упругого подвеса подвижной площадки равна (или близка) поступательной жесткости упругого подвеса инерционного диска. В то же время внешнее расположение упругих элементов подвеса площадки позволяет создать подвес с угловой жесткостью, значительно превосходящей угловую жесткость подвеса инерционного диска, упругие элементы которого расположены внутри центрального отверстия инерционного диска. Это существенно повышает собственные частоты угловых колебаний подвеса площадки с электродами по отношению к собственным частотам угловых колебаний подвеса инерционного диска, что создает минимальные искажения показаний МВГ при измерении угловой скорости основания.

Предлагаемая конструкция МВГ сокращает габариты прибора, уменьшает зависимость масштабного коэффициента от изменений положения инерционного диска при деформации его упругого подвеса, позволяет эффективно уменьшить чувствительность прибора к воздействию инерционных перегрузок и достичь снижения влияния вибраций и постоянных ускорений основания на погрешность МВГ.

Изобретение поясняется чертежами, где на фиг. 1 изображена общая компоновка конструкции, на фиг. 2 показано сечение конструкции, на фиг. 3 - разнесенный вид.

На фиг. 1, 2, 3 обозначены:

1 - ось первичных колебаний;

2 - ось чувствительности;

3 - ось вторичных (выходных) колебаний;

4 - основание, которое используется как опорная поверхность для крепления инерционного диска 5, гребенчатых двигателей возбуждения первичных колебаний 7, датчиков углового положения 8 и пластины 9 с подвижной площадкой 10;

5 - инерционный диск, который крепится к основанию 4 с помощью упругого подвеса 6;

6 - внутренний упругий подвес, связывающий основание 4 и инерционный диск 5;

7 - гребенчатые двигатели возбуждения первичных колебаний диска 5, закрепленные на выступах 16 основания 4;

8 - датчики углового положения диска 5 при первичных колебаниях, закрепленные на выступах 16 основания 4;

9 - пластина с подвижной площадкой 10, закрепленная на основании 4;

10 - подвижная площадка, связанная с пластиной 9 посредством упругого подвеса 11, на которой расположены электроды емкостного съема выходных колебаний 12 и электроды управления 13;

11 - упругий подвес, связывающий подвижную площадку 10 и пластину 9;

12 - электроды емкостного съема выходных колебаний на площадке 10;

13 - электроды управления выходными колебаниями на площадке 10;

14 - контакты на пластине 9;

15 - контакты на основании 4;

16 - выступы на основании 4 для крепления гребенчатых двигателей возбуждения первичных колебаний 7 и датчиков углового положения 8;

17 - зазор между инерционным диском 5 и подвижной площадкой 10;

18 - зазор между подвижной площадкой 10 и основанием 4.

Функционирует МВГ представленной конструкции следующим образом.

Инерционный диск 5 с внутренним упругим подвесом 6 закреплен на основании 4. На гребенчатые двигатели возбуждения 7, закрепленные на выступах 16 основания 4, подается переменное электрическое напряжение с частотой, равной собственной частоте первичных колебаний, что обеспечивает колебания инерционного диска 5 вокруг оси 1. Датчики углового положения 8, также закрепленные на выступах основания 4, служат для определения амплитуды колебаний, и совместно с двигателями возбуждения 7 представляют собой систему возбуждения первичных колебаний инерционного диска 5. При наличии угловой скорости основания, действующей по оси чувствительности 2, возникают кориолисовы силы, заставляющие инерционный диск 5 колебаться относительно оси выходных колебаний 3. Амплитуда выходных колебаний, величина которой является мерой измеряемой угловой скорости, определяется системой управления выходными колебаниями, состоящей из электродов емкостного съема 12 и электродов управления 13. Электроды 12 и 13 размещены на подвижной площадке 10, параллельной плоскости инерционного диска и закрепленной с помощью упругого подвеса 11 на пластине 9. Пластина 9, в свою очередь, неподвижно соединена с основанием 4. Электрические связи двигателей 7 и датчиков 8 выводятся на контакты 15, связи электродов 12 и 13 - на контакты 14.

При действии поступательного постоянного ускорения вдоль оси 1 упругие подвесы инерционного диска 5 и подвижной площадки 10 деформируются в направлении этой оси, при этом зазор 17 остается неизменным. Наличие зазора 18 обеспечивает свободу перемещения площадки 10 в направлении оси 1.

Неизменность зазора 17 приводит к постоянству масштабного коэффициента прибора, что, в свою очередь, создает нечувствительность МВГ рассматриваемой конструкции к поступательным постоянным ускорениям.

Действительно, относительное изменение масштабного коэффициента при действии ускорения для МВГ с неподвижным расположением электродов съема в основном связано с перемещением диска вдоль оси 1 и определяется выражением [Евстифеев М.И. и др. Результаты испытаний микромеханических гироскопов при механических воздействиях // Гироскопия и навигация, 2011, №1, с. 49-581]:

где ω1 - частота собственных колебаний инерционного диска 5 на упругом подвесе по оси 1; d - номинальная величина зазора 17, W - ускорение вдоль оси 1.

Учитывая, что изменение зазора при ускорении равно прогибу упругого подвеса инерционного диска относительное изменение масштабного коэффициента будет δМ/M0≈2Δd1/d.

В случае, когда система управления выходными колебаниями закреплена на площадке в упругом подвесе, изменение зазора составит

где ω2 - частота собственных колебаний площадки 10 на упругом подвесе по оси 1; Δd2 - прогиб упругого подвеса площадки.

Принимая, что δω=(ω21)/ω1 представляет собой относительное несовпадение частот обоих подвесов, из выражения (2) получим

Даже при относительном несовпадении частот обоих подвесов на уровне δω=10% согласно выражению (3) изменение зазора в предлагаемой конструкции Δd уменьшится примерно в шесть раз по сравнению с Δd1. Максимальное подавление воздействия ускорений достигается при совпадении собственных частот поступательных колебаний инерционного диска 5 и подвижной площадки 10 на соответствующих упругих подвесах, при этом Δd=0 и масштабный коэффициент не зависит от ускорений.

Аналогичная ситуация получается при действии вибрационных ускорений. При наличии вибрации как инерционный диск 5, так и подвижная площадка 10 совершают вынужденные синфазные колебания в направлении действия вибрации. При равенстве частот собственных колебаний инерционного диска 5 и подвижной площадки 10 амплитуды вынужденных колебаний под воздействием вибрации равны и зазор 17 между диском 5 и электродами 12 и 13 остается постоянным. При этом относительные колебания между диском 5 и электродами 12 и 13 отсутствуют и, соответственно, уменьшаются помехи прибора от инерционных воздействий. Вследствие постоянства зазора 17 масштабный коэффициент также остается постоянным, что повышает эксплуатационные характеристики МВГ.

Технико-экономические преимущества изобретения по сравнению с базовым объектом, характеризующим существующий уровень техники и совпадающим в данном случае с прототипом, заключаются в уменьшении помех от инерционных воздействий и повышении эксплуатационных характеристик МВГ.

Данное изобретение реализовано в опытном образце с получением заявленного технического результата.

1. Микромеханический вибрационный гироскоп, содержащий основание, инерционный диск, имеющий одинаковую толщину и закрепленный на основании с помощью внутреннего упругого подвеса, систему возбуждения первичных колебаний диска, состоящую из гребенчатых двигателей возбуждения и датчиков углового положения, систему управления выходными колебаниями, состоящую из электродов емкостного съема и электродов управления, расположенных на основании под инерционным диском, отличающийся тем, что электроды системы управления выходными колебаниями размещены на подвижной площадке, связанной с основанием с помощью упругого подвеса.

2. Микромеханический вибрационный гироскоп по п. 1, отличающийся тем, что собственные частоты поступательных колебаний инерционного диска и подвижной площадки, на которой расположены электроды системы управления выходными колебаниями, на соответствующих упругих подвесах равны.



 

Похожие патенты:

Изобретение относится к балансировке металлических резонаторов твердотельных волновых гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов различного назначения.

Изобретение относится к измерительной технике. Чувствительный элемент микросистемного гироскопа содержит корпусную кремниевую пластину, симметрично расположенные внутри друг друга и разделенные равномерными зазорами внешнюю и внутреннюю подвижные рамки, при этом внешняя рамка соединена с корпусной кремниевой пластиной и с внутренней рамкой посредством упругих торсионов, продольные оси каждой пары торсионов взаимно перпендикулярны, между корпусной кремниевой пластиной и подвижными рамками образован посредством сквозного анизотропного травления зазор, на одну сторону корпусной кремниевой пластины жестко присоединена изоляционная обкладка с нанесенными на нее неподвижными проводящими электродами электростатического силового преобразователя, задающего принудительные колебания внутренней рамки, при этом на обе стороны корпусной кремниевой пластины присоединены изоляционные обкладки, на которые нанесены электроды электростатического силового преобразователя, задающего принудительные колебания внутренней рамки, электроды емкостного преобразователя перемещений и электроды силового электростатического преобразователя обратной связи, внешняя подвижная рамка является подвижным проводящим электродом электростатического силового преобразователя обратной связи, компенсирующего момент от действия кориолисовой силы, и подвижным проводящим электродом емкостного преобразователя перемещений.

Настоящее изобретение раскрывает устройство и способ изготовления гиродатчика (2), содержащего: чувствительный элемент (4), предназначенный для вибрирования; держатель (8) электродов, на котором могут быть размещены электроды (20) для возбуждения чувствительного элемента (4) и электроды (20) для обнаружения вибрации чувствительного элемента (4); и опорные стержни (16), предназначенные для поддержки держателя (8) электродов; отличающегося тем, что опорные стержни (16) имеют по меньшей мере один выступающий конец (17).

Кориолисов гироскоп (1) включает в себя систему масс, в которой могут возбуждаться колебания параллельно первой оси, при этом может регистрироваться отклонение системы масс вследствие кориолисовой силы вдоль второй оси, которая проходит перпендикулярно первой оси, и по меньшей мере один первый корректировочный модуль (30) и по меньшей мере один второй корректировочный модуль (40), которые соответственно содержат множество неподвижных корректировочных электродов (31, 32, 41, 42) и подвижных корректировочных электродов (24, 25, 26, 27), при этом неподвижные корректировочные электроды (31, 32, 41, 42) проходят в направлении первой оси и жестко соединены с подложкой посредством соответствующих анкерных структур (33, 43), а подвижные корректировочные электроды (24, 25, 26, 27) образуют часть системы масс.

Изобретение относится к области приборостроения и может быть использовано, например, в системах ориентации и навигации летательных аппаратов. Технический результат - повышение надежности.

Изобретение относится к технологии сборки волновых твердотельных гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов и систем для самолетов, катеров, космических аппаратов, бурильных установок.

Изобретение относится к гироскопии и может быть использовано в системах средней точности инерциального управления объектами бескарданного типа. Твердотельный волновой гироскоп содержит цилиндрический резонатор, смонтированный в корпусе, и расположенные на нижней пластине восемь пьезоэлементов, закрепленных с помощью клея.

Предлагаемый способ может быть использован при изготовлении и подготовке к работе волновых твердотельных гироскопов (ВТГ). Определение параметров ВТГ заключается в том, что измеряют амплитуды колебаний резонатора на частотах вблизи резонанса в стационарных режимах, по измеренным значениям амплитуд колебаний и частот формируют вектор и матрицу с линейными относительно амплитуд элементами.

Изобретение относится к акустоэлектронным приборам, предназначенным для преобразования угловой скорости вращения основания в электрический сигнал. Микроакустомеханический гироскоп содержит основание, структуру инерционных масс, размещенных в шахматном порядке, пьезоэлектрические преобразователи и измерительные ВШП суммарного поля ПАВ от регулярной структуры инерционных масс.

Изобретение относится к измерительной технике и представляет собой твердотельный волновой гироскоп. Гироскоп имеет вакуумируемый корпус в виде полусферической оболочки с равномерной толщиной, на внешней стороне которого размещены три установочно-закрепительных элемента, разнесенных относительно друг друга на 120°, а на внутренней - три конусных сегментных элемента, смещенных на 60° относительно установочно-закрепительных элементов, для установки комбинированной информационно-возбудительной платы с использованием кольцевой разрезной пружины.

Изобретение относится к области навигационной техники, а именно к конструкции микромеханических вибрационных гироскопов. Вибрационный гироскоп содержит дисковый ротор в упругом подвесе в виде пружины, связывающей ротор с неподвижной опорой, и статоры с электродами привода крутильных колебаний ротора и емкостных датчиков для определения его угловых смещений относительно двух взаимно перпендикулярных осей, ортогональных к оси крутильных колебаний ротора. Ротор, пружина и неподвижная опора выполнены из одной пластины диэлектрического материала с электропроводящим покрытием, при этом пружина соединяет внешнюю часть ротора с неподвижной опорой и выполнена в виде четырехзаходной спирали с ограниченным разворотом витков на угол, примерно равный α=π(1±0,2). В центральной части ротора, свободной от электропроводящего покрытия, выполнено отверстие с 2n (n=2, 3, 4…) зубцами для взаимодействия соответственно с 2n электродами привода крутильных колебаний. Технический результат - повышение точности и упрощение изготовления вибрационного гироскопа. 1 з.п. ф-лы, 7 ил.

Изобретение относится к балансировке кварцевых полусферических резонаторов твердотельных волновых гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов различного назначения. Способ балансировки кварцевого полусферического резонатора волнового твердотельного гироскопа по предварительно определенным величинам параметров первых четырех форм массового дефекта резонатора заключается в том, что кварцевый полусферический резонатор радиуса R устанавливают в положение, при котором ось его симметрии горизонтальна, а единый нуль окружного угла находится в нижнем положении, поворачивают резонатор вокруг оси симметрии на угол Δφ относительно единого нуля окружного угла и в этом положении частично погружают резонатор в травильный раствор, устанавливая удвоенный зенитный угол сферического сегмента обрабатываемой поверхности 2α, а затем проводят химическое травление в течение времени t. Технический результат - уменьшение времени и трудоемкости процесса балансировки кварцевых полусферических резонаторов по первым 4-м формам массового дефекта. 4 з.п. ф-лы, 1 ил.

Изобретение относится к микросистемным гироскопам камертонного типа. Предложенный камертонный микрогироскоп содержит корпусную монокремниевую пластину и две чувствительные массы, каждая из которых подвешена с помощью упругих растяжек на консолях, которые, в свою очередь, жестко закреплены на центральной балке. На неподвижных обкладках микрогироскопа выполнены проводящие электроды. Поверхности указанных проводящих электродов, а также поверхности чувствительных масс выполнены пористыми. Причем поры заполнены проводящим материалом, значение плотности которого превышает значение плотности пористого материала. Техническим результатом изобретения является повышение чувствительности микромеханического гироскопа. 4 ил.

Изобретение относится к измерениям угловой скорости, а именно к микроэлектромеханической системе (МЭМС) для датчика угловой скорости. МЭМС помещена между первой и второй композитными пластинами типа кремний-изолятор, состоящими из множества структурированных кремниевых элементов, электрически изолированных друг от друга изоляционным материалом. МЭМС содержит монокристаллическую кремниевую подложку, структурированную для формирования детекторной системы и рамки, причем детекторная система полностью отделена от окружающей ее рамки, расположенной между сопряженными с ней поверхностями первой и второй композитных пластин, так что детекторная система герметизирована в полости, сформированной первой и второй композитными пластинами и рамкой. При этом детекторная система содержит две сейсмические массы, каждая из которых имеет переднюю и заднюю поверхности; две приводные перемычки, каждая из которых имеет первый конец, соединенный с сейсмической массой, и второй конец, соединенный с первой и второй композитными пластинами посредством фиксированных пьедесталов, выполненных на кремниевой подложке, и работающую на изгиб пружину, непосредственно соединяющую между собой две сейсмические массы и выполненную с возможностью синхронизации их первичного движения. Каждая сейсмическая масса имеет первую вращательную степень свободы относительно оси, по существу, перпендикулярной плоскости кремниевой подложки, а сейсмические массы и приводные перемычки сформированы с возможностью иметь вторую вращательную степень свободы относительно оси, по существу, совпадающей с продольной осью приводных перемычек. Детекторная система содержит также средство для генерирования и детектирования первичного движения, состоящего в первичных осцилляциях двух сейсмических масс, в противофазе, в соответствии с первой вращательной степенью свободы, и средство для детектирования вторичного движения, состоящего во вторичных осцилляциях двух сейсмических масс, в противофазе, в соответствии со второй вращательной степенью свободы. При этом средство для генерирования и детектирования первичного движения и средство для детектирования вторичного движения сформированы на передней и на задней поверхностях каждой из первой и второй сейсмических масс, а детекторная система выполнена с возможностью возникновения в ней, при придании системе угловой скорости вокруг третьей оси, по существу, лежащей в плоскости кремниевой подложки и перпендикулярной продольной оси перемычек, силы Кориолиса, вызывающей вторичные осцилляции сейсмических масс. Изобретение обеспечивает повышение точности и стабильности измерений. 15 з.п. ф-лы, 11 ил.

Изобретение относится к акустоэлектронным приборам, предназначенным для преобразования угловой скорости вращения основания в электрический сигнал. Сущность изобретения заключается в том, что на внешней поверхности несущего основания выполнен трапецеидальный выступ, размещенный зеркально трапецеидальному выступу на внутренней поверхности несущего основания и совпадающий с ним по форме и размерам, тонкая пленка из пьезоэлектрика с установленной на ней регулярной структурой инерционных масс и измерительными встречно-штыревыми преобразователями для каждого из направлений вращения несущего основания установлены на поверхности малого основания трапецеидального выступа, выполненного на внешней поверхности несущего основания, на поверхности малого основания трапецеидального выступа, выполненного на внутренней поверхности несущего основания, дополнительно установлены тонкая пленка из пьезоэлектрика с установленной на ней регулярной структурой инерционных масс, размещенных в шахматном порядке, и измерительными встречно-штыревыми преобразователями для каждого из направлений вращения несущего основания, при этом на боковых поверхностях трапецеидального выступа, выполненного на внешней поверхности несущего основания, дополнительно симметрично друг другу установлены активные пьезоэлектрические преобразователи, которые обеспечивают возбуждение продольных акустических волн в материале несущего основания в направлениях, определяемых углом, заданным положением боковых поверхностей трапецеидального выступа относительно внутренней поверхности несущего основания, и в противофазе по отношению к активным пьезоэлектрическим преобразователям, размещенным на боковых поверхностях трапецеидального выступа на внутренней поверхности несущего основания, выходы измерительных встречно-штыревых преобразователей, размещенных на поверхности малых оснований трапецеидальных выступов, расположенных по обе стороны несущего основания, попарно электрически соединены со входами сумматоров, а выходы последних электрически соединены со входами сумматоров, соответственно для каждого из направлений вращения несущего основания. Технический результат - расширение функциональных возможностей и повышение уровня полезного сигнала по сравнению с уровнем шумовых сигналов. 5 ил.

Изобретение относится к области приборостроения и может быть использовано при построении одноосных и трехосных измерителей параметров движения - угловых скоростей и линейных ускорений для инерциальных навигационных систем и пилотажных систем управления подвижных объектов. Заявлен способ компенсации температурной зависимости систематических составляющих дрейфа гироскопических датчиков, включающий измерение в заводских условиях, в процессе отладки чувствительных элементов, значения систематических составляющих в виде нулевых сигналов и масштабных коэффициентов при фиксированных значениях ряда температур в рабочем диапазоне, описание кусочно-линейной или полиномной аппроксимацией зависимости нулевого сигнала и масштабного коэффициента от температуры. При этом измерение систематических составляющих в виде нулевых сигналов и масштабных коэффициентов при фиксированных значениях ряда температур в рабочем диапазоне осуществляют в процессе по меньшей мере двух запусков чувствительных элементов. Рассчитывают средние значения нулевых сигналов и масштабных коэффициентов при фиксированных значениях ряда температур в рабочем диапазоне, полученных в запусках. По полученным средним значениям определяют коэффициенты кусочно-линейной или полиномной аппроксимации температурной зависимости. Затем эти коэффициенты записывают в микроконтроллер для возможности осуществления алгоритмической компенсации температурной зависимости нулевых сигналов и масштабных коэффициентов в процессе эксплуатации. Технический результат - повышение точностных характеристик гироскопических датчиков. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области приборостроения, в частности к измерительной технике, и предназначено для измерения угловой скорости, например, в системах управления, навигации, стабилизации и наведения. Инерционные массы (1, 2), на поверхности которых напылены токопроводящие дорожки (19, 20), размещены на упругих элементах подвеса (3, 4) в зазоре между двумя постоянными магнитами (6). Датчики положения состоят из пар излучателей (11, 12, 15, 16) и фотоприемников (17, 18) или двухсегментных фотоприемников (13, 14). Инерционные массы (1, 2) совершают автоколебания под действием знакопеременного сигнала, формируемого в цепи обратной связи, состоящей из триггеров Шмидта (28, 32), амплитудных детекторов (29, 33) и сумматоров (27, 31). Наличие входного воздействия приводит к смещению центра колебаний инерционных масс и возникновению временной модуляции выходного сигнала, получаемого после обработки на микроконтроллере (30). Технический результат заключается в большей помехозащищенности и измерении угловых скоростей с большей точностью и расширенным частотным диапазоном. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения, в частности к гироскопии, и может быть использовано в системах управления. Твердотельный волновой гироскоп содержит герметичный корпус, состоящий из кожуха и основания с выводами, во внутренней полости которого установлен центрирующий элемент, обеспечивающий соосное расположение резонатора, емкостной системы регистрации колебаний оболочки резонатора и электромагнитной системы возбуждения и поддержания колебаний оболочки резонатора, при этом электромагнитная система возбуждения и поддержания колебаний оболочки резонатора выполнена в виде электромагнитов, сердечники которых имеют П-образную форму, равномерно расположенных по окружности оболочки резонатора, причем плоскость симметрии каждого электромагнита, проходящая через полюса, параллельна оси симметрии резонатора и проходит через нее. Технический результат – повышение точности и сокращение времени измерений. 9 ил.

Изобретение относится к гироскопическим приборам, а именно к датчикам угловой скорости, основанным на Кориолисовых силах, и может быть использовано для измерения угловой скорости. Интегральный микромеханический гироскоп, выполненный из полупроводникового материала, содержит рамку, закрепленную на диэлектрическом основании в неподвижных анкерах через упругие перемычки (4). На рамке выполнены гребенчатые структуры вибропривода. Первое промежуточное тело (7) закреплено на упругих перемычках (9) внутри рамки. Первое инерционное тело (11) расположено на упругих перемычках (12) внутри первого промежуточного тела (7) и связано с неподвижными анкерами (13) через упругие перемычки (14). На первом инерционном теле (1) выполнены подвижные части сенсорных электродов (15), неподвижные части которых закреплены на диэлектрическом основании. Анкеры, неподвижные части вибропривода, неподвижные части сенсорных электродов зафиксированы на диэлектрическом основании. Внутри рамки дополнительно расположено второе промежуточное тело (8), которое связано с рамкой через упругие перемычки (10). Второе инерционное тело (16) расположено внутри второго промежуточного тела (8) и связано с ним через упругие перемычки (17), а также связано с неподвижными анкерами (18) через упругие перемычки (19). Под вторым инерционным телом (16) расположен неподвижный планарный электрод, закрепленный на диэлектрическом основании. Данное изобретение позволяет проводить измерения двух составляющих угловой скорости. 1 ил.

Изобретение относится к области авиационного приборостроения и может быть использовано в одноосных и трехосных измерителях угловых скоростей и линейных ускорений, используемых в инерциальных навигационных системах и в пилотажных системах управления подвижными объектами в качестве датчиков первичной информации. Технический результат – повышение точности. Для этого компенсацию дрейфа нулевых сигналов гироскопических датчиков осуществляют путем выделения компенсирующего сигнала из измеряемого по результатам сравнения измеряемого сигнала с заданным уровнем и последующей корректировкой измеряемого сигнала с помощью выделенного компенсирующего сигнала, при этом выделение компенсирующего сигнала осуществляется путем фильтрации измеряемого сигнала, накопления отфильтрованного сигнала, его осреднения, сравнения с заданным уровнем, накоплением массива выделенного сигнала, его осреднения, прогнозирования, сравнения прогнозируемого сигнала с заданным уровнем и по результатам сравнения при превышении заданного уровня сигнала в качестве компенсирующего сигнала принимается спрогнозированный сигнал, а при непревышении заданного уровня сигнала спрогнозированный сигнал в качестве компенсирующего не принимается. Изобретение позволяет решить задачу путем компенсации дрейфа нулевого сигнала в процессе эксплуатации прибора за счет выделения нулевого сигнала из измеряемого по результатам сравнения измеряемого сигнала с заданным уровнем, прогнозирования компенсационного сигнала, контроля его уровня и последующей корректировки измеряемого сигнала с помощью выделенного компенсационного сигнала. Исследования показали, что за счет использования предложенного изобретения удалось почти на порядок уменьшить накапливаемую угловую погрешность курсового угла в микромеханическом гироскопе STIM-210 норвежской фирмы Sensonor. 2 з.п. ф-лы, 2 ил.
Наверх