Комплекс для испытаний и периодической поверки войсковых индивидуальных дозиметров

Изобретение относится к области метрологического обеспечения дозиметрического контроля облучения личного состава, действующего в условиях воздействия смешанного нейтронного и гамма-излучения, и может быть использовано для испытаний и поверки индивидуальных дозиметров. Сущность изобретения заключается в том, что комплекс состоит из источников ионизирующих излучений, в качестве которых выбраны ядерно-физические установки (ЯФУ): ядерный реактор и генератор термоядерных нейтронов, трансформаторов ионизирующих излучений, расположенных на стойках между источниками ионизирующих излучений и испытываемыми объектами и предназначенных для формирования модельных полей гамма- и нейтронного излучения (ПГНИМ), близких по энергетическому спектру нейтронов и соотношению поглощенных доз нейтронного и гамма-излучения (Дnγ) к полям проникающей радиации в равновесной зоне взрыва атомного и нейтронного боеприпасов на открытой местности и в среднезащищенном объекте, в которых применяются войсковые индивидуальные дозиметры, и входящих в состав ЯФУ каналов мониторирования, на показания которых приведены результаты метрологической аттестации полей ПГНИМ по поглощенным дозам нейтронного и гамма-излучения. Технический результат - повышение точности дозиметрического контроля облучения личного состава при ведении боевых действий в условиях применения ядерного оружия. 1 ил., 1 табл.

 

Изобретение относится к области метрологического обеспечения дозиметрического контроля облучения личного состава, действующего в условиях воздействия смешанного нейтронного и гамма-излучения, и может быть использовано для испытаний и поверки индивидуальных дозиметров.

При ведении боевых действий в условиях применения ядерного оружия для оценки боеспособности личного состава и определения требуемой медицинской помощи необходим постоянный контроль его облучения. Для его проведения применяются существующие и вновь разрабатываемые войсковые дозиметры. При их разработке с целью определения метрологических характеристик: чувствительности к регистрируемому излучению, диапазона и погрешности измерений, необходимо проведение предварительных и государственных испытаний. После принятия их на снабжение необходимо проведение периодической поверки с целью подтверждения указанных выше метрологических характеристик.

Для проведения испытаний и периодической поверки войсковых дозиметров используются различные образцовые поверочные установки. В последнее время наиболее широкое применение нашли установки: по поглощенной дозе нейтронов УКПН-1М [1], по поглощенной дозе гамма-излучения УПГД-2М-Д [2]. Данные установки состоят из источников нейтронного и гамма-излучения и устройств для их размещения и приспособлений для установки на требуемых расстояниях от источников поверяемых средств измерений. На указанных расстояниях от источников поля излучений аттестованы по мощностям поглощенных доз нейтронного и гамма-излучения. В качестве источников излучения используются радионуклидные источники: в установке УКПН-1М - на основе 252Cf и Pu-Be со средней энергией нейтронов 1,9 и 3,9 МэВ соответственно, в установке УПГД-2М-Д - на основе 60Co и 137Cs с энергией гамма-квантов 1,25 МэВ и 660 кэВ соответственно.

При проведении испытаний и поверки войсковые дозиметры устанавливаются в аттестованных точках полей излучений и облучаются в течение необходимого времени. Значения поглощенных доз определяются путем умножения значения мощностей поглощенных доз в указанных точках на время облучения. Описанные установки являются наиболее близким аналогом предлагаемого изобретения и принимаются в качестве его прототипа.

Чувствительность большинства существующих и вновь разрабатываемых войсковых дозиметров при измерении поглощенной дозы нейтронного излучения зависит от энергии регистрируемых нейтронов (так называемый «ход с жесткостью»). Кроме того, при измерении поглощенных доз нейтронного и гамма-излучения войсковые дозиметры не обладают достаточной избирательностью к регистрируемому излучению на фоне сопутствующего. Это означает, что в показания нейтронного дозиметра вносит вклад сопутствующее гамма-излучение, а в показания дозиметра гамма-излучения вносят вклад нейтроны.

Войсковые дозиметры, предназначенные для индивидуального дозиметрического контроля облучения личного состава в условиях применения ядерного оружия, используются в равновесной зоне взрыва ядерного боеприпаса. Поля ионизирующих излучений в ней обладают специфическими характеристиками: энергетическим спектром нейтронов и соотношением поглощенных доз нейтронов и гамма-излучения (Дnγ) на открытой местности и внутри среднезащищенного объекта вооружения и военной техники (ОВВТ). Указанные характеристики приведены в [3].

Определение метрологических характеристик войсковых дозиметров в полях излучений образцовых поверочных установок, принятых в качестве прототипа, которые отличаются от реальных полей, приводит к дополнительной погрешности измерений, сравнимой и даже превышающей основную погрешность. Для ее устранения предлагается определять метрологические характеристики с помощью специализированного испытательного комплекса.

В качестве источников излучений в данном комплексе выбраны ядерный реактор с энергетическим спектром нейтронов, близким к спектру нейтронов деления, и генератор термоядерных нейтронов. В полях излучений указанных ядерно-физических установок (ЯФУ) создаются поля гамма-нейтронного излучения модельные (ПГНИМ). Они создаются в барьерной геометрии с помощью специальных трансформаторов излучений из различных материалов. Для размещения трансформаторов излучений и поверяемых войсковых дозиметров применяется специальное оборудование в виде стоек, которые могут передвигаться в стендовых залах ЯФУ. Контроль поглощенных доз нейтронного и гамма-излучения при проведении испытаний и периодических поверок дозиметров осуществляется с помощью входящих в состав ЯФУ каналов мониторирования, показания которых связаны с результатами метрологической аттестации полей ПГНИМ по поглощенным дозам нейтронов и гамма-излучения.

На фиг. 1 представлена структура комплекса для испытаний и периодической поверки войсковых индивидуальных дозиметров, где:

1 - ядерный реактор,

2 - генератор термоядерных нейтронов,

3 - стойки для размещения трансформаторов излучений и испытываемых дозиметров,

4 - трансформаторы излучений,

5 - модельные поля ПГНИМ,

Комплекс состоит из ядерного реактора 1 и нейтронного генератора 2. В непосредственной близости от них находятся стойки 3 для размещения трансформаторов излучений 4 и испытываемых дозиметров. С помощью трансформаторов создаются модельные поля ПГНИМ 5. Два поля создаются на реакторе. В них формируются поля нейтронного и гамма-излучения, близкие по энергетическому спектру нейтронов и соотношению Дnγ к полям излучений в равновесной зоне взрыва атомного боеприпаса на открытой местности (ПГНИМ-1) и в среднезащищенном ОВВТ (ПГНИМ-2). Аналогичные поля (ПГНИМ-3) и (ПГНИМ-4) для равновесной зоны взрыва нейтронного боеприпаса создаются на генераторе термоядерных нейтронов.

Трансформаторы излучений представляют собой наборы дисков из различных материалов. Их состав, толщины дисков и последовательность их расположения определяются ЯФУ, в полях излучений которых они используются, и типом модельных полей ПГНИМ, которые необходимо создать. Например, на ядерном реакторе БАРС-1 [4] и генераторе СНЕГ-13 [5] применяются трансформаторы, приведенные в табл.1. Диаметры дисков определяются требуемыми размерами полей ПГНИМ. Для ПГНИМ, создаваемых на других ЯФУ, составы трансформаторов излучений будут другими.

Поля ПГНИМ имеют форму усеченного конуса, малое основание которого совпадает с внешней поверхностью трансформатора излучений. Поля излучений в них аттестуются по энергетическому спектру нейтронов и по поглощенным дозам нейтронного и гамма-излучения. Для аттестации по энергетическому спектру нейтронов используется нейтронно-активационный метод, основанный на применении набора нейтронно-активационных детекторов, радиометрической установки для измерения их активностей и программы восстановления спектра [6]. Аттестация ПГНИМ по поглощенным дозам нейтронного и гамма-излучения осуществляется с помощью эталонных средств дозиметрических измерений. Ее результаты приводятся на показания входящих в состав ЯФУ каналов мониторирования, которые используются для контроля значений поглощенных доз при проведении испытаний войсковых дозиметров.

Применение для испытаний и периодической поверки войсковых дозиметров предлагаемого испытательного комплекса позволит избавиться от дополнительной погрешности, обусловленной различием полей излучений в поверочных объемах установок, принятых в качестве прототипа, от реальных полей, в которых применяются дозиметры, и за счет этого повысить точность дозиметрического контроля облучения личного состава.

Источники информации

1. Установка поверочная нейтронного излучения УКПН-1М. Руководство по эксплуатации. Ногинский опытный завод «Эталон». 1984 г.

2. Установка поверочная дозиметрическая гамма-излучения УПГД-2М-Д. Руководство по эксплуатации. НИИ «Доза». Москва-Зеленоград. 2010 г.

3. Физика ядерного взрыва: В 2 т. Том 1. Развитие взрыва. Министерство обороны Российской Федерации. Центральный физико-технический институт. - М.: Наука, Физмат издательство, 1997.

4. А.В. Лукин. Физика импульсных ядерных реакторов. - Снежинск: Изд-во РФЯЦ - ВНИИТФ, 2006. С. 64.

5. В.Д. Ковальчук, В.М. Багаев, B.C. Трошин, В.И. Троцик и др. Нейтронный генератор СНЕГ-13. Характеристики нейтронных и фотонных полей. ЖЭТФ, т. 104, Вып. 2(8), с. 2577-2589, 1993.

6. Крамер-Агеев Е.А., Тихонов Е.Г., Трошин B.C. Активационные методы спектрометрии нейтронов. М.: Атомиздат, 1976.

Комплекс для испытаний и периодической поверки войсковых индивидуальных дозиметров, состоящий из источников ионизирующих излучений и стоек для размещения испытываемых дозиметров, отличающийся тем, что в качестве источников ионизирующих излучений выбраны ядерно-физические установки (ЯФУ): ядерный реактор и генератор термоядерных нейтронов, и в состав комплекса дополнительно введены для формирования модельных полей гамма- и нейтронного излучения, близких по энергетическому спектру нейтронов и соотношению поглощенных доз нейтронного и гамма-излучения (Дnγ) к полям проникающей радиации в равновесной зоне взрыва атомного и нейтронного боеприпасов на открытой местности и в среднезащищенном объекте, в которых применяются войсковые индивидуальные дозиметры, трансформаторы ионизирующих излучений, которые расположены на стойках между источниками ионизирующих излучений и испытываемыми объектами, причем трансформаторы выполнены в виде набора дисков диаметром, обеспечивающим необходимые размеры поверочного объема, из различных материалов и различной толщины, состав которых определяется типами применяемых ЯФУ и моделируемых полей, а также входящие в состав ЯФУ каналы мониторирования, используемые для контроля дозиметрических характеристик нейтронного и гамма-излучения при проведении испытаний и поверки войсковых индивидуальных дозиметров.



 

Похожие патенты:
Изобретение относится к области радиационных технологий, а именно к способам контроля герметичности капсулы с источником ионизирующего излучения (ИИИ). Технический результат - упрощение технологии контроля герметичности капсулы с источником ионизирующего излучения.

Изобретение относится к радиационному контролю помещений и промплощадки, а именно к измерению объемной активности радиоактивных аэрозолей. Способ основан на отборе проб аэрозолей путем прокачки воздуха с контролируемыми аэрозолями через фильтрующую ленту с заданной постоянной скоростью, установке над зоной фильтрации полупроводникового детектора и формировании с его помощью импульсов напряжения, амплитуды которых пропорциональны энергиям α- и β-частиц, испускаемых осевшими на фильтре частицами радиоактивного аэрозоля.

Использование: для точной идентификации по меньшей мере одного источника, в частности по меньшей мере одного нуклида, заключенного в теле человека и/или контейнере.

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ.

Изобретение относится к области контроля окружающей среды, а именно к способам обнаружения и выделения горячих частиц (ГЧ) с различных поверхностей и из воздушной среды, загрязненных радиоактивными веществами.

Изобретение относится к области радиационной экологии. Сущность изобретения заключается в том, что устройство для дистанционного обнаружения источников альфа-излучения содержит измерительный открытый на воздух детектор аэроионов, сопряженный с блоком переноса аэроионов и подключенный к источнику рабочего напряжения и к измерительному счетчику импульсов соответственно, калибровочный альфа-источник, калибровочный детектор аэроионов, аналогичный измерительному детектору, выполненному газоразрядным, подключенный к источнику рабочего напряжения, и компаратор, причем калибровочный детектор соединен с калибровочным счетчиком импульсов, выход которого соединен с первым входом компаратора, второй вход которого соединен с шиной наперед заданного числа, при этом дополнительно содержит двухпозиционный переключатель режима работы устройства, сумматор, причем управляющий вход двухпозиционного переключателя является входом выбора режима устройства, первый информационный вход соединен с шиной нулевого потенциала, а второй - с дополнительной шиной наперед заданного числа, первый вход сумматора подключен к выходу компаратора, второй - к выходу двухпозиционного переключателя режима работы, а выход сумматора подключен к управляющему входу источника рабочего напряжения.

Изобретение относится к средствам дистанционного контроля радиационного состояния объекта. .

Изобретение относится к области радиационной экологии и может быть использовано для дистанционного поиска остатков ядерного топлива, например плутония, загрязняющих поверхности в результате аварий или в ходе производственных процессов.

Изобретение относится к области ядерной и радиационной физики и может быть использовано для регистрации гамма- или тормозного излучения (ТИ) мощных импульсных источников.

Изобретение относится к ядерной технике, а именно к области радиационного мониторинга, и может быть использовано в машиностроении, медицине и других отраслях для контроля несанкционированного перемещения ядерных материалов и других радиоактивных веществ.
Изобретение относится к области аналитической радиохимии и может использоваться для контроля содержания плутония в технологических средах ядерных энергетических установок (ЯЭУ). Способ определения объемной альфа-активности плутония в технологических средах ядерных энергетических установок, включающий отбор пробы, фильтрацию пробы с расходом 0,1-4 л/ч через ацетатцеллюлозную мембрану с диаметром пор 0,1-1,3 мкм, импрегнированную гидратированным оксидом марганца, с последующим высушиванием потоком воздуха, создаваемым разрежением, и радиометрическим измерением альфа-активности, при этом анализируемую пробу предварительно обрабатывают азотной кислотой и упаривают досуха, а затем растворяют в 7,5 M растворе азотной кислоты с добавкой 2,5-3,0 г/л азотистокислого натрия и выдерживают при температуре 40-45°C до прекращения выделения окислов азота в виде бурого газа, охлажденный раствор фильтруют через сильноосновной анионит, например, типа AB-17 со скоростью (7-10)·10-3 л/ч, после чего плутоний элюируют со смолы раствором 14-15 г/л йодида аммония в 10 M соляной кислоте со скоростью в два раза ниже скорости фильтрации, нейтрализуют аммиаком до pH=6-10 и направляют на фильтрацию через мембрану. Технический результат - повышение точности определения объемной альфа-активности плутония в технологических средах ЯЭУ на 40%. 1 з.п. ф-лы.

Изобретение относится к области радиационной экологии. Устройство содержит два идентичных газоразрядных детектора, открытых на воздух: измерительный и калибровочный. Измерительный детектор регистрирует аэроионы, возникающие на следах альфа-частиц и доставляемые от исследуемой поверхности в рабочую область детектора с помощью воздушного потока. Калибровочный детектор регистрирует только ионы, поступающие от калибровочного источника альфа-излучения, так как аэроионы от исследуемой поверхности не поступают в рабочую область детектора из-за наличия электростатического фильтра, через который воздушный поток проходит к калибровочному детектору. Использование калибровочного детектора, калибровочного источника альфа-излучения, источника отрицательного напряжения, электростатического фильтра, постоянного резистора и переменного резистора позволяет отслеживать и компенсировать потерю чувствительности устройства из-за налипания на тонкие анодные проволочки газоразрядных детекторов и, работающих при высоком напряжении, мельчайших пылинок, переносимых воздушным потоком. Технический результат - обеспечение стабильной высокой чувствительности устройства при его длительной непрерывной работе. 1 ил.

Изобретение относится к области выявления радиационной обстановки в окрестностях объектов атомной энергетики после аварийного выброса в атмосферу радиоактивных веществ. Сущность изобретения заключается в том, что осуществляют воздушную радиационную разведку местности с помощью неспециализированного прибора, например носимого измерителя мощности дозы гамма-излучения, обладающего только одним детектором излучения, размещенного на борту летательного аппарата. При ведении радиационной разведки по заданному маршруту на каждом прямолинейном участке необходимо два раза произвести изменение высоты полета. Это позволяет получить данные, которые в неявном виде содержат информацию о величине ослабления гамма-излучения в зависимости от высоты над поверхностью земли. Путем обработки данных определяют коэффициенты для пересчета уровней радиации, измеренных на высоте полета летательного аппарата, к высоте 1 м над поверхностью земли. Технический результат - повышение точности определения радиационной обстановки. 4 табл., 4 ил.

Изобретение относится к способам контроля радиационной обстановки и может быть использовано для контроля фонового уровня радиации вокруг АЭС. Сущность: осуществляют зондирование территорий АЭС, содержащих эталонные площадки с известным уровнем радиации. Причем для зондирования используют космические средства на теневом участке орбиты в ультрафиолетовом и ближнем инфракрасном диапазонах. Формируют синтезированную матрицу из попиксельных отношений ультрафиолетового изображения к инфракрасному изображению. Нормируют функцию сигнала синтезированной матрицы в стандартной шкале 0…255 уровней квантования. Посредством программы выделяют контуры на синтезированном изображении. Рассчитывают площади контуров и фрактальную размерность изображения внутри выделенных контуров. Определяют эквивалентную площадь радиационного загрязнения вокруг АЭС. Оценивают динамику изменения радиационного фона. Технический результат: повышение достоверности и оперативности контроля. 5 ил.

Изобретение относится к способу измерения уровня безопасности содержащего радионуклиды сыпучего материала. Сыпучий материал засыпается на ленточный транспортер и подается на приемное устройство, причем сыпучий материал во время транспортировки проводится мимо первых датчиков, которые по ширине ленточного транспортера спектрометрически измеряют гамма-излучение. Для того чтобы при высокой пропускной способности иметь возможность выполнять точное определение радиоактивности, предусмотрены следующие шаги способа: определение соотношения радионуклидов в сыпучем материале перед засыпкой на ленточный конвейер, учитывая по меньшей мере один эталонный нуклид, вычисление радиоактивности сыпучего материала на основе измеренных при помощи первых датчиков гамма-лучей и их интенсивностей, учитывая один или несколько эталонных нуклидов, имеющихся в радионуклидах, проверка определенного ранее соотношения радионуклидов и/или измеренной радиоактивности при помощи измеряющих α- и/или β-излучение вторых датчиков, которые расположены над ленточным транспортером. 16 з.п. ф-лы, 6 ил.

Изобретение относится к области радиоэкологического мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к малогабаритным устройствам пробоподготовки горючих природных газовых проб в полевых условиях и перевода опасных для транспортировки горючих природных газовых проб в безопасные водные образцы для дальнейшего определения в них содержания трития в лабораторных условиях методом жидкостно-сцинтилляционной спектрометрии. Устройство включает последовательно установленные в едином корпусе и взаимосвязанные компрессор подачи горючего природного газа или попутного нефтяного газа в инжекционную горелку, водоохлаждаемый конденсатор и контейнер для сбора конденсата водяного пара - конденсированных продуктов горения, при этом инжекционная горелка установлена таким образом, что сопло ее направлено вертикально вниз для подачи продуктов горения во входное отверстие установленного ниже по ее оси водоохлаждаемого конденсатора, а держатель горелки прикреплен к конденсатору с возможностью изменения расстояния между выходом горелки и входом продуктов горения в конденсатор от 4,7 до 5,0 см в зависимости от состава горючего газа. Водоохлаждаемый конденсатор выполнен в виде дугообразно изогнутой под прямым углом трубки с внутренним диаметром не более 15 мм, переходящей в вертикальную трубку, высотой не более 20 см и внутренним диаметром не более 40 мм, закрытую воронкообразным днищем с отверстиями для слива конденсированных продуктов горения в нижеустановленный контейнер. Внутри вертикальной трубки конденсатора соосно установлена охлаждаемая трубка, на которой также соосно установлены по крайней мере три конуса с коаксиальным зазором не менее 2 мм между внутренней поверхностью конденсатора и внешними краями конусов. Техническим результатом является получение конденсата водяного пара в полевых условиях, безопасного для перевозки любым видом транспорта, в стационарную лабораторию, исключая необходимость транспортировки газовой пробы в стальных баллонах. 3 ил.
Наверх