Входной узел полупроводникового прибора



Входной узел полупроводникового прибора
Входной узел полупроводникового прибора
H01L31/00 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2561312:

Открытое акционерное общество "Центральный научно-исследовательский институт "Электрон" (RU)

Использование: для изготовления модульных (гибридных) оптико-электронных наблюдательных и регистрирующих приборов различных спектров действия, предназначенных для эксплуатации в условиях низкой освещенности. Сущность изобретения заключается в том, что входной узел полупроводникового прибора имеет входное окно и основание с фоточувствительным элементом в соответствующем корпусе, на основании с фоточувствительным элементом размещены столбиковые опоры, выполненные методом фотолитографии, расположенные по периметру фоточувствительного элемента, превосходящие по высоте уровень контактных площадок фоточувствительного элемента. Технический результат: обеспечение возможности образования минимального зазора между поверхностью волоконно-оптического входного окна и поверхностью светочувствительного элемента, при этом обеспечивая защиту светочувствительного элемента от соприкосновения с поверхностью входного окна. 2 ил.

 

Изобретение относится к области электронно-оптической и полупроводниковой техники и может быть использовано при изготовлении модульных (гибридных) оптико-электронных наблюдательных и регистрирующих приборов различных спектров действия, предназначенных для эксплуатации в условиях низкой освещенности.

Так, известен патент на изобретение №2472250 «Фотоэлектронное устройство» (МПК H01J 31/048, H01J 31/50, от 05.08.2001). В данном патенте описан прибор, содержащий волоконно-оптическую пластину (ВОП), состыкованную с фоточувствительным прибором с зарядовой связью (ФПЗС) путем совмещения через слой иммерсионной жидкости площадки чувствительного элемента ФПЗС с площадкой, сформированной выходной поверхностью ВОП, при этом расстояние между поверхностью площадки чувствительного элемента ФПЗС и поверхностью площадки, сформированной выходной поверхностью ВОП, не превышает 1 мкм. Иммерсионная жидкость вводится в оптическую систему для уменьшения показателя рассеивания света при прохождении излучения через устройство.

Недостаток данного технического решения заключается в том, что изготовление входного узла существенно усложняется из-за ввода в зазор между ВОП и ФПЗС иммерсионной жидкости. Кроме того, иммерсионная жидкость ухудшает эксплуатационные характеристики прибора: при пониженной температуре возможна кристаллизация иммерсионной жидкости, образование пустот и пузырей, а при нагревании - расширение.

Технический результат настоящего изобретения заключается в создании входного узла полупроводникового прибора, который позволяет образовать минимальный зазор между поверхностью волоконно-оптического входного окна и полупроводниковой поверхностью светочувствительного элемента, при этом обеспечить защиту светочувствительного элемента от механических повреждений, которые могут возникнуть в результате соприкосновения светочувствительного элемента с поверхностью входного окна.

Данный технический результат достигается за счет того, что входной узел полупроводникового прибора, имеющий волоконно-оптическое входное окно и основание с фоточувствительным элементом в соответствующем корпусе, отличается тем, что на основании с фоточувствительным элементом размещены столбиковые опоры, выполненные методом фотолитографии, расположенные вдоль как минимум части периметра фоточувствительного элемента, превосходящие по высоте уровень контактных площадок фоточувствительного элемента.

Данные столбиковые опоры служат для опоры входного окна и защиты фоточувствительной области от соприкосновения с поверхностью волоконно-оптического входного окна при образовании минимального зазора между поверхностью входного окна и поверхностью фоточувствительного элемента.

Конструкция входного узла может служить для состыковки волоконно-оптического ЭОП с ПЗС с минимальным зазором.

На рис. 1 и 2 изображена схема данного технического решения.

Входной узел полупроводникового прибора имеет входное окно 1, выполненное как правило в виде волоконно-оптической пластины, и основание 2 с фоточувствительным элементом 3, например матрица ФПЗС. На поверхности основания 2 расположены выполненные методом фотолитографии разделительные элементы 4 (столбиковые опоры), расположенные по периметру фоточувствительного элемента 3, превосходящие по высоте уровень контактных площадок 5.

Данное техническое решение выполнено следующим образом.

После формирования на основании 2 фоточувствительного элемента 3 и контактных площадок 5 на поверхность основания 2 наносится с целью защиты плазмохимический окисел SiO2 (ПХО) (на рис. не показан, возможен вариант создания опорных столбиков без слоя SiO2). Толщина слоя составляет порядка 1-2 микрон. Затем на слой ПХО наносится слой фоторезиста так, чтобы этот слой по высоте перекрывал высоту контактных площадок. Слой фоторезиста, нанесенный на слой ПХО, автоматически оказывается выше уровня контактных площадок. Далее по периметру фоточувствительной области вытравливаются столбиковые опоры 4 с применением технологии фотолитографии, высотой в 3-5 микрона. В общем случае данные столбиковые опоры 4 могут быть выполнены любой формы, как отдельными элементами (столбцами), так и сплошным элементом (стеночкой).

Столбиковые опоры 4 могут быть расположены как между контактными площадками 5 и фоточувствительным элементом 3, так и за контактными площадками 5. После формирования столбиковых опор и разварки контактов на основание накладывают входное окно 1, выполненное как правило в виде волоконно-оптической шайбы, так чтобы входное окно упиралось в данные столбики. Получившийся зазор заполняют азотом.

Таким образом, данные столбиковые опоры служат для опоры волоконно-оптического входного окна и защиты фоточувствительной области от соприкосновения с поверхностью входного окна при образовании минимального зазора между поверхностью входного окна и поверхностью фоточувствительного элемента, составляющего порядка 5-7 микрон.

Входной узел полупроводникового прибора, имеющий входное окно и основание с фоточувствительным элементом, находящиеся в соответствующем корпусе, отличающийся тем, что на основании с фоточувствительным элементом размещены столбиковые опоры, выполненные методом фотолитографии, расположенные вдоль как минимум части периметра фоточувствительного элемента, превосходящие по высоте уровень контактных площадок фоточувствительного элемента.



 

Похожие патенты:

Изобретение относится к гелиотехнике. Теплофотоэлектрический модуль с параболоцилиндрическим концентратором солнечного излучения состоит из параболоцилиндрического концентратора и линейчатого фотоэлектрического приемника (ФЭП), расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль цилиндрической оси, при этом солнечный фотоэлектрический модуль содержит асимметричный концентратор параболоцилиндрического типа с зеркальной внутренней поверхностью отражения и линейчатый фотоэлектрический приемник, установленный в фокальной области с устройством протока теплоносителя; форма отражающей поверхности концентратора Х(Y) определяется предложенной системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрического приемника, выполненного в виде линейки шириной do из скоммутированных ФЭП и длиной h и расположенного под углом к миделю концентратора.

Изобретение относится к полупроводниковым приборам, чувствительным к свету. Гетероструктура содержит подложку, выполненную из AlN, на которой размещено три сопряженных друг с другом выполненных из In1-xGaxN двухслойных компонентов с p-n-переходами между слоями.

Изобретение относится к полупроводниковым приборам, чувствительным к свету, предназначенным для преобразования света в электрическую энергию, в частности к многопереходным солнечным элементам.

Предлагаемое изобретение «Монолитный быстродействующий координатный детектор ионизирующих частиц» относится к полупроводниковым координатным детекторам ионизирующих частиц.

Изобретение относится к физике и технологии полупроводниковых приборов, в частности к солнечным элементам на основе кристаллического кремния. Солнечный элемент на основе кристаллического кремния состоит из областей p- и n-типов проводимости, электродов к р- и n-областям, при этом согласно изобретению на фронтальной поверхности кристалла сформирована дифракционная решетка с периодом, равным длине волны кванта излучения, энергия которого равна ширине запрещенной зоны кристалла.

Система регулирования микроклимата сельскохозяйственного поля включает размещенные по границе поля ветрозащитные и снегозадерживающие элементы, водоем, устраиваемый вдоль границы поля со стороны наиболее вероятного проникновения суховея.

Изобретение относится к светодиодному модулю. Технический результат - разработка состоящего из нескольких расположенных на печатной плате светодиодов светодиодного модуля, в котором выход из строя отдельных светодиодов не виден снаружи благодаря «вводу» излучаемого пассивным светодиодом светового потока в элемент ввода светового излучения вышедшего из строя светодиода.

Изобретение относится к полупроводниковым приборам, в частности к полимерным солнечным фотоэлементам. Предложен полимерный солнечный фотоэлемент, содержащий последовательно: несущую основу, выполненную в виде прозрачной полимерной фотолюминесцентной подложки, прозрачный слой анода, фотоэлектрически активный слой и металлический слой катода, при этом полимерная фотолюминесцентная подложка состоит из оптически прозрачного полимера, содержащего люминофор, выбранный из ряда люминофоров общей формулы (I), где R - заместитель из ряда: линейные или разветвленные С1-С20 алкильные группы; линейные или разветвленные С1-С20 алкильные группы, разделенные по крайней мере одним атомом кислорода; линейные или разветвленные С1-С20 алкильные группы, разделенные по крайней мере одним атомом серы; разветвленные С3-С20 алкильные группы, разделенные по крайней мере одним атомом кремния; С2-С20 алкенильные группы; Ar - одинаковые или различные ариленовые или гетероариленовые радикалы, выбранные из ряда: замещенный или незамещенный тиенил-2,5-диил, замещенный или незамещенный фенил-1,4-диил, замещенный или незамещенный 1,3-оксазол-2,5-диил, замещенный флуорен-4,4'-диил, замещенный циклопентадитиофен-2,7-диил; Q - радикал из вышеуказанного ряда для Ar; Х - по крайней мере один радикал, выбранный из вышеуказанного ряда для Ar и/или радикал из ряда: 2,1,3-бензотиодиазол-4,7-диил, антрацен-9,10-диил, 1,3,4-оксадиазол-2,5-диил, 1-фенил-2-пиразолин-3,5-диил, перилен-3,10-диил; L равно 1 или 3 или 7; n - целое число от 2 до 4; m - целое число от 1 до 3; k - целое число от 1 до 3.

Изобретение относится к технике фотометрии и предназначено для метрологического определения внутренней квантовой эффективности полупроводникового фотодиода по его вольт-амперным характеристикам.

Изобретение относится к оптоэлектронным приборам. Полупроводниковый фотоэлектрический генератор содержит прозрачное защитное покрытие на рабочей поверхности, на которое падает излучение, и секции фотопреобразователей, соединенные оптически прозрачным герметиком с защитным покрытием.

Настоящее изобретение относится к технологии термофотоэлектрических преобразователей с микронным зазором (MTPV) для твердотельных преобразований тепла в электричество. Суть заключается в формировании и последующем поддержании маленького расстояния между двумя телами в субмикронном зазоре для улучшения качества преобразования. Пока возможно достичь субмикронного расстояния зазора, термоэффекты на горячей и холодной поверхностях стимулируют поперечное колебание, скручивание или деформацию элементов, происходящие в вариациях в месте зазора, что приводит к неконтролируемым вариациям при выходе мощности. Главным моментом в конструировании является допущение снижения контакта эмиттерных чипов с внутренней поверхностью оболочки, так чтобы происходила хорошая передача тепла. Фотоэлектрические гальванические элементы направляются навстречу эмиттерным чипам, чтобы придавить их к внутренней стенке. Высокая температура материала термоповерхности улучшает передачу тепла между внутренней поверхностью оболочки и эмиттерным чипом. 3 н. и 16 з.п. ф-лы, 13 ил.

Изобретение относится к 8-алкил-2-(тиофен-2-ил)-8H-тиофен[2,3-6]индол замещенным 2-цианоакриловым кислотам формулы (I) которые могут быть использованы как перспективные красители для сенсибилизации неорганических полупроводников в составе цветосенсибилизированных солнечных батарей, способу их получения, а так же промежуточным соединениям, которые используют для синтеза данных соединений. 4 н.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к области электровакуумной техники, в частности к полупроводниковым оптоэлектронным устройствам - фотокатодам, а именно к гетероструктуре для полупрозрачного фотокатода с активным слоем из арсенида галлия, фоточувствительного в видимом и ближнем инфракрасном диапазоне, и может быть использовано при изготовлении фоточувствительного элемента оптоэлектронных устройств: электронно-оптических преобразователей фотоумножителей, используемых в детекторах излучений. Гетероструктура для полупрозрачного фотокатода содерит подложку GaAs, далее первый слой AlGaAs, активный слой GaAs р-типа проводимости, второй слой из AlGaAs р-типа проводимости, при этом первый слой AlGaAs является стопорным состава AlxGa1-xAs р-типа проводимости с концентрацией Р1 акцепторной примеси, активный слой GaAs имеет концентрацию Р2 акцепторной примеси, второй слой AlGaAs является буферным состава AlyGa1-yAs с концентрацией Р3 акцепторной примеси, между активным и буферным слоями имеется переходный слой р-типа проводимости переменного состава от GaAs до AlyGa1-yAs, причем изменение содержания алюминия, начиная от границы с активным слоем до границы с буферным слоем, является монотонно возрастающей и непрерывной функцией F1 от толщины переходного слоя, а концентрация акцепторной примеси является монотонно убывающей непрерывной функцией F3 от толщины переходного слоя, начиная от концентрации Р2 у границы с активным слоем до концентрации Р3 у границы с буферным слоем. Изобретение позволяет увеличить квантовую эффективность и интегральную чувствительность фотокатода. 1 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам регистрации видеоизображений. Видеосистема на кристалле содержит цветное фотоприемное устройство с функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл. В первом варианте на этом же кристалле размещают блок коммутации, блок управления и блок построения изображения. Во втором варианте на кристалле размещают блок вычитания, арифметико-логическое устройство, блок управления, сумматор и блок логического «И». Технический результат - повышение помехоустойчивости и быстродействия видеосистемы, повышение отношения сигнал/шум для обнаружения малоконтрастных объектов, повышение достоверности классификации объектов по спектральным признакам. 2 н.п. ф-лы, 2 ил.

Использование: для создания многоэлементных фотоприемников. Сущность изобретения заключается в том, что способ сборки матричного модуля на держатель содержит стадии нанесения криостойкого клея на тыльную поверхность растра матричного модуля и на держатель, ориентации матричного модуля относительно держателя, прижима матричного модуля к держателю, приклеивают матричный модуль на держатель с помощью приспособления типа «насадка» в виде цилиндрического колпака, плотно надеваемого на растр с помощью выступов на окружности основания и содержащего четыре выреза под метки совмещения, расположенные под углом 90° по отношению соседних меток друг к другу, предназначенных для ориентации матричного модуля относительно держателя с помощью инструментального микроскопа, кроме этого, содержащего дополнительно четыре выреза по углам фоточувствительного элемента, предназначенные для бездефектного надевания «насадки» на растр, а также содержащего в центре верха колпака метку в виде отверстия для ориентации и коническое углубление для прижима с помощью зондовой головки и возможности поворота «насадки» для совмещения меток, расположенных на растре и держателе. Технический результат: обеспечение возможности бездефектного способа сборки матричного модуля. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области гелиоэнергетики и касается конструкции фотоэлектрического модуля космического базирования. Фотоэлектрический модуль включает в себя нижнее защитное покрытие, на котором с помощью полимерной пленки закреплены кремниевые солнечные элементы с антиотражающим покрытием, и расположенное над лицевой поверхностью солнечных элементов верхнее защитное покрытие, которое скреплено с солнечными элементами промежуточной пленкой из оптически прозрачного полимерного материала. Со стороны лицевой поверхности солнечных элементов и в антиотражающее просветляющее покрытие солнечных элементов введен оптически активный прозрачный полимер, содержащий антистоксовый люминофор. Верхнее и нижнее защитные покрытия выполнены из оптически активных кислородосодержащих материалов типа монокристаллического α-Al2O3-x, способных к люминесценции, накоплению и высвечиванию светосумм при естественной оптической и термической стимуляции. Технический результат заключается в повышении эффективности при работе в цикле солнечный свет - темнота. 1 з.п. ф-лы. 9 ил. 1 табл.

Изобретение может быть использовано для преобразования солнечной энергии в электроэнергию. Согласно изобретению предложено фотоэлектрическое устройство (1), содержащее солнечный концентратор (2), имеющий кольцеобразную форму, в свою очередь содержащий внешний проводник (3), расположенный вдоль внешней части кольца; внешнюю люминесцентную пластину (22), имеющую трапециевидный профиль и имеющую внешнюю периферийную приемную поверхность, выполненную с возможностью приема светового излучения, падающего и приходящего от проводника (3); внутреннюю люминесцентную пластину (21), расположенную вдоль внутренней части кольца и имеющую трапециевидный профиль; наноструктурный полупроводниковый слой (23), лежащий между двумя пластинами (21, 22) таким образом, что большие основания соответствующих трапециевидных профилей обращены к нему, причем упомянутый полупроводниковый слой (23) выполнен с возможностью приема излучения, переданного внешней и внутренней пластинами (21, 22), и реализации фотоэлектрического эффекта; средство (3, 5) передачи, выполненное с возможностью сбора и концентрации падающего светового излучения на упомянутой периферийной приемной поверхности. Среди главных преимуществ, связанных с настоящим изобретением, можно назвать большую общую компактность; улучшенную архитектурную интеграцию по отношению к классическим панелям в отношении модернизации и уличного оборудования; потенциальное уменьшение батареи аккумуляторов; улучшенное использование солнечного излучения; увеличение мощности по отношению к классическим панелям; работу в ночное время. 2 н. и 19 з.п. ф-лы, 8 ил.

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др. Солнечный элемент согласно изобретению включает кристаллическую подложку из кремния n-типа (n)с-Si ориентации (100) с фронтальной и тыльной поверхностями, над фронтальной поверхностью последовательно расположены: промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора; нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H; р-легированный слой аморфного гидрогенизированного кремния (p)a-Si:H; слой оксида индия-олова (ITO); серебренная контактная сетка. При этом над тыльной поверхностью последовательно расположены: промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора; нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H; n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H; слой оксида индия-олова ITO; слой серебра Ag. Изобретение позволяет улучшить пассивацию поверхности за счет предотвращения частичного эпитаксиального роста во время нанесения слоя аморфного гидрогенизированного кремния толщиной 2-5 нм на кристаллическую подложку, что в свою очередь ведет к увеличению напряжения холостого хода и, как следствие, эффективности преобразования солнечного излучения. 13 з.п. ф-лы, 3 ил.

Способ формирования туннельного перехода (112) в структуре (100) солнечных элементов, предусматривающий попеременное осаждение вещества Группы III и вещества Группы V на структуре (100) солнечных элементов и управление отношением при осаждении указанного вещества Группы III и указанного вещества Группы V. Также предложено фотоэлектрическое устройство, включающее подложку (102); первый солнечный элемент (108), расположенный над подложкой (102); контакт (116), расположенный над первым солнечным элементом (108); туннельный переход (112), образованный между первым солнечным элементом (108) и контактом (116), и в котором туннельный переход (112) изготовлен методом эпитаксии со стимулированной миграцией (МЕЕ); буферный слой (106), расположенный между указанной подложкой (102) и указанным первым солнечным элементом (108); и слой (104) зарождения, расположенный между указанным буферным слоем (106) и указанной подложкой (102). Изобретение обеспечивает улучшение качества материала туннельного перехода, что обеспечивает высокую кристаллическую чистоту солнечных элементов над туннельным переходом, которая в свою очередь обеспечивает повышение эффективности преобразования солнечного излучения. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, а именно к устройству каскадной солнечной батареи. Каскадная солнечная батарея выполнена с первой полупроводниковой солнечной батареей, причем в первой полупроводниковой солнечной батарее имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей, причем во второй полупроводниковой солнечной батарее имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки меньше, чем вторая константа решетки, и у каскадной солнечной батареи имеется метаморфный буфер, причем метаморфный буфер включает в себя последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер сформирован между первой полупроводниковой солнечной батареей и второй полупроводниковой солнечной батареей, и константа решетки метаморфного буфера изменяется по толщине (по координате толщины) метаморфного буфера, и причем между по меньшей мере двумя слоями метаморфного буфера константа решетки и содержание индия увеличивается, а содержание алюминия уменьшается. Снижение остаточного напряжения в солнечной батарее, а также повышение коэффициента ее полезного действия является техническим результатом изобретения. 14 з.п. ф-лы, 7 ил.
Наверх