Способ формирования канала для передачи оптического сигнала между компонентами электронного модуля

Изобретение относится к технике связи и может использоваться в оптических системах. Технический результат состоит в упрощении формирования оптического канала. Для этого из оптически прозрачного материала изготавливают призму, которая в основании имеет трапецию, углы которой равны 45, 135,135, 45°, а нижняя сторона должна иметь длину не более 200 мм, причем призму изготавливают с требуемыми допусками на линейные и угловые размеры, а также допустимой шероховатостью, все грани призмы, кроме нижней, покрывают алюминием при помощи процесса напыления; берут кристалл, являющийся источником излучения, и кристалл, являющийся приемником излучения, и приклеивают их на подложку, наносят изолирующий слой или изолирующие слои до верхней плоскости кристаллов, известным способом формируют токопроводящие межсоединения от контактных площадок кристаллов и вскрывают изолирующие слои над излучающей и принимающей площадками соответствующих кристаллов. В случае когда требуется уменьшить расходимость светового пучка, в полости над излучающей и приемной площадками, образованные после вскрытия изолирующих слоев, устанавливают микролинзы. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к радиоэлектронике. В нем предлагается новый способ формирования канала для передачи оптического сигнала между компонентами электронного модуля.

Чем вызван переход в оптику? Дело в том, что при больших частотах (скоростях передачи) в несколько гигабит в секунду в медных проводниках (дорожках) печатной платы возникают сильные искажения сигналов как за счет увеличения сопротивления самих проводников, так и из-за резонансных явлений.

Выход ищут в использовании оптического соединения, когда исходный электрический сигнал при помощи микролазера преобразуют в оптический, затем осуществляют передачу оптического сигнала по волокну (полимерному оптическому волноводу), прием оптического сигнала микрофотодетектором, преобразование оптического сигнала в исходный электрический.

Оптический сигнал в этом случае необходимо передать с наименьшими потерями, так как мощность микролазера очень мала, а излучение имеет свойство в значительной степени рассеиваться.

«Соединения к источникам и детекторам света, связанным с электронными чипами, обеспечивают разнообразные варианты конфигураций оптических межсоединений, герметизированных гибкими прочными пленками <…>:

- волноводы прикреплены к поверхности платы для связи края платы с чипом или между чипами <…>;

- используется гибкая перемычка для соединения с верхней поверхностью чипа. Такая конфигурация обеспечивает разнообразные соединения, такие как концевой контакт к чипу, чип к чипу или чип к зажиму множества стекловолокон вне платы;

- перемычка вне основания от концевого контакта к чипу и между чипами;

- гибридные варианты, содержащие связи либо на, либо вне основания, к зеркалу и набору линз для обеспечения соединений к нижней стороне основания или к оптическому слою между основаниями;

- многоярусный пленочный волновод обеспечивает набор межсоединений между объединительной, дочерней и дочерними платами» (http: //www.circuitry.ru/journal/article/2254).

Для передачи оптического сигнала между компонентами электронного модуля используют лезеры и приемники, выполненные в виде соответствующих кристаллов. Особенности технологии получения этих элементов определяют их конструктивные особенности: излучающая и приемная площадки элементов могут быть направлены либо вверх (кристалл монтируется на подложку "лицом вверх"), либо вниз (кристалл монтируется на подложку "лицом вниз"). Поэтому для передачи оптического сигнала в этом случае существует проблема поворота луча.

В диссертации (Karppinen М. High bit-rate optical interconnects on printed wiring board. Micro-optics and hybrid integration, Edita prima Oy, Helsinki, 2008, p.71-72) для решения этих проблем используют микролинзы и зеркала для поворота луча. Однако линзы и зеркала требуют тщательной юстировки и при серийном производстве это оказывается узким местом.

В (Takahara Н. Optoelectronic Packaging Trends in Japan. Stanford University, US-Asia TMC, May 2003, p.6) луч последовательно от лазера проходит прозрачный полимер, микролинзу, воздух, снова микролинзу, полимер, зеркало, оптический волновод, снова зеркало, полимер, микролинзу, воздух, опять микролинзу, полимер и попадает в микрофотодетектор. Здесь тоже требуется тщательная установка микролинз и зеркал.

В (http://chromisfiber.com/pdf/YSSon_OSAribbonPOF_OEFeb2011.pdf) предлагается использовать гибкую оптоволоконную ленту, а также фокусирующие линзы и призмы 45°. Это позволяет сократить «количество отдельных компонентов, чтобы облегчить пассивное согласование применительно для массового производства».

Следует отметить, однако, что гибкие оптоволоконные соединители обладают низкими эксплуатационными характеристиками.

Этот способ формирования канала для передачи оптического сигнала принимается за прототип.

Мы предлагаем использовать одну единственную призму и при этом вообще отказаться от настройки!

Технический результат изобретения - существенное упрощение в формировании канала для передачи оптического сигнала между компонентами электронного модуля при многократной повторяемости и значительное улучшение эксплуатационных характеристик этого канала.

Этот технический результат достигается следующим образом (фиг.1-5).

1. Из оптически прозрачного материала изготавливают призму 1 (фиг.1), которая в основании имеет трапецию, углы которой равны 45, 135, 135 и 45°, причем призму изготавливают с требуемыми допусками на линейные и угловые размеры, а также допустимой шероховатостью. Все грани призмы, кроме нижней, покрывают алюминием при помощи процесса напыления.

2. Берут кристалл 2, являющийся источником излучения VCSEL, и кристалл 3, являющийся приемником излучения PD, и приклеивают их на подложку 4 (фиг.2).

3. Наносят изолирующий слой (изолирующие слои) 5 до верхней плоскости кристаллов (фиг.3).

4. Известным способом формируют токопроводящие межсоединения 6 от контактных площадок кристаллов, вскрывают изолирующие слои над излучающей и принимающей площадками соответствующих кристаллов (при этом образуются полости 7) и устанавливают призму 1 с рассчитанной точностью на соответствующее место (фиг.4). В случае когда требуется уменьшить расходимость светового пучка, в полости 7 над излучающей и приемной площадками устанавливают микролинзы.

5. Фиксируют призму 1 полимерным слоем по периметру либо тонким слоем фоторезиста, который наносят на контактируемые поверхности перед ее установкой. Наносят изолирующие слои 8 (фиг.5). Показано прохождение излучения лазера от излучающей до приемной площадки.

Нижняя грань призмы должна иметь длину не более 200 мм, что перекрывает практически возможные случаи (но могут быть и исключения). Это объясняется тем, что должно удовлетворяться условие - при любом отклонении нижней грани призмы от основания после ее установки из-за различных факторов в приемник излучения должен попасть допустимый световой поток.

Для малых углов отклонения призмы (до 0,5°) от идеального положения величина смещения осевого луча излучения лазера (отклонение от центра приемника излучения) будет равна: x=a*sin(α), где а - расстояние между центрами излучающей и приемной площадок VCSEL и PD соответственно, α - угол отклонения призмы.

Если принять, что допустимое значение потока, пришедшего на приемник излучения от первоначального (от источника излучения), равно 25%, т.е. смещение осевого луча примерно на 2/3 от центра, то для диаметра приемной площадки, равного 45 мкм (http://www.connector-optics.com/uploaded/Datasheets/25%20Gbit-s%20PD%20chips%20850%20nm%20RUS%20final.pdf), имеем, что допустимый угол для расстояния а=200 мм будет равным:

α=arcsin(x/a), α=arcsin(2/3*45/200000), α=30".

Если принять допустимое смещение на 1/3 от диаметра приемной площадки, то допустимый угол получится равным α=15".

Современное оборудование позволяет получить значение угла α после планаризации равным 0,4" (http://www.dicko.co.jp/eg/solution/library/surfare.html) в пересчете на величину вертикального уклона в 0,039 мкм (см. значение Ry в табл.).

Преимущество от использования изобретения при серийном изготовлении электронных модулей, содержащих оптические межсоединения, - нет необходимости в трудоемкой юстировке зеркал; роль зеркал выполняют грани призмы, которая изготовлена заранее.

Особенно значительный эффект изобретения виден для случая групповой передачи оптических сигналов, когда VCSEL и PD установлены в ряд, и используется всего одна призма.

1. Способ формирования канала для передачи оптического сигнала между компонентами электронного модуля, заключающийся в том, что из оптически прозрачного материала изготавливают призму, отличающийся тем, что призма в основании имеет трапецию, углы которой равны 45, 135, 135, 45°, и нижняя сторона должна иметь длину не более 200 мм, причем призму изготавливают с требуемыми допусками на линейные и угловые размеры, а также допустимой шероховатостью, все грани призмы, кроме нижней, покрывают алюминием при помощи процесса напыления; берут кристалл, являющийся источником излучения VCSEL, и кристалл, являющийся приемником излучения PD, и приклеивают их на подложку, наносят изолирующий слой или изолирующие слои до верхней плоскости кристаллов, известным способом формируют токопроводящие межсоединения от контактных площадок кристаллов, вскрывают изолирующие слои над излучающей и принимающей площадками соответствующих кристаллов и устанавливают призму с рассчитанной точностью на соответствующее место, фиксируют ее полимерным слоем по периметру или тонким слоем фоторезиста, который наносят на контактируемые поверхности перед установкой призмы, и наносят изолирующие слои.

2. Способ формирования канала для передачи оптического сигнала между компонентами электронного модуля по п. 1, отличающийся тем, что в случае когда требуется уменьшить расходимость светового пучка, в полости над излучающей и приемной площадками, образованными после вскрытия изолирующих слоев, устанавливают микролинзы.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться в пассивной оптической сети с мультиплексированием с разделением по длине волны (WDM-PON). Технический результат состоит в осуществлении наблюдения за (WDM-PON).

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к технике связи и может использоваться в устройствах, которые применяются при строительстве сети связи в жилых многоэтажных домах, и предназначено для подключения и распределения внутренних волоконно-оптических кабелей связи к общей сети провайдера.

Изобретение относится к области автоматики и связи и может быть использовано на железнодорожной транспорте для управления технологическими процессами его эксплуатационной деятельности.

Изобретение относится к технике связи и может использоваться в гибридной сети для приложений внутри здания (IBW). Технический результат состоит в повышении пропускной способности канала передачи.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении пропускной способности передачи.

Изобретение относится к технике связи и может использоваться в оптических линиях связи. Технический результат состоит в обеспечении надежного выделения полосы пропускания, приемлемой задержки передачи и надлежащего использования полосы пропускания восходящей линии связи.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении помехоустойчивости.

Изобретение относится к области оптоэлектронной техники и касается оптоэлектронного передатчика. Оптоэлектронный передатчик состоит из источника питания, лазера, повернутого полупрозрачного отражательного зеркала, корректирующей линзы, электрического модулятора, малогабаритного фотоприемника и автоматического коммутатора.

Изобретение относится к области вычислительной техники, автоматики, связи. Техническим результатом является повышение быстродействия.

Изобретение относится к волоконной оптике и может быть использовано для защиты волоконно-оптических компонент от разрушения лазерным излучением. Первый вариант устройства содержит световод, на некотором участке которого, размер сердцевины варьируется вдоль световода так, что в зоне световода с увеличенной площадью сердцевины, интенсивность оптического излучения снижена. Снижение интенсивности излучения ниже определенного уровня позволяет остановить распространение ОР. Второй вариант устройства содержит световод, в сердцевине которого имеется протяженная полость. Наличие полости в сердцевине световода приводит к дополнительным тепловым потерям плазмы ОР. Охлаждение плазмы, до определенного уровня, останавливает распространение ОР. Технический результат - повышение надежности и снижение потерь. 2 н. и 20 з.п. ф-лы, 11 ил.

Устройство пеленгации источников лазерного излучения относится к области оптико-электронного приборостроения, а более конкретно к устройствам обнаружения и пеленгации источников лазерного излучения для систем защиты подвижных объектов военной техники. Устройство содержит приемную оптическую систему, оптически связанный с ней многоэлементный фотоприемник, n каналов обработки сигналов, каждый из которых состоит из предусилителя, порогового устройства и двухвходовой схемы «ИЛИ», ждущий мультивибратор, n формирователей сигналов контроля, каждый из которых содержит двухвходовую схему «И», аналоговый ключ, схему нормирования длительности импульса и стабилизированный источник напряжения. Достигаемый технический результат - обеспечение проверки правильности обработки выходных сигналов фотоприемника в эксплуатации без использования источника излучения, находящегося в поле зрения устройства. 1 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении пропускной способности. Для этого устройство включает активную среду, фотоэлектрический преобразователь, дифракционную решетку AWG и зеркало с частичным отражением. AWG включает в себя два общих порта и множественные порты ветвления. Один из общих портов функционирует в качестве порта отправки сигнала, а другой - в качестве порта приема сигнала, причем ширина полосы порта отправки сигнала является меньшей, чем ширина полосы порта приема сигнала. Активная среда и фотоэлектрический преобразователь подключены к одному из портов ветвления AWG. AWG и зеркало с частичным отражением выполнены с возможностью совместного выполнения синхронизации с самоинжекцией длины волны на оптическом сигнале, обеспеченном активной средой. AWG дополнительно выполнена с возможностью демультиплексирования оптического сигнала, принятого портом приема сигнала, для некоторого порта ветвления. Также обеспечена WDM-PON система. 3 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении скорости и надежности передачи информации. Для этого способ включает в себя этапы: обнаружения идентификационного кода блока ONU в открытом пустом окне восходящей линии связи или пустом временном интервале и определения, в соответствии с идентификационным кодом блока ONU, того, что блок ONU, соответствующий идентификационному коду блока ONU, является ненадежным блоком ONU. 4 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к области радиолокации и технике связи и может быть использовано в радиолокационных станциях с фазированными антенными решетками для синхронизации системы передачи цифровых данных с приемных модулей фазированных антенных решеток в специализированную цифровую вычислительную машину по волоконно-оптической линии связи. Технический результат - обеспечение передачи цифровых данных по волоконно-оптической линии связи в полосе частот, значительно меньшей, чем полоса, необходимая для передачи этих данных в последовательном коде. Для этого используют многоуровневую амплитудную модуляцию оптического сигнала, кадровой и символьной синхронизации системы передачи цифровых данных. При этом кадровая синхронизация состоит в обнаружении монотонно возрастающего значения напряжения сигнала, символьная синхронизация заключается в определении момента времени, в который происходит смена знака производной сигнала, и использовании этого момента времени для вхождения системы приема-передачи цифровых данных в синхронизм. 2 н.п., 5 ил.

Изобретение относится к технике оптической связи, в частности к атмосферным системам передачи информации, и может быть использовано в качестве однопролетной беспроводной линии связи при организации передачи информации между устройствами СЦБ и локомотивом. Техническим результатом является повышение уровня безопасности движения тягового подвижного состава железнодорожного транспорта. Для этого на опоры контактной сети или на аналогичные устройства устанавливаются модули приема-передачи, использующие в качестве среды передачи информации открытый атмосферный канал. Устройство имеет способность подключаться к системе устройств СЦБ, слушать информацию, передаваемую в ней, и самостоятельно отправлять в нее сигналы; фотоприемник способен принимать сигналы видимого и инфракрасного спектра; передающий модуль состоит из светодиодов инфракрасного спектра; для формирования передаваемого сигнала используют модулятор; для обработки принимаемого сигнала используются демодулятор, полосовой фильтр, интегрирующий усилитель с ограничителем; блок питания способен получать энергию от электрической сети, от фотоэлемента, от аккумулятора; при питании от аккумулятора и фотоэлемента устройство отключает передающий модуль и фотоприемник. 1 ил.

Изобретение относится к технике связи и может использоваться в системе пассивной связи. Технический результат состоит в повышении пропускной способности передачи. Для этого в устройстве приемопередатчика пассивной оптической сети (PON) принимают оптический входной сигнал и передают амплитудно-модулированный оптический выходной сигнал. 2 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении помехоустойчивости передачи оптической информации. Для этого предложен способ управления оптической мощностью, который включает: наблюдение за выходной оптической мощностью оптического источника и оценивание, принят ли предварительно установленный сигнал управления тестированием. Если он не принят, осуществляют модулирование сигнала данных на выходном свете оптического источника и регулирование тока смещения оптического источника согласно результату наблюдения за выходной оптической мощностью оптического источника, а если сигнал управления тестированием принят, осуществляют тестирование и наложение сигнала тестирования на сигнал данных для формирования наложенного сигнала, передачу наложенного сигнала на выходной свет оптического источника, результат наблюдения за выходной оптической мощностью оптического источника игнорируется в течение периода тестирования для поддержания тока смещения оптического источника на предварительно установленном заданном значении. 4 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к технике связи и может использоваться в оптической сетевой системе связи. Технический результат состоит в повышении пропускной способности и увеличения объема передаваемой информации. Для этого система включает в себя этапы, на которых соединяют 2×2 одномодовые оптические элементы связи в массив для формирования 1×N одномодового оптического разветвителя/объединителя и назначают маршрут от собирающих портов к принимающему устройству оптического линейного терминала для накапливания собранного света, от двух или более собирающих портов, в принимающем устройстве оптического линейного терминала, причем один из нескольких собирающих портов входит в состав 2×2 одномодовых оптических элементов связи; осуществляют передачу на оптический сетевой блок через планарную световолновую схему на первой длине волны; и интерпретируют реакцию от оптического сетевого блока на второй длине волны посредством собранного света. 2 н. и 8 з.п. ф-лы, 21 ил.

Изобретение относится к мониторингу продуктивных нефтегазовых скважин в реальном времени. Техническим результатом является обеспечение своевременной идентификации любых проблем и регулирование параметров процесса отработки скважин. Предложен способ мониторинга скважинного процесса, содержащий этапы, на которых: периодически опрашивают оптическое волокно, размещенное вдоль траектории ствола скважины, для получения распределенных акустических измерений; берут выборки данных, собираемых с множества продольных участков указанного волокна; и обрабатывают указанные данные для обеспечения индикации в реальном времени акустических сигналов, обнаруживаемых по меньшей мере одним продольным чувствительным участком указанного волокна, и регулируют параметры опроса для изменения участков волокна, с которых берут выборки данных в ответ на обнаруженные акустические сигналы. Раскрыты также система с программным носителем для осуществления указанного способа. 5 н. и 16 з.п. ф-лы, 7 ил.
Наверх